Трение крови о стенки сосудов

Трение крови о стенки сосудов thumbnail

Система кровообращения с точки зрения механики представляет гидровлическую сеть. В ней содержатся камерные насосы с клапанами ( правое и левое сердце ) и растяжимые трубки, по которым течет вязкая жидкость – кровь.

И сердце, и сосуды способны менять свои геометрические и механические характеристики под влиянием физических, физиологических и биохимических факторов. Один из основных показателей движения крови по сосудам – объемную скорость кровотока – Q можно рассчитать по формуле:

Трение крови о стенки сосудов

Объемная скорость кровотока одинакова в разных регионах сосудистого русла и составляет 4-6 л/мин. Линейная скорость кровотока в аорте максимальна – 50 см/сек, в капиллярах – 0,07 см/сек, в полых венах – 33 см/сек.

Эти формулы взяты из гидродинамики, они не учитывают неравномерности тока крови внутри сосуда, наличия вихревых токов, неоднородности крови и т.д. Тем не менее они применимы для упрощенной оценки кровотока. В них формализованы основные физиологические факторы, определяющие движение крови по сосудам.

  1. Разность давлений (основной фактор, без которого движение крови невозможно ).
  2. Периферическое сопротивление. Складывается из следующих составляющих: тонус резистивных сосудов, вязкость крови, гидростатическое давление.

Существует термин эффективная вязкость крови, или вязкость движущейся крови в сосуде. Она определяется силой трения крови о стенки сосуда и ее слоев относительно друг друга.
Напряжение сдвига – сила взаимодействия движущихся слоев жидкости, которая уменьшается при нарастании линейной скорости то- ка крови (рис. 60).

При низкой скорости кровотока эффективная вязкость растет за счет уменьшения градиента и может увеличиться в 8-10 раз в мелких сосудах с низкой скоростью кровотока. Последнее не распространяется на капилляры, в которых эффективная вязкость снижается в связи с изменением агрегации эритроцитов. При высокой скорости кровотока вязкость резко увеличивается за счет перехода ламинарного типа течения жидкости в турбулентное (рис. 61). Наиболее выражен этот процесс в местах разветвлений и крутых изгибов сосудов ( дуга аорты, раз- ветвление сонных артерий и т.д.).

Трение крови о стенки сосудов

При этом сила трения слоев жидкости и, соответственно, вязкость, рез- ко нарастают (возможно при мышечной работе и анемии). Величина артериального давления является важным показателем гидродинамики. Основной фактор движения крови по сосудам – разница давлений. Она активно создается в артериальной системе работой сердца. По ходу кровеносной системы давление снижается, являясь максимальным в аорте и минимальным в полых венах.

Факторы, определяющие величину артериального давления.

  • работа сердца,
  • объем циркулирующей крови,
  • тонус сосудов,
  • эластичность сосудов,
  • вязкость крови.

При оценке артериального давления используют следующие показатели:

  • Р макс. или систолическое,
  • Р мин. или диастолическое,

Артериальное давление определяют двумя группами методов: прямыми и косвенными.
К косвенным методам относятся аускультативный метод Короткова и пальпаторный метод Рива-Роччи. Прямое измерение артериального давления производят с помощью датчика давления, который можно вводить в полость артерии или соединять с ней при помощи специальных катетеров.

Особенности венозного кровотока. Вены относятся к сосудам низкого давления, по отношению к со- противлению кровотока резистивная функция выражена слабо, но сильно – емкостная.

Морфологически отличаются от артерий:

  • меньшей массой гладкомышечной ткани сосудистой стенки (циркуляторный слой выражен слабее, чем продольный),
  • отсутствием округлой формы сечения и способностью к спадению (коллапс) при низкой величине венозного давления,
  • сильной зависимостью упругости от растяжения,
  • большей зависимостью диаметра от давления,
  • наличием клапанов, препятствующих обратному току крови (рис. 62).

