Теплоизолированный сосуд что это значит

ГОСТ Р 53282-2009: Установки газового пожаротушения автоматические. Резервуары изотермические пожарные. Общие технические требования. Методы испытаний — Терминология ГОСТ Р 53282 2009: Установки газового пожаротушения автоматические. Резервуары изотермические пожарные. Общие технические требования. Методы испытаний оригинал документа: 3.2 газовое огнетушащее вещество; ГОТВ: Химическое соединение… … Словарь-справочник терминов нормативно-технической документации
НПБ 78-99: Установки газового пожаротушения автоматические. Резервуары изотермические. Общие технические требования. Методы испытаний — Терминология НПБ 78 99: Установки газового пожаротушения автоматические. Резервуары изотермические. Общие технические требования. Методы испытаний: 2.4. Запорно пусковое устройство (ЗПУ) запорное устройство, устанавливаемое на сосуде и… … Словарь-справочник терминов нормативно-технической документации
изотермический пожарный резервуар — 3.1 изотермический пожарный резервуар: Теплоизолированный сосуд, оборудованный запорно пусковым устройством, холодильными агрегатами или реконденсатором, приборами управления и контроля, предназначенный для хранения сжиженных газовых огнетушащих… … Словарь-справочник терминов нормативно-технической документации
Изотермический резервуар — Емкостное сооружение для хранения аммиака при температуре около 33 °С Источник: ПБ 03 182 98: Правила безопасности для наземных складов жидкого аммиака 2.1. Изотермический резервуар теплоизолированный сосуд, оборудованный холодильными агрегатами… … Словарь-справочник терминов нормативно-технической документации
TЕPMOC — теплоизолированный сосуд для поддержания постоянной температуры помещаемого в него продукта при хранении и транспортировании. Т. изготовляются по типу Дьюара (см.) и герметически закрываются крышкой (пробкой) … Большая политехническая энциклопедия
резервуар — 3.68 резервуар : Стационарный сосуд, предназначенный для хранения газообразных, жидких и других веществ. Источник … Словарь-справочник терминов нормативно-технической документации
ФИЗИКА НИЗКИХ ТЕМПЕРАТУР — раздел физики, изучающий явления, которые наблюдаются при температурах ниже температуры перехода кислорода в жидкое состояние ( 182,97° С, 90,19 К). Большинство обычных веществ с понижением температуры сначала переходит из газообразного состояния … Энциклопедия Кольера
ТЕПЛОТА — кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело … Энциклопедия Кольера
модуль — 02.01.13 модуль (линейная или многострочная символика штрихового кода) [module <linear or multi row bar code symbology>] (1): Номинальная единица измерения линейного размера в знаке символа. Примечание В некоторых символиках ширина элемента … Словарь-справочник терминов нормативно-технической документации
модуль изотермический для жидкой двуокиси углерода — 3.3 модуль изотермический для жидкой двуокиси углерода: Теплоизолированный и термостатированный сосуд, оборудованный запорнопусковым устройством, холодильными агрегатами, приборами управления и контроля, предназначенный для хранения жидкой… … Словарь-справочник терминов нормативно-технической документации
Источник
1. Так как сосуд теплоизолирован и начальные температуры газов одинаковы, то после установления равновесия температура в сосуде будет равна первоначальной, а гелий равномерно распределится по всему сосуду. После установления равновесия в системе в каждой части сосуда окажется по моль гелия: В результате в сосуде с аргоном окажется моль смеси:
2. Внутренняя энергия одноатомного идеального газа пропорциональна температуре и количеству молей:
3. Запишем условие термодинамического равновесия:
4.
Ответ:
Порядок назначения третьего эксперта
В соответствии с Порядком проведения государственной итоговой
аттестации по образовательным программам среднего общего образования
(приказ Минобрнауки России от
зарегистрирован
Минюстом России
)
« По результатам первой
и второй проверок эксперты независимо
друг от друга выставляют баллы за каждый ответ на задания
экзаменационной работы ЕГЭ с развёрнутым ответом…
В случае существенного расхождения в баллах, выставленных
двумя экспертами, назначается третья проверка. Существенное расхождение
в баллах определено в критериях оценивания по соответствующему
учебному предмету.
Эксперту, осуществляющему третью проверку, предоставляется
информация о баллах, выставленных экспертами, ранее проверявшими
экзаменационную работу».
Если расхождение составляет
и более балла за выполнение задания, то третий эксперт проверяет ответы только на то задание, которое
вызвало столь существенное расхождение.
