Теория газа в закрытом сосуде

Теория газа в закрытом сосуде thumbnail

5.4. Практическое применение уравнения состояния идеального газа

5.4.2. Уравнение состояния для газа в закрытом сосуде

При рассмотрении идеального газа, находящегося в закрытом сосуде (баллоне), необходимо учитывать, что изменение термодинамических параметров происходит при постоянной массе газа.

Для идеального газа, находящегося в закрытом сосуде, необходимо учитывать следующее:

  • масса газа, находящегося в закрытом сосуде, вследствие изменения его термодинамических параметров не изменяется:

m = const;

  • объем газа, заполняющего сосуд определенного объема, также фиксирован: V = const;
  • постоянными также остаются следующие параметры газа:

ρ = const; ν = const; n = const;

где ρ – плотность газа; ν – количество вещества (газа); n – концентрация молекул (атомов) газа.

Для идеального газа, находящегося в закрытом сосуде и изменяющего свое состояние, уравнение Менделеева – Клапейрона записывается в виде системы (рис. 5.8):Рис. 5.8

p 1 V = ν R T 1 , p 2 V = ν R T 2 , }

где p 1, T 1 – давление и температура газа в начальном состоянии; p 2, T 2 – давление и температура газа в конечном состоянии; V – объем баллона; ν – количество газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Термин избыточное давление, встречающийся в задачах об идеальном газе в закрытом сосуде (баллоне), означает абсолютную разность между давлением газа, находящегося в сосуде, и давлением на стенки сосуда снаружи:

p изб = |p − p 0|,

где p – давление газа, находящегося внутри сосуда; p 0 – давление (атмосферное либо гидростатическое) на стенки сосуда снаружи.

Пример 13. Баллон рассчитан на максимальное избыточное давление 150 МПа. В него накачали газ при температуре 300 К до давления 120 МПа. Постепенно нагревая газ, баллон погружают в воду плотностью 1000 кг/м3 на глубину 1000 м. До какой максимальной температуры можно нагреть газ в баллоне, чтобы он не взорвался?

Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в баллоне:

  • в начале нагревания

p 1V = νRT 1;

  • в конце нагревания

p 2V = νRT 2;

где p 1 – первоначальное давление газа в баллоне; p 2 – давление газа в баллоне в конце нагревания; V – объем газа (баллона), V = const; ν – количество вещества (газа) в баллоне; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в начале процесса; T 2 – температура газа в конце процесса.

Отношение уравнений

p 1 V p 2 V = ν R T 1 ν R T 2

позволяет определить давление газа в конце процесса:

p 2 = p 1 T 2 T 1 .

В условии задачи задано максимальное избыточное давление, определяемое формулой

p изб max = | p 2 − p 0 | ,

где p 0 – давление снаружи баллона; p 2 – давление газа внутри баллона.

При погружении баллона в воду с одновременным нагреванием указанные давления снаружи и внутри баллона определяются следующими формулами:

  • снаружи (сумма атмосферного и гидростатического давлений) –

p 0 = p атм + p гидр = p атм + ρ0gh,

где p атм – атмосферное давление; p гидр – гидростатическое давление, p гидр = ρ0gh; ρ0 – плотность воды; g – модуль ускорения свободного падения; h – глубина погружения баллона;

  • внутри (давление газа) –

p 2 = p 1 T 2 T 1 ,

где T 2 – максимальная температура газа (искомая величина).

Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает

p изб max = | p 1 T 2 T 1 − ρ 0 g h − p атм | ≈ | p 1 T 2 T 1 − ρ 0 g h | ,

так как p атм << ρ0gh, p атм << p 2.

Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:

p изб max = p 1 T 2 T 1 − ρ 0 g h , p изб max = ρ 0 g h − p 1 T 2 T 1 ,

из которых следуют две формулы для расчета искомой величины:

T 2 = T 1 ⋅ ρ 0 g h + p изб max p 1 , T 2 = T 1 ⋅ ρ 0 g h − p изб max p 1 .

Максимальному значению искомой температуры соответствует значение, рассчитанное по первой формуле:

T 2 = 300 ⋅ 1000 ⋅ 10 ⋅ 1000 + 150 ⋅ 10 6 120 ⋅ 10 6 = 400 К.

Чтобы баллон не взорвался, его можно погрузить на заданную глубину, одновременно нагревая до температуры 400 К.