Функционально отличаются от артерий:

Не нашли что искали?

Преподаватели спешат на помощь

  • способностью изменять просвет без изменения венозного давления,
  • меньшей величиной внутрисосудистого давления и большим общим объемом,
  • большим влиянием экстравазального давления на кровоток.

Функции вен:

  • отводят кровь от органов и тканей,
  • депонируют до 70% крови для дальнейшего ее использования,
  • регулируют венозный возврат к сердцу и артериальное давление,
  • регулируют транскапиллярный обмен путем изменения соотношения пре- и посткапиллярного давления,
  • участвуют в обмене с окружающими тканями,
  • выполняют функцию обширной рефлексогенной зоны,
  • участвуют в реализации иммунного контроля.

Вспомогательные факторы движения крови по венам:

  • наличие клапанов препятствует обратному току крови,
  • динамические сокращения скелетных мышц способствуют проталкиванию крови по венам,
  • присасывающее действие грудной клетки,
  • присасывающее действие сердца ( эффект смещения атривентрикулярной перегородки в систолу желудочков ),
  • ритмические сокращения самих вен.
Читайте также:  Когда болят ноги это сосуды

Трение крови о стенки сосудов

Нарушения венозного кровотока могут приводить к патологическому венозному заcтою крови, снижению венозного возврата к сердцу и падению артериального давления. Венозный застой может возникнуть при сердечной недостаточности.

Микроциркуляция и транскапиллярный обмен.

Важнейшими компонентами микроциркуляции, обеспечивающей тканевой гомеостаз, являются:

  • движение крови в капиллярах и прилегающих к ним микрососудах,
  • движение лимфы в начальных частях лимфотической системы,
  • движение межклеточной жидкости.

К зоне микроциркуляции относят: артериолы, прекапиллярные артериолы, капилляры, посткапиллярные венулы, венулы и артериоло- венулярные анастамозы.

Основой зоны микроциркуляции является капилляр. По строению различают:

  • капилляры с непрерывной стенкой (образована сплошным эндотелиальным слоем, поры диаметром 4-5 нм, больших пор мало),
  • капилляры с окончатой стенкой (в эндотелиальном слое имеются окошки диаметром 0,1 мкм, распространены в почке, слизистой кишечника ),
  • капилляры с прерывистой стенкой ( представлены в печени, селезенке, красном костном мозге , через разрывы в эндотелиальном слое могут проходить клетки крови ).

Общая площадь поперечного сечения всех капилляров 11000 см2, количество капилляров – 40 миллиардов. Общая площадь обмена капиллярной сети составляет 1000 м2, или 1,5 м2 на 100 г ткани. Плотность капиллярной сети в тканях различна ( в мозге – 3000 кап / мм3, в тонических мышцах – 1000 кап / мм3, в фазных скелетных мышцах – 300-400 кап/ мм3 ). В активно работающих мышцах плотность сети капилляров увеличивается.

Движение крови в микрососудах имеет ряд отличий, связанных с малым диаметром капилляра ( от 4 до 20 мкм, но обычно 7-8 мкм ). Скорость движения крови ( оценивают по скорости движения эритроцитов ) разная, поток крови не стационарный. Клетки крови при движении выстраиваются строго друг за другом, эритроциты при движении через капилляры с малым диаметром могут изменять свою форму.

При активности ткани в условях физиологического покоя открыта часть капилляров. Их количество возрастает в 2-3 раза при рабочей гиперемии. Открытие капилляров регулируется оксигенацией тканей: при высоких значениях РО2 ( 50-60 мм. рт.ст.) количество функционирующих капилляров снижается в 2 раза, а при максимальном напряжении кислорода в тканях ( 100 мм.рт.ст. ) все обменные капилляры закрываются и кровь течет через артериоловенулярные шунты.

Транскапиллярный обмен обеспечивается следующими процессами: диффузией, фильтрацией и реабсорбцией.