Критерии оценки
3 баллаПриведено полное решение, включающее следующие элементы:
I. записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: формула для внутренней энергии одноатомного идеального газа, условие
термодинамического равновесия);
II. описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);
III. проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);
IV. представлен правильный ответ
2 баллаПравильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков.
Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.
И (ИЛИ)
В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.).
И (ИЛИ)
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.
И (ИЛИ)
Отсутствует пункт IV, или в нём допущена ошибка (в том числе в
записи единиц измерения величины)
1 баллПредставлены записи, соответствующие одному из следующих случаев.
Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.
ИЛИ
В решении отсутствует ОДНА из исходных формул, необходимая
для решения данной задачи (или утверждение, лежащее в основе
решения), но присутствуют логически верные преобразования с
имеющимися формулами, направленные на решение задачи.
ИЛИ
В ОДНОЙ из исходных формул, необходимых для решения
данной задачи (или в утверждении, лежащем в основе решения),
допущена ошибка, но присутствуют логически верные
преобразования с имеющимися формулами, направленные на
решение задачи
0 балловВсе случаи решения, которые не соответствуют вышеуказанным
критериям выставления оценок в балла
Источник
Сообщение от -=ЮрА=-
Во-первых каких газов?По условию в обоих перегородках азот
Во-вторых уже не будет газов из первой и 2-й перегородок, т.к. они станут единой равновесной системой.
Спасибо, кэп)
Сообщение от -=ЮрА=-
– по этому поводу имеется другой?
Только не заставляйте меня напрягаться с рисованием)
Сообщение от -=ЮрА=-
В третьих Причём тут парциальное давление, о нём можно было бы говорить если газы были разные например аргон и водород, метан и кислород, уже даже формулами показал что после адиабатной теплопередачи газ из перегородок станет одним целым
А ща про парциальное давление поговорим. Это давление газов смеси, это вы конечно знаете. Газ номер один – частицы азота из первой камеры, газ номер два – частицы азота из второй камеры. И по вашему графику следует, что в конце давление, которое будет оказывать частицы каждого из газов, будет равно друг другу – это есть неправда. Представьте в первой камере находится 1 частица, в другой – 10^23 частиц. По вашему графику следует, что когда будет равновесие, то одна частица будет оказываться такое же давление на стенки сосуда как 10^23 частиц. А правильный график это такой, где они не сойдутся в одну точку.
Сообщение от -=ЮрА=-
PS:KuKu, Не начинаем очередной холивор, предлагаю вдуматься в мои слова…
Да там я и не холиварил, можете если хотите, покажите хоть одну цитату в той теме, где я ошибался, с удовольствием о ней подумаю.
Сообщение от -=ЮрА=-
KuKu, если имеются свои соображения, ну как минимум надо привести выкладки,
Тут ручку даже брать лень, пишите уравнения Менделеева-Клайперона и уравнения адиабаты. Далее получаете столько же уравнений, сколько и неизвестных. Далее усиленно хлопаете в ладоши и радуетесь, что решили задачу.
Сообщение от -=ЮрА=-
утверждать же как paskal, что вконце концов став единой системой с давлением p3 азот и 1-й перегородки(с большим давлением) не изменил своей внутренней энергии которая пошла на расширение азота из второй перегородки просто глупо!В системе была работа вот только внешне на друге тела она никак не отразилась т.к. система изначально была замкнутой, вот и всё..
Открою вам страшную тайну … Он сказал, что в систему из вне не закачивают энергию и над системой внешние тела не совершают работу(перечитайте пост, где вам говорят про запятую) в остальные ваши перепалки не особо вчитывался, но думаю там тоже самое. Один про Фому, второй про Ерему.
Добавлено через 7 минут
По поводу графиков, может не так понял, что вы хотели написать. Поясните, что такое первая и вторая линия и тогда, если вы правы, думаю все разрешится.
Источник
2017-10-13
Теплоизолированный сосуд с внутренним объемом $V$ откачан до глубокого вакуума. Окружающий воздух имеет температуру $Т_{0}$ и давление $p_{0}$. В некоторый момент открывается кран и происходит быстрое заполнение сосуда атмосферным воздухом. Какую температуру $T$ будет иметь воздух в сосуде после его заполнения?
Решение:
Почему вообще при заполнении сосуда атмосферным воздухом должна измениться его температура? Чтобы разобраться в этом, нужно рассмотреть энергетические превращения, происходящие при заполнении сосуда. При открывании крана какая-то порция воздуха «заталкивается» в сосуд атмосферным давлением. Это значит, что над вошедшим в сосуд воздухом силами атмосферного давления совершается некоторая работа. Благодаря этой работе врывающийся в сосуд воздух приобретает кинетическую энергию направленного макроскопического движения — воздух в сосуд входит струей. При встрече со стенками сосуда и с уже попавшим в сосуд воздухом струя меняет направление, ослабевает и в конце концов исчезает совсем. При этом кинетическая энергия упорядоченного движения воздуха в струе превращается во внутреннюю энергию, т. е. в энергию хаотического теплового движения его молекул.