Пример 14. Бутылка емкостью 0,75 л выдерживает максимальное избыточное давление 150 кПа. Из бутылки откачивают воздух и запечатывают некоторое количество твердого углекислого газа с молярной массой 44,0 г/моль. Атмосферное давление равно 100 кПа. Считая, что объем твердого углекислого газа пренебрежимо мал по сравнению с объемом бутылки, найти его максимальную массу, которая не вызовет взрыва бутылки при температуре 300 К?

Решение. Запишем уравнение Менделеева – Клапейрона для углекислого газа, находящегося в бутылке, после его превращения в газообразное состояние:

p V = m M R T ,

где p – давление углекислого газа в бутылке; V – объем газа (бутылки); m – масса углекислого газа в бутылке; M – молярная масса углекислого газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа.

Записанное уравнение позволяет получить выражение для расчета давления газа внутри бутылки:

p = m R T V M .

В условии задачи задано максимальное избыточное давление, определяемое формулой

p изб max = | p − p 0 | ,

где p 0 – давление снаружи бутылки.

Указанные давления снаружи и внутри бутылки определяются следующим образом:

  • снаружи (атмосферное давление) – p 0;
  • внутри (давление углекислого газа) –

p = m R T V M ,

где m соответствует искомой величине – максимальной массе углекислого газа.

Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает

p изб max = | m R T V M − p 0 | .

Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:

p изб max = m R T V M − p 0 , p изб max = p 0 − m R T V M ,

из которых следуют две формулы для расчета искомой величины:

m = V M ( p 0 + p изб max ) R T , m = V M ( p 0 − p изб max ) R T .

Максимальному значению искомой массы соответствует значение, рассчитанное по первой формуле:

m = 0,75 ⋅ 10 − 3 ⋅ 44,0 ⋅ 10 − 3 ( 100 + 150 ) ⋅ 10 3 8,31 ⋅ 300 = 3,3 ⋅ 10 − 3 кг = 3,3 г .

Чтобы бутылка не взорвалась, в нее можно запечатать не более 3,3 г твердого углекислого газа.

Пример 15. В наличии имеется неограниченное количество баллонов объемом по 4,0 л, заполненных некоторым идеальным газом до давления 500 кПа. Баллоны предназначены для наполнения газом оболочки аэрозонда и их можно соединять между собой. Сколько баллонов с газом необходимо одновременно подсоединить к пустой оболочке аэрозонда объемом 800 дм3, чтобы наполнить ее до давления 100 кПа, равного атмосферному? Температура газа при заполнении оболочки не изменяется.

Читайте также:  Снять спазм сосудов при температуре ребенку

Решение. Для осуществления процесса, описанного в условии задачи, требуется определенное количество газа ν.

Необходимое количество газа заполняет следующий объем:

  • в начале процесса (до заполнения оболочки)

V 1 = NV бал,

где N – количество баллонов; V бал – объем одного баллона, V бал = 4,0 л;

  • в конце процесса (после заполнения оболочки)

V 2 = NV бал + V обол,

где V обол – объем оболочки, V обол = 800 дм3.

Указанное количество газа находится при давлении:

  • в начале процесса (до заполнения оболочки) –

p 1 = 500 кПа

и совпадает с давлением газа в каждом из баллонов;

  • в конце процесса (после заполнения оболочки) –

p 2 = 100 кПа

и совпадает с давлением в оболочке.

Считая процесс заполнения газом оболочки аэрозонда изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:

  • в начале процесса (до заполнения оболочки) –

p 1V 1 = νRT,

где ν – количество вещества (газа) в оболочке; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • в конце процесса (после заполнения оболочки) –

p 2V 2 = νRT.

Равенство

p 1V 1 = p 2V 2,

записанное в явном виде

p 1NV бал = p 2(NV бал + V обол),

позволяет получить формулу для вычисления искомого числа баллонов:

N = V обол V бал ⋅ p 2 p 1 − p 2 .

Произведем расчет:

N = 800 ⋅ 10 − 3 4,0 ⋅ 10 − 3 ⋅ 100 ⋅ 10 3 ( 500 − 100 ) ⋅ 10 3 = 50 .

Следовательно, для заполнения оболочки до указанного давления необходимо 50 баллонов с газом.

Пример 16. Аэростат, оболочка которого заполнена азотом с молярной массой 28 г/моль, находится в воздухе. Молярная масса воздуха равна 29 г/моль. Массы гондолы и оболочки аэростата пренебрежимо малы. Во сколько раз возрастет подъемная сила аэростата, если азот в его оболочке заменить на водород с молярной массой 2,0 г/моль, не изменяя при этом объем аэростата?