Диффузия. Состоит в движении водорастворимых веществ низкой молекулярной массы через заполненные водой поры.

Фильтрация и реабсорбция. В процессе фильтрации кровь интенсивно обменивается с тканевой жидкостью водой и водорастворимыми компонентами. Между объемом жидкости, который переходит в меж- клеточную среду из плазмы в артериальном конце капилляра, и объемом жидкости, поступающим обратно в кровь в процессе реабсорбции существует динамическое равновесие. Оба процесса связаны с градиентами гидростатического и онкотического давлений.

Источник

I фактор – работа сердца. Сердечная деятельность обеспечивает количество крови, поступающее в течение 1 минуты в сосудистую систему, т.е. минутный объем кровообращения. Он составляет у человека 4-5 л (Q=МОК). Этого количества крови вполне достаточно, чтобы в состоянии покоя обеспечить все потребности организма: транспорт к тканям кислорода и удаление углекислоты, обмен веществ в тканях, определенный уровень деятельности органов выделения, благодаря которому поддерживается постоянство минерального состава внутренней среды, терморегуляция. Величина минутного объема кровообращения в покое отличается большим постоянством и является одной из биологических констант организма. Изменение минутного объема кровообращения может наблюдаться при переливании крови, вследствте которого кровяное давление повышается. При кровопотере, кровопускании происходит уменьшение объема циркулирующей крови, в результате чего артериальное давление падает.

С другой стороны, при выполнении большой физической нагрузке минутный объем кровообращения достигает 30-40 л, так как мышечная работа ведет к опорожнению кровяных депо и сосудов лимфатической системы (В.В. Петровский, 1960), что значительно увеличивает массу циркулирующей крови, ударный объем сердца и частоту сердечных сокращений. В результате минутный объем кровообращения возрастает в 8-10 раз. Однако у здорового организма артериальное давление при этом повышается незначительно, всего на 20-40 мм рт.ст.

Отсутствие выраженного повышения артериального давления при значительном росте минутного объема объясняется снижением периферического сопротивления кровеносных сосудов и деятельностью депо крови.

II фактор – вязкость крови. Согласно основным законам гемодинамики, сопротивление току жидкости тем больше, чем больше ее вязкость (вязкость крови в 5 раз выше, чем воды, вязкость которой принято считать за 1), чем длиннее трубка, по которой течет жидкость, и чем меньше ее просвет. Известно, что кровь движется в кровеносных сосудах благодаря энергии, которую сообщает ей сердце при своем сокращении. Во время систолы желудочков приток крови в аорту и в легочную артерию становится больше, чем ее отток из них и давление крови в этих сосудах повышается. Часть этого давления затрачивается на преодоление трения. Различают внешнее трение – это трение форменных элементов крови, например, эритроцитов, о стенки кровеносных сосудов (особенно оно велико в прекапиллярах и капиллярах), и внутреннее трение частиц друг о друга. В случае повышения вязкости крови возрастает трение крови о стенки сосудов и взаимное трение форменных элементов друг о друга. Сгущение крови увеличивает внешнее и внутреннее трение, повышает сопротивление кровотоку и приводит в подъему кровяного давления.

Читайте также:  На веках появились красные сосуды

III фактор – периферическое сопротивление сосудов. Так как вязкость крови не подвержена быстрым изменениям, то основное значение в регуляции кровообращения принадлежит показателю периферического сопротивления, обусловленному трением крови о стенки сосудов. Трение крови будет тем больше, чем больше общая площадь соприкосновения ее со стенками сосудов. Наибольшая площадь соприкосновения между кровью и сосудами приходится на тонкие кровеносные сосуды – артериолы и капилляры. Наибольшим периферическим сопротивлением обладают артериолы, что связано с наличием гладкомышечных жомов, поэтому артериальное давление при переходе крови из артерий в артериолы падает с 120 до 70 мм рт. ст. В капиллярах давление снижается до 30-40 мм рт. ст., что объясняется значительным увеличением их суммарного просвета, а следовательно – сопротивления