Все это происходит настолько быстро, что теплообменом входящего в сосуд воздуха с воздухом в атмосфере можно пренебречь. Поэтому применительно к рассматриваемому процессу первый закон термодинамики имеет вид: работа $A$ сил атмосферного давления над вошедшим в сосуд воздухом равна изменению внутренней энергии этого воздуха $Delta U$:
$A = Delta U$. (1)
Как же подсчитать эту работу? Проще всего для этого поступить следующим образом. Представим себе, что наш откачанный сосуд находится внутри большого цилиндра с подвижным поршнем (рис. 1). Давление и температура воздуха внутри большого цилиндра такие же, как и в атмосфере. Так как при заполнении откачанного сосуда воздухом давление и температура воздуха в окружающей сосуд атмосфере остаются неизменными, то процессу заполнения сосуда на рис. 1 соответствует перемещение поршня вправо при постоянном давлении $p_{0}$. При этом действующая слева на поршень сила совершает работу $p_{0}V_{0}$, где $V_{0}$ — уменьшение объема внутри цилиндра. Поскольку энергия не вошедшего в сосуд воздуха внутри цилиндра остается неизменной, то эта совершенная при перемещении поршня работа равна работе, совершаемой силами атмосферного давления при «заталкивании» воздуха в сосуд.
Обратите внимание на то, что приведенное здесь вычисление работы при перемещении воздуха отличается от вычисления, рассмотренного в задаче 4192. Объясняется это различие тем, что в предыдущей задаче нас интересовала работа, совершаемая над отдельной порцией движущегося газа, в то время как здесь мы находим суммарную работу внешних сил над всем вошедшим в сосуд воздухом.
Изменение внутренней энергии $Delta U$ того воздуха, который попал в сосуд, выражается только через изменение его температуры, если считать воздух идеальным газом:
$Delta U = nu C_{V}(T – T_{0})$, (2)
где $C_{V}$ — молярная теплоемкость воздуха. Количество пошедшего в сосуд воздуха $nu$ можно выразить с помощью уравнения состояния. Так как в откачанный сосуд вошло ровно столько воздуха, сколько вытеснил из цилиндра переместившийся поршень (рис. 1), то можно написать
$p_{0}V_{0} = nu RT_{0}$. (3)
Теперь выражение (2) для изменения внутренней энергии $Delta U$ переписывается в виде
$Delta U = frac{p_{0}V_{0}}{RT_{0}} C_{V}( T – T_{0})$. (4)
Приравнивая, в соответствии с первым законом термодинамики (I), изменение внутренней энергии (4) совершенной работе $A = p_{0}V_{0}$, находим
$C_{V} (T – T_{0}) = RT_{0}$,
откуда для конечной температуры воздуха в сосуде $T$ получаем
$T = T_{0}(1 + R/C_{V})$. (5)
Так как сумма $C_{V} + R$ равна молярной теплоемкости при постоянном давлении $C_{ mu}$, то выражение (5) можно переписать в виде
$T = T_{0} C_{p}/C_{V} = gamma T_{0}$. (6)
Температура заполнившего откачанный сосуд воздуха оказывается выше температуры воздуха в атмосфере. Отметим, что результат не зависит ни от объема сосуда, ни от давления воздуха в атмосфере. Температура воздуха в сосуде не зависит также и от того, будет ли заполнение сосуда происходить до конца, пока давление воздуха в нем не. сравняется с атмосферным, или же кран будет перекрыт раньше. Действительно, все приведенные в решении рассуждения справедливы и в том случае, когда конечное давление воздуха в сосуде меньше атмосферного.
Увеличение температуры при заполнении сосуда, рассчитываемое по формуле (6), оказывается весьма значительным. Так как для воздуха $gamma approx 1,4$, то находящийся при комнатной температуре воздух должен нагреваться на сотни кельвинов. Однако наблюдать на опыте такое большое повышение температуры затруднительно. Дело в том, что в течение промежутка времени, необходимого для измерения температуры воздуха, будет устанавливаться термодинамическое равновесие не только между воздухом в сосуде и термометром, но и между воздухом и стенками сосуда. Но теплоемкость сосуда при решении задачи в расчет не принималась. Поэтому формула (6) справедлива только до тех пор, пока воздух в сосуде не успеет прийти в термодинамическое равновесие со стенками.
Источник