Толчки крови в сосудах

Толчки крови в сосудах thumbnail

4. Движение крови по сосудам

Непрерывность движения крови

Сердце сокращается ритмично, поэтому кровь поступает в кровеносные сосуды порциями. Однако по кровеносным сосудам кровь течет непрерывным потоком. Непрерывный ток крови в сосудах объясняется эластичностью стенок артерий и сопротивлением току крови, возникающим в мелких кровеносных сосудах. Благодаря этому сопротивлению кровь задерживается в крупных сосудах и вызывает растяжение их стенок. Растягиваются стенки артерий и при поступлении крови под давлением из сокращающихся желудочков сердца при систоле. Во время диастолы кровь из сердца в артерии не поступает, стенки сосудов, отличающиеся эластичностью, спадаются и продвигают кровь, обеспечивая непрерывное движение ее по кровеносным сосудам.

Таблица I. Кровь: А - вид крови под микроскопом: 1 - эритроциты; 2 - лейкоцит; Б - окрашенный препарат крови (внизу - различные виды белых телец при большом увеличении); В - эритроциты человека (вверху) и лягушки (внизу) при одинаковом увеличении; Г - кровь, предохраненная от свертывания, после длительного отстаивания; между верхним слоем (плазмой) и нижним слоем (эритроцитами) виден тонкий беловатый слой лейкоцитов

Таблица I. Кровь: А – вид крови под микроскопом: 1 – эритроциты; 2 – лейкоцит; Б – окрашенный препарат крови (внизу – различные виды белых телец при большом увеличении); В – эритроциты человека (вверху) и лягушки (внизу) при одинаковом увеличении; Г – кровь, предохраненная от свертывания, после длительного отстаивания; между верхним слоем (плазмой) и нижним слоем (эритроцитами) виден тонкий беловатый слой лейкоцитов

Таблица II. Мазок крови человека: 1 - эритроциты; 2 - нейтрофильные лейкоциты; 3 - эозинофильный лейкоцит; 4 - базофильныи лейкоцит; 5 - большой лимфоцит; 6 - средний лимфоцит; 7 - малый лимфоцит; 8 - моноцит; 9 - кровяные пластинки

Таблица II. Мазок крови человека: 1 – эритроциты; 2 – нейтрофильные лейкоциты; 3 – эозинофильный лейкоцит; 4 – базофильныи лейкоцит; 5 – большой лимфоцит; 6 – средний лимфоцит; 7 – малый лимфоцит; 8 – моноцит; 9 – кровяные пластинки

Причины движения крови по сосудам

Кровь движется по сосудам благодаря сокращениям сердца и разнице давления крови, устанавливающейся в разных частях сосудистой системы. В крупных сосудах сопротивление току крови невелико, с уменьшением диаметра сосудов оно возрастает.

Преодолевая трение, обусловленное вязкостью крови, последняя утрачивает часть энергии, сообщенной ей сокращающимся сердцем. Давление крови постепенно снижается. Разность давления крови в различных участках кровеносной системы служит практически основной причиной движения крови в кровеносной системе. Кровь течет от места, где ее давление выше, туда, где давление крови ниже.

Кровяное давление

Давление, под которым кровь находится в кровеносном сосуде, называют кровяным давлением. Оно определяется работой сердца, количеством крови, поступающим в сосудистую систему, сопротивлением стенок сосудов, вязкостью крови.

Наиболее высокое кровяное давление – в аорте. По мере продвижения крови по сосудам давление ее снижается. В крупных артериях и венах сопротивление току крови небольшое, и давление крови в них уменьшается постепенно, плавно. Наиболее заметно снижается давление в артериолах и капиллярах, где сопротивление току крови самое большое.

Кровяное давление в кровеносной системе меняется. Во время систолы желудочков кровь с силой выбрасывается в аорту, давление крови при этом наибольшее. Это наивысшее давление называют систолическим или максимальным. Оно возникает в связи с тем, что из сердца в крупные сосуды при систоле притекает больше крови, чем ее оттекает на периферию. В фазе диастолы сердца артериальное давление понижается и становится диастолическим, или минимальным.

