У покрытосеменных есть сосуды

У покрытосеменных есть сосуды thumbnail

Проводящие ткани служат для передвижения по растению раство­ренных в воде питательных — орга­нических и неорганических — ве­ществ. Подобно покровным тканям, они возникли как следствие приспо­собления растений к жизни в двух средах — почвенной и воздушной. В связи с этим появилась необходи­мость транспортировки питательных веществ в двух направлениях.Проводящие ткани служат для передвижения по растению раство­ренных в воде питательных — орга­нических и неорганических — ве­ществ. Подобно покровным тканям, они возникли как следствие приспо­собления растений к жизни в двух средах — почвенной и воздушной. В связи с этим появилась необходи­мость транспортировки питательных веществ в двух направлениях. От корня к листьям движется вос­ходящий, или транспирационный, ток водных растворов солей. Асси­миляционный, нисходящий, ток ор­ганических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключитель­но по трахеальным элементам ксиле­мы, а нисходящий — по ситовидным элементам флоэмы. Сильно разветвленная сеть про­водящих тканей несет водораство римые вещества и продукты фото­синтеза ко всем органам растения, начиная от тончайших корневых окончаний до самых молодых побе­гов. Проводящие ткани объединяют все органы растения в единую систе­му, Помимо дальнего, т. е. осевого, транспорта питательных веществ, по проводящим тканям частично осу­ществляется и ближний — радиаль­ный транспорт. Все проводящие ткани являются сложными, или комплексными, т. е. состоят из морфологически и функ­ционально разнородных элементов. Формируясь из одних и тех же мери­стем, два типа проводящих тканей — ксилема и флоэма — располагаются рядом. Во многих органах растений ксилема объединена с флоэмой в виде различного рода продольных тяжей, называемых проводящими пучками.Существуют первичные и вторич­ные проводящие ткани. Первичные ткани закладываются в листьях, моло­дых побегах и корнях. Они диффе­ренцируются из клеток прокамбия. Вторичные проводящие ткани, обычно более мощные, возникают из камбия. {mospagebreak}Ксилема (древесина). Термин «ксилема» ввел немецкий ботаник К. В. Негели (1817-1891). По ксилеме от корня к листьям передвигаются вода и растворенные в ней минераль­ные вещества. Первичная и вторич­ная ксилемы содержат клетки одних и тех же типов. Однако первичная ксилема не формирует сердцевинных лучей, отличаясь этим от вторичной. Первичная ксилема формируется из прокамбия, вторичная — из камбия. В состав ксилемы входят морфо­логически различные элементы, осу­ществляющие функции как проведе­ния, так и хранения запасных ве­ществ, а также чисто опорные функ­ции. Дальний транспорт осуществля­ется по трахеальным элементам кси­лемы — трахеидам и сосудам, ближ­ний в основном по паренхимным эле­ментам. Дополнительные — опорную, а иногда и запасающую — функции вы­полняют трахеальные элементы и во­локна механической ткани либрифор-ма, также входящие в состав ксилемы. Трахеиды в зрелом состоянии — это мертвые прозенхимные клетки, суженные на концах и лишенные протопласта. Длина трахеид в сред­нем составляет 1-4 мм, поперечник же не превышает десятых и даже со­тых долей миллиметра. Стенки тра­хеид одревесневают, утолщаются и несут простые или окаймленные поры, через которые происходит фильтрация растворов, с помощью которой осуществляется дальний транспорт. Впрочем, боковые стенки трахеид в определенной степени во­допроницаемы, что способствует осуществлению ближнего транспор­та. Большая часть окаймленных пор находится около окончаний клеток, т. е. там, где растворы «просачива­ются» из одной трахеиды в другую. Трахеиды есть у спорофитов всех ра­стений, а у большинства хвощевид­ных, плауновидных, папоротнико-видных и голосемянных они являют­ся единственными проводящими элементами ксилемы. Между трахе-идами и волокнами либриформа су­ществуют переходные формы. Сосуды — это полые трубки, со­стоящие из отдельных члеников, располагающихся друг над другом. Между расположенными один над другим члениками одного и того же сосуда имеются разного типа сквозные отверстия — перфорации. Благодаря перфорациям вдоль все­го сосуда свободно осуществляется ток жидкости. Эволюционно сосуды, по-видимому, произошли из трахеид путем разрушения замыкающих пле нок пор и последующего их слияния в одну или несколько перфораций. Концы трахеид, первоначально силь­но скошенные, заняли горизонталь­ное положение, а сами трахеиды стали короче и превратились в чле­ники сосудов. Сосуды могут состоять из весьма значительного числа члеников раз­личной длины и диаметра. Общая же длина сосудов достигает иногда не­скольких метров. Диаметр же варьи­рует от 0,2 мм до 1 мм. Последнее зависит от вида растения, а у дере­вьев, растущих в сезонном климате, также и от того, в какой части ксиле­мы — «весенней» или «осенней» — сосуд расположен. Сосуды появились независимо в разных линиях эволюции наземных растений. Однако наибольшего раз­вития они достигают у покрытосе­мянных, где являются главнейшими водопроводящими элементами кси­лемы. Возникновение сосудов — важное свидетельство эволюцион­ного прогресса этого таксона, по­скольку они существенно облегчают транспирационный ток вдоль тела растения. Помимо первичной оболочки, со­суды, как и многие трахеиды, в