Изменение кровяного давления вдоль сосудистого русла (по Фолькову Б., 1967)

Отделы сосудистого русла Величина кровяного давления
Артерии 120/80 мм рт. ст.
Артериолы 80/60 мм рт. ст.
Капилляры 30/10 мм рт. ст.
Вены, расположенные далеко от сердца 5-10 мм рт. ст.
Вены, близко расположенные от сердца На 4-7 мм рт. ст. ниже атмосферного (отрицательное)

Из приведенных данных видно, что первое значительное падение кровяного давления отмечается на участке артериол, т.е. прекапиллярном отделе сосудистой системы. Согласно функциональной классификации Б. Фолькова, сосуды, оказывающие сопротивление току крови, обозначаются как резистивные, или сосуды сопротивления. Артериолы являются наиболее активными в вазомоторном (лат. vas – сосуды, motor – двигатель) отношении. Наиболее существенные изменения периферического сопротивления сосудистого русла обуславливаются:

Трение крови о стенки сосудов

1) изменениями просвета артериол – при значительном повышении их тонуса, сопротивление току крови возрастает, кровяное давление повышается выше нормы во всей сосудистой системе. Возникает гипертония. Повышение давления в отдельных участках сосудистой системы, например, в сосудах малого круга кровообращения или сосудах брюшной полости, называется гипертензией. Гипертензия, как правило, возникает в результате местных повышений сопротивления кровотоку. Значительные и стойкие гипертензии могут возникать только вследствие нарушения нейрогуморальной регуляции сосудистого тонуса.

2) Скорость течения крови по сосудам – чем больше скорость, тем больше сопротивление. При повышении сопротивления сохранение минутного объема крови возможно только при условии повышения в них линейной скорости течения крови. Это же дополнительно увеличивает сопротивление кровеносных сосудов. При понижении сосудистого тонуса линейная скорость кровотока уменьшается, трение струи крови о стенки сосудов становится меньше. Снижается периферическое сопротивление сосудистой системы, и поддержание минутного объема кровообращения обеспечивается при более низком артериальном давлении.

3) В организме благодаря регуляции сосудистого тонуса обеспечивается относительное постоянство артериального давления. Например, при уменьшении минутного объема кровообращения (при ослаблении сердечной деятельности или в результате кровопотери) падение артериального давления не происходит, так как повышается сосудистый тонус, R возрастает, а Р, как произведение Q на R, остается постоянным. Наоборот, при физической или умственной работе, которые сопровождаются увеличением минутного объема крови (за счет увеличения ЧСС), происходит регуляторное снижение сосудистого тонуса, в основном в прекапиллярном отделе, благодаря чему суммарный просвет артериол увеличивается и периферическое сопротивление сосудистого бассейна падает. Таким образом, колебания сосудистого тонуса активно изменяют сопротивление сосудистого русла и, тем самым, обеспечивают относительное постоянство артериального давления.

4 фактор – эластичность сосудистой стенки: чем более эластична сосудистая стенка, тем давление крови ниже, и наоборот.

5 фактор – объем циркулирующей крови (ОЦК) – так, кровопотеря снижает кровяное давление, наоборот, переливание больших количеств крови повышает кровяное давление.

Читайте также:  Сосуд перевод на английский

Таким образом, артериальное давление зависит от многих факторов, которые могут быть сгруппированы следующим образом:

1. Факторы, связанные с работой самого сердца (сила и частота сердечных сокращений), что обеспечивает приток крови в артериальную систему.

2. Факторы, связанные с состоянием сосудистой системы – тонус стенки сосуда, эластичность стенки сосуда, состояние поверхности сосудистой стенки.

3. Факторы, связанные с состоянием крови, циркулирующей по сосудистой системе – её вязкость, количество (ОЦК).

КОЛЕБАНИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ. ОЦЕНКА СИСТОЛИЧЕСКОГО, ДИАСТОЛИЧЕСКОГО И ПУЛЬСОВОГО ДАВЛЕНИЙ.

Кровяное давление в артериях совершает постоянные непрерывные колебания от некоторого среднего уровня. При прямой регистрации артериального давления на кимограмме различают 3 рода волн: 1) систолические волны I порядка, 2) дыхательные волны II порядка, 3) сосудистые волны III порядка.

Волны I порядка – обусловлены систолой желудочков сердца. Во время изгнания крови из желудочков давление в аорте и легочной артерии повышается и достигает максимума соответственно 140 и 40 мм рт. ст. Это максимальное систолическое давление (СД). Во время диастолы, когда кровь в артериальную систему из сердца не поступает, а проходит лишь отток крови из крупных артерий к капиллярам – давление в них падает до минимума, и это давление называют минимальным, или диастолическим (ДД). Его величина в значительной мере зависит от просвета (тонуса) кровеносных сосудов и равна 60-80 мм рт. ст. Разность между систолическим и диастолическим давлением называется пульсовым (ПД), и обеспечивает на кимограмме появление ситолической волны, – равно 30-40 мм рт. ст. Пульсовое давление прямо пропорционально ударному объему сердца и говорит о силе сердечных сокращений: чем больше крови выбросит сердце в систолу, тем больше будет величина пульсового давления. Между систолическим и диастолическим давлениями существует определенное количественное соотношение: максимальному давлению соответствует минимальное давление. Оно определяется делением максимального давления пополам и прибавлением 10 (например, СД=120 мм рт. ст., тогда ДД=120:2+10=70 мм рт. ст.).

Наибольшее значение пульсового давления отмечается в сосудах, расположенных ближе к сердцу – в аорте, и крупных артериях. В мелких артериях разница между систолическим и диастолическим давлениями сглаживается, а в артериолах и капиллярах давление постоянно и не изменяется во время систолы и диастолы. Это важно для стабилизации обменных процессов, происходящих между кровью, протекающей через капилляры, и тканями, их окружающими. Количество волн I порядка соответствует ЧСС.

Волны II порядка – дыхательные, отражают изменение артериального давления, связанное с дыхательными движениями. Их число соответствует количеству дыхательных движений. Каждая волна II порядка включает несколько волн I порядка. Механизм их возникновения сложен: при вдохе создаются условия для поступления крови из большого круга кровообращения – в малый, благодаря увеличению емкости легочных сосудов и некоторому снижению их сопротивления кровотоку, увеличению поступления крови из правого желудочка в легкие. Этому также способствует разница давлений между сосудами брюшной полости и грудной клетки, которое возникает в результате повышения отрицательного давления в плевральной полости, с одной стороны, и опускания диафрагмы и «вдавливания» ею крови из венозных сосудов кишечника и печени – с другой. Все это создает условия для депонирования крови в сосудах легких и уменьшения ее выхода из легких в левую половину сердца. Поэтому на высоте вдоха приток крови к сердцу уменьшается и кровяное давление понижается. К концу вдоха кровяное давление повышается.

Описанные факторы относятся к механическим. Однако, в формировании волн II порядка имеют значение нервные факторы: при изменении активности дыхательного центра, наступающем при вдохе, происходит повышение активности сосудодвигательного центра, повышая тонус сосудов большого круга кровообращения. Колебания объема кровотока могут также вторично вызвать изменение кровяного давления, активизируя сосудистые рефлексогенные зоны. Например, рефлекс Бейнбриджа при изменении кровотока в правом предсердии.

Волны III порядка (воны Геринга-Траубе) – это еще более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн II порядка. Они обусловлены периодическими изменениями тонуса сосудодвигательных центров. Наблюдаются чаще всего при недостаточном снабжении мозга кислородом (высотная гипоксия), после кровопотери или отравления некоторыми ядами.

Источник