Измерение кровяного давления у человека производят с помощью сфигмоманометра. Этот прибор состоит из полой резиновой манжеты, соединенной с резиновой грушей и ртутным манометром (рис. 28). Манжету укрепляют на обнаженном плече испытуемого и резиновой грушей нагнетают в нее воздух, для того чтобы сжать манжетой плечевую артерию и остановить в ней ток крови. В локтевом сгибе прикладывают фонендоскоп, чтобы можно было прослушать движение крови в артерии. Пока в манжету не поступил воздух, кровь по артерии течет бесшумно, никаких звуков через фонендоскоп не прослушивается. После того как в манжету накачают воздух и манжета сожмет артерию и остановит ток крови, при помощи специального винта медленно выпускают воздух из манжеты до тех пор, пока через фонендоскоп не прослушается четкий прерывистый звук (туп-туп). При появлении этого звука смотрят на шкалу ртутного манометра, отмечают показание его в миллиметрах ртутного столба и считают это величиной систолического (максимального) давления.

Рис. 28. Измерение кровяного давления у человека

Рис. 28. Измерение кровяного давления у человека

Если продолжать выпускать воздух из манжеты, то вначале звук сменяется шумом, постепенно ослабевающим, и наконец совсем исчезает. В момент исчезновения звука отмечают высоту ртутного столба в манометре, что соответствует диастолическому (минимальному) давлению. Время, в течение которого производится измерение давления, не должно быть более 1 мин, так как в противном случае может быть нарушено кровообращение в руке ниже места наложения манжеты.

Вместо сфигмоманометра для определения величины кровяного давления можно пользоваться тонометром. Принцип действия его такой же, как и сфигмоманометра, только в тонометре манометр пружинный.

Опыт 13

Определите величину кровяного давления у своего товарища в состоянии покоя. Запишите величины максимального и минимального кровяного давления у него. А теперь попросите товарища сделать подряд 30 глубоких приседаний и после этого снова определите величину кровяного давления. Сравните полученные величины кровяного давления после приседаний с величинами давления крови в состоянии покоя.

В плечевой артерии человека систолическое давление составляет 110-125 мм рт. ст., а диастолическое – 60-85 мм рт. ст. У детей давление крови значительно ниже, чем у взрослых. Чем меньше ребенок, тем у него больше капиллярная сеть и шире просвет кровеносной системы, а следовательно, и ниже давление крови. После 50 лет максимальное давление повышается до 130-145 мм рт. ст.

Читайте также:  Сделать узи сосудов нижних конечностей в волгограде

В мелких артериях и артериолах из-за большого сопротивления току крови кровяное давление резко снижается и составляет 60-70 мм рт. ст., в капиллярах оно еще ниже – 30-40 мм рт. ст., в мелких венах составляет 10-20 мм рт. ст., а в верхней и нижней полых венах в местах впадения их в сердце давление крови становится отрицательным, т. е. ниже атмосферного давления на 2-5 мм рт. ст.

При нормальном течении жизненных процессов у здорового человека величина кровяного давления поддерживается на постоянном уровне. Кровяное давление, повысившееся при физической нагрузке, нервном напряжении и в других случаях, вскоре возвращается к норме.

В поддержании постоянства кровяного давления важная роль принадлежит нервной системе.

Определение величины кровяного давления имеет диагностическое значение и широко используется в медицинской практике.

Скорость движения крови

Подобно тому как река течет быстрее в своих суженных участках и медленнее там, где она широко разливается, кровь течет быстрее там, где суммарный просвет сосудов самый узкий (в артериях), и медленнее всего там, где суммарный просвет сосудов самый широкий (в капиллярах).

В кровеносной системе самой узкой частью является аорта, в ней самая большая скорость течения крови. Каждая артерия уже аорты, но суммарный просвет всех артерий человеческого тела больше, чем просвет аорты. Суммарный просвет всех капилляров в 800-1000 раз больше просвета аорты. Соответственно и скорость движения крови в капиллярах в тысячу раз медленнее, чем в аорте. В капиллярах кровь течет со скоростью 0,5 мм/сек, а в аорте – 500 мм/сек. Медленный ток крови в капиллярах способствует обмену газов, а также переходу питательных веществ из крови и продуктов распада из тканей в кровь.

Общий просвет вен уже, чем суммарный просвет капилляров, поэтому скорость движения крови в венах больше, чем в капиллярах, и составляет 200 мм/сек.

Движение крови по венам

Стенки вен, в отличие от артерий, тонкие, мягкие и легко сдавливаются. По венам кровь течет к сердцу. Во многих частях тела в венах есть клапаны в виде кармашков. Открываются клапаны только в сторону сердца и препятствуют обратному току крови (рис. 29). Давление крови в венах невысокое (10-20 мм рт. ст.), и поэтому движение крови по венам происходит в значительной степени за счет давления окружающих органов (мышц, внутренних органов) на податливые стенки.

Каждый знает, что неподвижное состояние тела вызывает потребность “размяться”, что связано е застоем крови в венах. Вот почему так полезна утренняя и производственная гимнастика, способствующая улучшению кровообращения и ликвидации застоя крови, который возникает в некоторых частях тела во время сна и продолжительного пребывания в рабочей позе.

Определенная роль в движении крови по венам принадлежит присасывающей силе грудной полости. При вдохе увеличивается объем грудной полости, это приводит к растяжению легких, растягиваются и полые вены, проходящие в грудной полости к сердцу. При растяжении стенок вен их просвет расширяется, давление в них становится ниже атмосферного, отрицательным. В более мелких венах давление остается 10-20 мм рт. ст. Возникает значительная разница давлений в мелких и крупных венах, что способствует продвижению крови в нижней и верхней полых венах к сердцу.

Рис. 29. Схема действия венозных клапанов: слева - мышца расслаблена, справа - сокращена; 1 - вена, нижняя часть которой вскрыта; 2 - венозные клапаны; 3 - мышца. Черные стрелки - давление сократившейся мышцы на вену; белые стрелки - движение крови по вене

Рис. 29. Схема действия венозных клапанов: слева – мышца расслаблена, справа – сокращена; 1 – вена, нижняя часть которой вскрыта; 2 – венозные клапаны; 3 – мышца. Черные стрелки – давление сократившейся мышцы на вену; белые стрелки – движение крови по вене

Кровообращение в капиллярах

В капиллярах совершается обмен веществ между кровью и тканевой жидкостью. Густая сеть капилляров пронизывает все органы нашего тела. Стенки капилляров очень тонкие (толщина их 0,005 мм), через них легко проникают различные вещества из крови в тканевую жидкость и из нее в кровь. Кровь по капиллярам течет очень медленно и успевает отдавать тканям кислород и питательные вещества. Поверхность соприкосновения крови со стенками сосудов в капиллярной сети в 170 000 раз больше, чем в артериях. Известно, что длина всех капилляров взрослого человека больше 100 000 км. Просвет капилляров так узок, что через него может проходить только один эритроцит, и то несколько сплющиваясь. Это создает благоприятные условия для отдачи кровью кислорода тканям.

Опыт 14

Пронаблюдайте движение крови в капиллярах плавательной перепонки лягушки. Обездвижьте лягушку, поместив ее в банку с крышкой, куда бросьте ватку, смоченную эфиром. Сразу, как только прекратится двигательная активность лягушки (чтобы не передозировать наркоз), выньте ее из банки и приколите булавками к дощечке спинкой кверху. В дощечке должно быть отверстие, над отверстием осторожно булавками растяните плавательную перепонку задней лапки лягушки (рис. 30). Не рекомендуется сильно растягивать плавательную перепонку: при сильном натяжении могут оказаться сдавленными кровеносные сосуды, что приведет к остановке кровообращения в них. Во время опыта лягушку смачивайте водой.