боль­шинстве случаев имеют вторичные утолщения. В самых ранних трахе-альных элементах вторичная оболоч­ка может иметь форму колец, не свя­занных друг с другом {кольчатые тра­хеиды и сосуды). Позднее появляют­ся трахеальные элементы со спи­ральными утолщениями. Затем сле­дуют сосуды и трахеиды с утолщени­ями, которые могут быть охаракте­ризованы как спирали, витки кото­рых связаны между собой {лестнич­ные утолщения). В конечном итоге вторичная оболочка сливается в бо­лее или менее сплошной цилиндр, формирующийся внутрь от первич­ной оболочки. Этот цилиндр преры­вается в отдельных участках порами. Сосуды и трахеиды с относительно небольшими округлыми участками первичной клеточной оболочки, не прикрытыми изнутри вторичной обо­лочкой, нередко называют пористы­ми. В тех случаях, когда поры во вто­ричной оболочке образуют подобие сетки или лестницы, говорят о сетча­тых или лестничных трахеальных элементах (лестничные сосуды и трахеиды). Вторичная, а иногда и первичная оболочки, как правило, лигнифици-руются, т. е. пропитываются лигни­ном, это придает дополнительную прочность, но ограничивает возмож­ности дальнейшего их роста в длину. Трахеальные элементы, т. е. тра­хеиды и сосуды, распределяются в ксилеме различным образом. Иногда на поперечном срезе они образуют хорошо выраженные кольца {кольце-сосудистая древесина}. В других слу­чаях сосуды рассеяны более или ме­нее равномерно по всей массе кси­лемы (рассеяннососудистая древе­сина}. Особенности распределения трахеальных элементов в ксилеме используют при определении древе­сины различных пород деревьев. Помимо трахеальных элементов, ксилема включает лучевые элемен­ты, т. е. клетки, образующие сердце­винные лучи, сформирован­ные чаще всего тонкостенными клет­ками (лучевая паренхима). Реже, на­пример, в лучах хвойных, встречают­ся лучевые трахеиды. По сердцевин­ным лучам осуществляется ближний транспорт веществ в горизонталь­ном направлении. В ксилеме покрытосемянных, по­мимо проводящих элементов, содер­жатся также тонкостенные неодре­весневшие живые паренхимные клет­ки, называемые древесинной парен­химой. По ним отчасти наряду с сер­дцевинными лучами осуществляется ближний транспорт. Кроме того, дре­весинная паренхима служит местом хранения запасных веществ. Элемен­ты сердцевинных лучей и древесин­ной паренхимы, подобно трахеаль-ным элементам, возникают из кам­бия, но из паренхимных инициалей. Клетки паренхимы, примыкаю­щие к сосуду, могут (обычно у дере­вьев) образовывать выросты в по­лость сосуда через поры, так назы­ваемые тилы. Иногда тилы заполня­ют всю полость сосуда, и в этом слу­чае проводящая функция нарушает­ся. Тилообразование усиливает ме­ханическую прочность центральной части стволов деревьев. Кроме того, тилы играют особую роль в процес­се формирования ядра древесины. {mospagebreak}Флоэма. Термин «флоэма» ввел К. В. Негели в 1858 г. Флоэма — сложная проводящая ткань, по кото­рой осуществляется транспорт про­дуктов фотосинтеза от листьев к ме­стам их использования или отложе­ния (к точкам роста, подземным органам, зреющим семенам и пло­дам и т. д.). Первичная флоэма дифференци­руется из прокамбия, вторичная (луб) — производное камбия. В стеб лях флоэма располагается обычно снаружи от ксилемы, а в листьях об­ращена к нижней стороне пластинки. Первичная и вторичная флоэмы, по­мимо различной мощности ситовид­ных элементов, отличаются тем, что у первой отсутствуют сердцевинные лучи. В состав флоэмы входят сито­видные элементы, паренхимные клетки, элементы сердцевинных лу­чей и механические элементы. Большинство клеток нор­мально функционирующей флоэмы живые. Отмирает лишь часть меха­нических элементов. Собственно проводящую функцию осуществляют ситовидные элементы. Различают два их типа: ситовидные клетки и си­товидные трубки. Стенки ситовидных элементов содержат многочислен­ные мелкие сквозные канальцы, со­бранные группами в так называемые ситовидные поля. У ситовидных кле­ток, вытянутых в длину и имеющихзаостренные концы, ситовидные поля располагаются главным обра­зом на боковых стенках. Ситовидные клетки — основной проводящий эле­мент флоэмы у всех групп растений, исключая покрытосемянные. Клеток-спутниц у ситовидных клеток нет. Ситовидные трубки покрытосе­мянных более совершенны. Они со­стоят из отдельных клеток — члени­ков, располагающихся один над дру­гим. Длина отдельных члеников си­товидных трубок колеблется в пре­делах 150-300 мкм. Поперечник си­товидных трубок составляет 20-30 мкм. Эволюционно их членики возникли из ситовидных клеток. Ситовидные поля этих члеников находятся главным образом на их концах. Ситовидные поля двух рас­положенных один над другим члени­ков образуют ситовидную пластинку. Ситовидные поля (название указыва­ет на их сходство с ситом) представ­ляют собой участки клеточной стен ки, пронизанные многочисленными мелкими отверстиями, через кото­рые с помощью цитоплазматических тяжей сообщаются протопласты со­седних ситовидных элементов. Членики ситовидных трубок фор­мируются из вытянутых клеток про­камбия или камбия. При этом мате­ринская клетка меристемы делится в продольном направлении и произ­водит две клетки. Одна из них пре­вращается в членик, другая — в клет­ку-спутницу. Наблюдается и попе­речное деление клетки-спутницы с последующим образованием двух-трех подобных