Решение. Силы (сила тяжести m g → и сила Архимеда F → A ), действующие на аэростат, показаны на рисунке.

Подъемная сила – это векторная сумма силы тяжести и силы Архимеда:

F → под = F → A + m g → ,

где F → A – сила Архимеда, действующая на оболочку со стороны воздуха; m g → – сила тяжести; m – масса газа, заполняющего оболочку аэростата; g → – ускорение свободного падения.

В проекциях на вертикальную ось подъемная сила определяется следующими выражениями:

  • при заполнении оболочки азотом –

F под1 = F A1 − m 1g,

где F A1 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки азотом, F A1 = ρ0gV 1; ρ0 – плотность воздуха; V 1 – объем оболочки аэростата при заполнении ее азотом (объем воздуха, вытесненного оболочкой); m 1 – масса азота, заполняющего оболочку, m 1 = ρ1V 1; ρ1 – плотность азота;

  • при заполнении оболочки водородом –

F под2 = F A2 − m 2g,

где F A2 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки водородом, F A2 = ρ0gV 2; V 2 – объем оболочки аэростата при заполнении ее водородом (объем воздуха, вытесненного оболочкой); m 2 – масса водорода, заполняющего оболочку, m 2 = ρ2V 2; ρ2 – плотность водорода.

Искомой величиной является отношение

F под 2 F под 1 = F A 2 − m 2 g F A 1 − m 1 g .

С учетом записанных выражений для сил Архимеда, масс азота и водорода, а также равенства объемов оболочки при заполнении ее азотом и водородом (V 1 = V 2), указанное отношение принимает вид

F под 2 F под 1 = ρ 0 g V 2 − ρ 2 V 2 g ρ 0 g V 1 − ρ 1 V 1 g = ( ρ 0 − ρ 2 ) V 2 g ( ρ 0 − ρ 1 ) V 1 g = ρ 0 − ρ 2 ρ 0 − ρ 1 .

Плотности воздуха, азота и водорода определим как отношения:

  • для воздуха

ρ 0 = M 0 V μ 0 ,

где M 0 – молярная масса воздуха; V µ0 – молярный объем воздуха;

  • для азота

ρ 1 = M 1 V μ 1 ,

где M 1 – молярная масса азота; V µ1 – молярный объем азота;

  • для водорода

ρ 2 = M 2 V μ 2 ,

где M 2 – молярная масса водорода; V µ2 – молярный объем водорода.

Молярные объемы (объемы одного моля) воздуха, азота и водорода равны между собой, так как газы находятся при одних и тех же условиях:

V µ0 = V µ1 = V µ2 = V µ.

Поэтому формула для расчета искомого отношения приобретает вид

F под 2 F под 1 = ρ 0 − ρ 2 ρ 0 − ρ 1 = M 0 − M 2 M 0 − M 1 .

Расчет дает значение:

F под 2 F под 1 = 29 ⋅ 10 − 3 − 2,0 ⋅ 10 − 3 29 ⋅ 10 − 3 − 28 ⋅ 10 − 3 = 27 .

При замене азота на водород в оболочке аэростата его подъемная сила возрастет в 27 раз.

Пример 17. Воздушный шар с температурой 300 К находится в воздухе при атмосферном давлении 100 кПа. Молярная масса воздуха составляет 29,0 г/моль. Объем воздушного шара равен 830 дм3, а масса его оболочки равна 333 г. На сколько градусов необходимо нагреть газ в оболочке, чтобы шар взлетел? Воздух в оболочке шара сообщается с атмосферой.

Решение. Силы, действующие на воздушный шар, показаны на рисунке:

  • сила Архимеда

F A = ρ0gV,

где ρ0 – плотность воздуха, окружающего шар; g – модуль ускорения свободного падения; V – объем оболочки шара (объем вытесненного оболочкой воздуха);

  • сила тяжести

mg = (m обол + m возд)g,

где m обол – масса оболочки; m возд – масса воздуха в оболочке, m возд = ρV; ρ – плотность воздуха внутри оболочки.

Шар взлетает, когда выполняется равенство

F → A + m g → = 0,

или, в проекции на вертикальную ось, –

F A − mg = 0.