Рис. 30. Фиксация органов лягушки для наблюдения кровообращения под микроскопом

Рис. 30. Фиксация органов лягушки для наблюдения кровообращения под микроскопом

Рис. 31. Микроскопическая картина кровообращения в плавательной перепонке лапки лягушки: 1 - артерия; 2 - артериолы при малом и 3 - при большом увеличении; 4 - капиллярная сеть при малом и 5 - при большом увеличении; 6 - вена; 7 - венулы;  8 - пигментные клетки

Рис. 31. Микроскопическая картина кровообращения в плавательной перепонке лапки лягушки: 1 – артерия; 2 – артериолы при малом и 3 – при большом увеличении; 4 – капиллярная сеть при малом и 5 – при большом увеличении; 6 – вена; 7 – венулы; 8 – пигментные клетки

Читайте также:  Тромб сосуда питающего кишечника

Можно также обездвижить лягушку, плотно обернув ее мокрым бинтом так, чтобы одна из ее задних конечностей осталась свободной. Чтобы лягушка эту свободную заднюю конечность не сгибала, к ней прикладывают небольшую палочку, которую прибинтовывают к конечности также влажным бинтом. Плавательная перепонка лапки лягушки остается свободной.

Поместите дощечку с растянутой плавательной перепонкой под микроскоп и сначала при малом увеличении найдите сосуд, в котором эритроциты медленно передвигаются “гуськом”. Это капилляр. Рассмотрите его под большим увеличением. Обратите внимание, что кровь движется в сосудах непрерывно (рис. 31).

Источник

СИСТЕМА КРОВООБРАЩЕНИЯ: КАК И ПОЧЕМУ КРОВЬ ДВИЖЕТСЯ ПО СОСУДАМ?

Сердце и сосуды, при помощи которых и осуществляется кровоснабжение тканей, органов и систем, еще и объединяют организм в единое целое, так же как и нервная система. Но как осуществляется кровоснабжение, и какие круги кровообращения имеются у человека?

Сердце и его особенности

Сердце человека имеет типичные характеристики, присущие млекопитающим. Речь идет о четырехкамерном сердце, где симметрично расположен правый и левый желудочек и, соответственно, правое и левое предсердие.

В предсердия входят сосуды: в левое – легочные вены, в правое – полые. Из левого желудочка, который имеет самую толстую стенку, выходит восходящая аорта, из правого – легочная артерия.

Сердце – полый мышечный орган, в строении которого выделяют несколько слоев:

  • эпикард или внешняя оболочка сердца, защищает его внутренние части от повреждения и инфекций;

  • миокард – средняя оболочка, обеспечивает качественное сокращение, вот поэтому так опасен инфаркт миокарда, ведь нарушается сократительная способность, и начинают страдать все органы;

  • эндокард – внутренняя оболочка, а за счет ее складок образуются сердечные клапаны, обеспечивающие правильный кровоток.

Известно, что течение крови по сосудам обеспечивает сердце, и чтобы осуществить это действие, в нем сосредоточена проводящая система: специальные мышечные волокна, узлы и пучки, состоящие из волокон. По своему строению они напоминают сочетание мышечной и нервной ткани. Как раз за счет координации сокращений отделов проводящая система обеспечивает автоматизм работы сердца и ритмичность его сокращений – ритм.

Кровеносные сосуды: от самых крупных до мелких

Строение кровеносных сосудов зависит от выполняемой функции и, конечно, его вида, будь то артерии, вены или артериолы, венулы, капилляры и др. Но в целом в их анатомическом строении можно выделить 3 главных слоя, которые у разных сосудов выражены по-разному, что и объясняется их предназначением:

  • внутренний, также называется интимой, является гладким, что необходимо для снижения сопротивляемости кровотока и предотвращения повреждений форменных элементов крови;

  • средний – медиа, где сосредоточены гладкомышечные волокна. В ответ на определенные действия и раздражители способны сокращаться. Таких волокон особенно много в мелких артериях и артериолах, то есть сосудах мышечного типа, это и определяет характер течения крови в мелких кровеносных сосудах;

  • наружный слой – адвентиций, где сосредоточено большое количество коллагеновых волокон, жировых клеток. Такое строение преследует одну цель – обеспечить устойчивость стенок сосудов к высокому давлению крови, а у венозных сосудов этот слой не позволяет чрезмерно растягиваться и разрываться.