клеток, расположен­ных продольно одна над другой ря­дом с члеником. Предполагается, что клетки-спутницы вместе с члениками ситовидных трубок составляют еди­ную физиологическую систему и спо­собствуют продвижению тока асси-милятов. Кроме того, в клетках-спут­ницах вырабатываются различные ферменты, которые передаются в ситовидные трубки. При своем фор­мировании членик ситовидной труб­ки имеет постенную цитоплазму, ядро и вакуоль. С началом функцио­нальной деятельности он заметно вытягивается. На поперечных стен­ках появляется множество мелких от­верстий-перфораций, образующих канальцы диаметром в несколько мик­рометров, через которые из членика в членик проходят цитоплазматиче-ские тяжи. На стенках канальцев от­кладывается полисахарид — каллоза, сужающий их просвет, но не преры­вающий цитоплазматическиетяжи. По мере развития членика сито­видной трубки в протопласте обра­зуются слизевые тельца. Ядро и лей­копласты, как правило, растворяют­ся. Граница между цитоплазмой и вакуолью — тонопласт — исчезает, и все живое содержимое сливается в единую массу. При этом цитоплазма теряет полупроницаемость и стано­вится вполне проницаемой для ра­створов органических и неоргани­ческих веществ. Слизевые тельца также теряют очертания, сливаются, образуя слизевый тяж и скопления около ситовидных пластинок. На этом формирование членика сито­видной трубки завершается. Дли­тельность функционирования сито­видных трубок невелика. У кустарни­ков и деревьев она продолжается не более 3-4 лет. По мере старения си­товидные трубки закупориваются каллозой (образующей так называе­мое мозолистое тело} и затем отми­рают. Отмершие ситовидные трубки обычно сплющиваются давящими на них соседними живыми клетками. Основными веществами флоэмного тока являются сахара, главным образом сахароза. Кроме того, об­наружены азотсодержащие веще­ства (преимущественно аминокисло­ты), органические кислоты и фито-гормоны. Скорость передвижения ассими-лятов во флоэме относительно неве­лика — 50-100 см/ч (по ксилеме примерно в 2 раза быстрее). Сам процесс передвижения включает ряд этапов и идет со значительной за­тратой энергии. Паренхимные элементы флоэмы [лубяная паренхима} состоят из тон­костенных клеток. В них откладыва­ются запасные питательные веще­ства, и отчасти по ним осуществля­ется ближний транспорт ассимиля-тов. У голосемянных клетки-спутни­цы отсутствуют, и их роль до извест­ной степени выполняют прилегаю­щие к ситовидным клеткам немного­численные клетки лубяной парен­химы. Сердцевинные лучи флоэмы так­же состоят из тонкостенных парен-химных клеток. Они предназначены для осуществления ближнего транс­порта ассимилятов. {mospagebreak}Проводящие пучки. Обособ­ленные тяжи проводящей системы, состоящие чаще из ксилемы и фло­эмы, называют проводящими пучка-ми. Первоначально они возникают из прокамбия. Из клеток прокамбия вначале дифференцируются элемен­ты протофлоэмы (центробежно) и протоксилемы (центростремитель­но). У корня и те и другие элементы дифференцируются центростреми­тельно. Позднее прокамбий образу­ет элементы метафлоэмы и метакси-лемы. Образовавшиеся из прокам­бия проводящие пучки иногда назы­вают первичными. В тех случаях, ког­да часть прокамбия сохраняется и превращается затем в камбий, а пу­чок способен к вторичному утолще­нию, говорят об открытых пучках. Они встречаются у большинства дву­дольных и голосемянных. В закрытых пучках однодольных прокамбий пол­ностью дифференцируется в прово­дящие ткани и далее не утолщается. Вокруг пучков нередко формируется обкладка из живых или мертвых паренхимных клеток. Они могут быть полными, т. е. состоящими из флоэ­мы и ксилемы, или изредка неполны­ми, состоящими только из ксилемы или флоэмы. В зависимости от взаимного рас­положения флоэмы и ксилемы раз­личают пучки нескольких типов. Чаще всего флоэма лежит по одну сторону от ксилемы. Такие пучки называют коллатеральными (открытые и закрытые). У части дву­дольных растений (из семейств пас­леновых, вьюнковых, тыквенных и т. д.) одна, более мощная, часть фло­эмы располагается снаружи от кси­лемы (камбий располагается между ними), а другая — с внутренней сто­роны ксилемы. Такой пучок называ­ется биколлатеральным, а соответ­ствующие участки флоэмы — наруж­ной и внутренней флоэмой. Биколла-теральные пучки формируются, оче- • видно, в результате слияния двух коллатеральных пучков. Встречаются также концентри­ческие пучки, при этом флоэма окру­жает ксилему (центроксилемные пучки) либо, наоборот, ксилема окру­жает флоэму (центрофлоэмные). Центрофлоэмные пучки найдены в стеблях и корневищах ряда дву­дольных (ревень, щавель,бегония)и однодольных (многие лилейные, осоковые). Известны пучки промежу­точные между закрытыми коллате­ральными и центрофлоэмными. Центроксилемные пучки обычны для папоротников. В центре молодых корней голо­семянных и покрытосемянных, име­ющих первичное строение, распола­гается проводящий пучок, получив­ший название радиального. Ксилема в таком пучке как бы расходится лу­чами от центра, а флоэма располага­ется между лучами. Возникают эти пучки из прокамбия. Встречаются однолучевые (монархные), двулуче­вые (диархные), трехлучевые (триар-хные), четырехлучевые (тетрархные), пятилучевые (пентархные) и много­лучевые (полиархные) радиальные пучки. Последние обычны у одно­дольных.   