Преобразуем равенство (условие равновесия шара в воздухе)

F A = mg

с учетом записанных выше выражений

Читайте также:  Какие симптомы при заболевании сосудов головного

ρ0gV = (m обол + m возд)g, или (ρ0 − ρ)V = m обол.

Входящие в равенство плотности воздуха не известны, но фигурируют в качестве параметра в уравнении состояния:

  • для воздуха снаружи оболочки воздушного шара

p 0 = ρ 0 R T 1 M ,

где p 0 – атмосферное давление; ρ0 – плотность воздуха снаружи оболочки; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура окружающего шар воздуха; M – молярная масса воздуха;

  • для воздуха внутри оболочки воздушного шара

p = ρ R T 2 M ,

где p – давление воздуха внутри оболочки; ρ – плотность воздуха внутри оболочки; T 2 – температура воздуха внутри оболочки.

Давления воздуха внутри и снаружи оболочки воздушного шара одинаковы, так как воздух, находящийся в оболочке, сообщается с атмосферой; поэтому

p = p 0.

Плотности:

  • для воздуха снаружи оболочки воздушного шара

ρ 0 = p 0 M R T 1 ;

  • для воздуха внутри оболочки воздушного шара

ρ = p 0 M R T 2 .

Подставим выражения для плотностей в условие равновесия шара в воздухе:

( 1 T 1 − 1 T 2 ) p 0 M V R = m обол .

Температура воздуха внутри оболочки, при которой шар начинает взлетать, определяется как

T 2 = p 0 M V T 1 p 0 M V − R T 1 m обол ,

а искомая разность –

Δ T = T 2 − T 1 = p 0 M V T 1 p 0 M V − R T 1 m обол − T 1 = T 1 p 0 M V R T 1 m обол − 1 .

Произведем вычисление:

Δ T = 300 100 ⋅ 10 3 ⋅ 29,0 ⋅ 10 − 3 ⋅ 830 ⋅ 10 − 3 8,31 ⋅ 300 ⋅ 333 ⋅ 10 − 3 − 1 = 158 К.

Следовательно, чтобы воздушный шар начал взлетать, воздух в его оболочке необходимо нагреть на 158 К, или 158 °С.

Пример 18. Камеру футбольного мяча объемом 3,00 л накачивают с помощью насоса, забирающего из атмосферы 0,150 л воздуха при каждом качании. Атмосферное давление составляет 100 кПа. Определить давление в камере после 30 качаний, если первоначально она была пустой. Температура постоянна.

Решение. За N качаний насос забирает из атмосферы определенное количество воздуха ν. Это же количество воздуха попадает в камеру футбольного мяча.

Указанное количество воздуха имеет следующий объем:

  • воздух, забранный из атмосферы за N качаний насоса, –

V 1 = NV нас,

где V нас – объем насоса, V нас = 0,150 л; N – количество качаний;

  • воздух, накачанный в камеру футбольного мяча, –

V 2 = V мяч,

где V мяч – объем камеры мяча, V мяч = 3,00 л.

Данное количество воздуха находится при следующем давлении:

  • воздух, забранный из атмосферы за N качаний насоса, –

p 1 = 100 кПа

совпадает с атмосферным давлением;

  • воздух, накачанный в камеру футбольного мяча, – p 2 (является искомой величиной).

Считая процесс заполнения воздухом камеры мяча изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:

  • для воздуха, забранного из атмосферы за N качаний насоса, –

p 1V 1 = νRT,

где R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • для воздуха, накачанного в камеру футбольного мяча, –

p 2V 2 = νRT.

Равенство

p 1V 1 = p 2V 2,

записанное в явном виде

p 1NV нас = p 2V мяч,

позволяет получить формулу для вычисления давления в камере футбольного мяча:

p 2 = p 1 N V нас V мяч .

Произведем вычисление:

p 2 = 100 ⋅ 10 3 ⋅ 30 ⋅ 0,15 ⋅ 10 − 3 3,00 ⋅ 10 − 3 = 150 ⋅ 10 3 Па = 150 кПа.

Источник

5.4. Практическое применение уравнения состояния идеального газа

5.4.3. Уравнение состояния для газа, находящегося в сосуде под поршнем

Для идеального газа, находящегося в сосуде под поршнем, необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:

m = const;

  • постоянным остается также количество вещества (газа):

ν = const;

  • плотность газа и концентрация его молекул (атомов) изменяются:

ρ ≠ const, n ≠ const.

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).

Рис. 5.9

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , }

где p 1, V 1, T 1 – давление, объем и температура газа в начальном состоянии; p 2, V 2, T 2 – давление, объем и температура газа в конечном состоянии; ν – количество вещества (газа); R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

M g + F A = F 1 , M g + F A + F = F 2 , }

где M – масса поршня; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; S – площадь сечения поршня; F 1 – модуль силы давления газа на поршень в начале процесса, F 1 = p 1S; p 1 – давление газа в сосуде в начальном состоянии; F – модуль силы, вызывающей сжатие газа; F 2 – модуль силы давления газа на поршень в конце процесса, F 2 = p 2S; p 2 – давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется –

T ≠ const;

  • если процесс происходит медленно, то температура газа остается постоянной –

T = const.

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем – неизменно (в том случае, когда из условия задачи не следует обратное) – p = const;
  • в остальных случаях давление газа под поршнем изменяется – p ≠ const.

Масса поршня, закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю –

M = 0;

  • в остальных случаях поршень обладает определенной ненулевой массой –

M ≠ const.

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм2 и массой 1,80 кг находится 360 см3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см3. Температура газа при его сжатии не изменяется. Определить массу гирь.

Читайте также:  Лопаются сосуды в глазах при температуре

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
  • сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
  • m g → – вес гирь.

Условие равновесия поршня запишем в следующем виде:

  • до сжатия газа –

F 1 = Mg + F A,

где F 1 – модуль силы давления газа, F 1 = p 1S; p 1 – давление газа до сжатия; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; g – модуль ускорения свободного падения;

  • после сжатия газа –

F 2 = Mg + F A + mg,

где F 2 – модуль силы давления газа, F 2 = p 2S; p 2 – давление газа после сжатия; mg – вес гирь; m – масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева – Клапейрона для газа под поршнем следующим образом:

  • до его сжатия –

p 1V 1 = νRT,

где V 1 – первоначальный объем газа под поршнем; ν – количество газа под поршнем; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • после его сжатия –

p 2V 2 = νRT,

где V 2 – объем сжатого поршнем газа.

Равенство

p 1V 1 = p 2V 2

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , }

которую требуется решить относительно массы гирь m.

Для этого выразим отношение давлений p 2/p 1 из первой пары уравнений:

p 2 p 1 = M g + p A S + m g M g + p A S

и из третьего уравнения:

p 2 p 1 = V 1 V 2 ,

запишем равенство правых частей полученных отношений:

M g + p A S + m g M g + p A S = V 1 V 2 .

Отсюда следует, что искомая масса определяется формулой

m = ( M + p A S g ) ( V 1 V 2 − 1 ) .

Вычисление дает результат:

m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Решение. На рисунке показаны силы, действующие на пластину после нагревания газа:

  • сила тяжести пластины M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

F 2 = Mg + F A,

где F 2 – модуль силы давления нагретого газа, F 2 = p 2S; p 2 – давление нагретого газа; S – площадь сечения сосуда; Mg – модуль силы тяжести пластины; M – масса пластины; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление.

Запишем уравнение Менделеева – Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

p 1V = νRT 1,

где p 1 – давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A; V – объем газа в сосуде; ν – количество вещества (газа) в сосуде; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания

p 2V = νRT 2,

где p 2 – давление нагретого газа; T 2 – температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; }

систему необходимо решить относительно температуры T 2, до которой следует нагреть газ.

Для этого делением первой пары уравнений

p A V p 2 V = ν R T 1 ν R T 2

получим выражение для давления нагретого газа:

p 2 = p A T 2 T 1

и подставим его в третье уравнение системы:

p A T 2 S T 1 = M g + p A S .

Преобразуем полученное выражение к виду

T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,

а затем найдем разность

Δ T = T 2 − T 1 = M g T 1 p A S .

Произведем вычисление:

Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → , действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :

F → + F → A + M g → = m a → ,

или в проекции на вертикальную ось –

F − F A − Mg = Ma,

где F – модуль силы давления газа под поршнем, F = pS; p – давление газа; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; g – модуль ускорения свободного падения; a – модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a = F − F A − M g M = ( p − p A ) S M − g .

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

l = v 2 2 a ,

где l – пройденный путь; v – модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

v = 2 a l

и подставим в записанную формулу выражение для модуля ускорения:

v = 2 l ( ( p − p A ) S M − g ) .

Выполним расчет:

v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.

Источник