Все сосуды выполняют определенные функции. Например, аорта, легочная артерия и все отходящие крупные артерии, которые называют магистральными, относят к амортизирующему типу сосудов. Их главная задача – принимать кровь из желудочков, откуда она выходит под высоким давлением, чтобы они не разрывались в них выражен эластичный слой.

Существуют и сосуды сопротивления – это мелкие артерии, артериолы оказывающие наибольшее сопротивление кровотоку за счет гладкомышечных клеток. Сокращение осуществляется под действием ряда сосудоактивных веществ: нейромедиаторов, гормонов и др. Они влияют на органный кровоток и значения артериального давления.

Капилляры, пре- и посткапилярные сосуды, где и происходит газообмен называют обменными сосудами. А вены, которые вмещают в себя большие объемы крови – емкостными. Именно они обеспечивают депонирование крови, то есть замедляют ее возврат к предсердиям. Особенно такие свойства выражены у вен селезенки, печени, кожи и легких. За счет сократительной способности вен они влияют на сокращения сердца.

Круги кровообращения

Основная задача большого круга кровообращения – газообмен, снабжение веществами всех органов и тканей, и на это уходит порядка 20-25 секунд.

Свое начало этот круг берет в левом желудочке сердца. Когда происходит его сокращение, богатая кислородом кровь бежит в аорту, а после распределяется по артериям, артериолам и капиллярам всех органов и тканей, где и происходит процесс обмена питательными веществами: газами, жидкостью, витаминами, минералами, глюкозой и т.д. После этого процесса начинается обратный ток крови по венулам и венам в правое предсердие. Здесь и заканчивается большой круг.

Но важно отметить несколько деталей. Во-первых, самые крупные сосуды большого круга кровообращения – аорта, которая берет свое начало из левого желудочка, на ее дуге отходят несколько ответвлений, которые несут кровь к голове, рукам. Сама аорта далее проходит вдоль позвоночного столба, где еще дает ветви, питающие органы брюшной полости, и нижние конечности.

Во-вторых, в большом круге кровообращения есть несколько систем: кровообращение печени и почек. Кровь, побывавшая в желудке, кишечнике, поджелудочной железе и селезенке, течет в воротную вену и проходит через печень. Здесь происходит обезвреживание веществ, образующихся в кишечнике при переваривании пищи. В этой системе ток крови снижается, что обусловлено функцией органов.

Читайте также:  Как вылечить сосуды народным методом

Малый круг кровообращения необходим для насыщения крови кислородом, и на этот процесс уходит в среднем 5-7 секунд. Из правого предсердия кровь попадает в левый желудочек, где и начинается малый кругу. Отсюда крупные сосуды малого круга кровообращения, а именно легочный ствол, легочные артерии и их разветвления, несут кровь в легкие. Здесь и происходит главный газообмен – кровь насыщается кислородом и «бежит» к левому предсердию. Так и замыкается малый круг.

Текст: Юлия ЛАПУШКИНА.

Источник

Пульсативность артерий. Винтовое движение крови

Вторая группа методов оценки эластичности артерий основана на измерении их пульсативности, т.е. колебаний диаметра (площади) просвета артерии относительно изменения давления.

Измерения диаметра производятся при ультразвуковом исследовании в В-или М-режимах. В случае использования В-режима необходимо параллельно регистрировать ЭКГ.

Измерение в М-режиме проще, так как позволяет отчетливо визуально контролировать максимальное и минимальное значение диаметра просвета артерии в течение сердечного цикла. Артериальное давление обычно измеряют методом Короткова.

Аппланациониая тонометрия. Третья группа методов исследования эластичности артерий основана на анализе кривой давления с использованием аппланационной тонометрии (Brin, Yin, 1986; McGrath, Liang, Teede, Shiel, Cameron, Dart, 1998).

Снижение показателей эластичности по сравнению с должными величинами указывает на патологические изменения стенки сосудов при атеросклерозе и других поражениях. Однако при этом следует помнить, что эластичность артерий достаточно лабильна, так как она взаимозависима с уровнем артериального давления. Поэтому стандартизация показателей упруго-эластических свойств артерий требует нормализации полученных параметров по давлению.

Показатели эластичности зависят также от напряжения сосудистой стенки, что делает их перспективными для исследования сосудистого тонуса.

пульсативность артерий

Винтовое движение крови

Как показано выше, в соответствии с представлениями классической гемодинамики (Фолков Б., Нил Э., 1976), движение крови в системе кровообращения описывается с позиций ламинарного и турбулентного течения. Считается, что кровоток в кровеносных сосудах имеет поступательный характер, подчиняется законам гидродинамики и описывается формулами Пуазейля и Бернулли. Наряду с этим существуют гипотетические представления о существовании иного типа движения крови: винтового, или вращательно-поступательного.

Уже у Фолкова Б. и Нила Э. (1976) описывается 4 группы мышечных волокон миокарда желудочков, имеющих спиральный ход. Отмечается, что при их сокращении кровь как бы выжимается из сердца.

В 1975 г. Guasp на основании морфологического исследования строения миокарда была предложена модель миоархитектоники сердца, в которой стенка левого желудочка представлялась в виде конуса, состоящего из спиралевидных волокон, при сокращении которых происходит полукруговое движение левого желудочка против часовой стрелки, обеспечивающее соответствующее закручивание сердечного выброса.

Олейник С.Ф. и Балабаева П.Н. (1966) также рассматривают ротационные (вращательные) движения сердца, но объясняют данный тип движения гидродинамической отдачей, возникающей при выбросе струи крови из желудочков в спирально изогнутые магистральные сосуды.

Доброва Н.Б., Кузьмина Н.Б., Роева Л.А. (1974), изучив геометрию и внутренний рельеф полости левого желудочка по слепкам, показали, что его внутренняя поверхность представляет собой множество направляющих каналов, расположенных по спиралевидным линиям. Исходя из этого, они предположили, что подобное строение обусловливает формирование винтообразного потока крови.

Известны многочисленные данные морфологических исследований, свидетельствующие о том, что гладкомышечные клетки средней оболочки артерий ориентированы по спирали под острым углом к продольной оси сосуда, причем направление этой спирали на правой и левой половинах туловища симметрично (Гуревич М.И., Берштейн С.А., 1972; Куприянов В.В., Караганов Я.Л., Козлов В.И., 1975; Серов В.В., Шехтер А.Б., 1981; Каро К., Педли Т., Шротер Р, Сид У, 1981).

Также описана спиралевидная ориентация эластических волокон в стенках артерий (Серов В.В., Шехтер А.Б., 1981). На основании этих и собственных данных Куприянов В.В. (1983) заключил, что кровь в артериях может двигаться по спирали, а мышечные и стромальные элементы сосудистой стенки образуют эласто-моторную спираль, сокращение которой влечет за собой не только сужение, но и укорочение сосуда.

Багаев С.Н., Захаров В.Н., Орлов В.А. (2002) с помощью рентгеноконтрастной ангиографии экспериментально показали возможность существования винтового движения крови в артериях. Таким образом, винтовое движение менее энергозатратно в биологическом плане.

Устиновым Ю.А. (2003) была построена математическая модель, из которой вытекает, что винтовая анизотропия артериальных стенок сосуда может являться одной из причин винтового пульсового движения крови.

– Также рекомендуем “Доказательство винтового движения крови. Импульсно-волновая допплерография кровотока”

Оглавление темы “Норма и патология сосудов”:

1. Сосудистый тонус. Контроль тонуса сосудов

2. Гуморально-гормональная регуляция тонуса сосудов. Нейрогенная регуляция сосудов

3. Признаки изменения сосудистой резистентности. Упругость и эластичность сосудов

4. Пульсативность артерий. Винтовое движение крови

5. Доказательство винтового движения крови. Импульсно-волновая допплерография кровотока

6. Типовые нарушения регионального кровообращения. Артериальная гиперемия

7. Коллатеральный кровоток. Местные нарушения кровообращения

8. Гемодинамическая значимость сосудистых поражений. Факторы влияющие на значимость нарушений кровотока

9. Ультразвук. Характеристика и параметры ультразвука

10. Физические параметры ультразвука. Диагностический ультразвук

Источник