Читайте также:  Как прижигают сосуды в носу больно

29.06.2015

Источник

«В природе нет ничего бесполезного» – Мишель де Монтень

Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня
до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту.
И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против
силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать
самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая
микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку.
Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

Проводящие ткани растений

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты
обмена веществ из них.
Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям
(восходящий ток) и от листьев к корням (нисходящий ток).

Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же
вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины).
От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).

Читайте также:  К чему могут привести проблемы с сосудами

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и
сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры,
представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.

  • Трахеиды
  • Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение
    и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую,
    спиралевидную, кольчатую.

    Трахеиды ксилемы

  • Сосуды
  • Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие
    благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.

    Сосуды ксилемы

    Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению
    он растягивается и обеспечивает ток воды и минеральных солей.

    Растяжение сосудов

  • Древесинные волокна (либриформ)
  • Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной
    клеточной стенкой, которая придает ксилеме механическую прочность.

  • Паренхимные клетки (древесинная паренхима)
  • Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Читайте также:  Оторвался сосуд в ноге
Флоэма (луб)

Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания,
подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.

Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная
флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.

Разберемся с компонентами, которые входят в состав флоэмы:

  • Ситовидные элементы
  • Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂

    Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ
    и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность
    ситовидных трубок.

    Клетки-спутницы

  • Склеренхимные элементы (лубяные волокна)
  • Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

  • Паренхимные элементы (лубяная паренхима)
  • Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают.
Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

Клетки-спутницы

Жилка

Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая
колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия,
располагаются в центральном осевом цилиндре. Существует два вида жилок:

  • Открытые
  • Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема
    ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно
    обнаружить во всех органах двудольных растений.

  • Закрытые
  • Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы.
    Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань
– склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

Жилка, сосудисто-волокнистый пучок

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и
присасывающего листового.

  • Корневое давление
  • Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос:
    клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться
    в сосуды.

  • Транспирация
  • Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых
    волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место
    освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости.
    Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник