Уплотнения сосуда высокого давления
Затворы и уплотнения сосудов высокого давления
От 10 до 150 МПа и более.
Наиболее употребительное отношение:
..
Толщина стенки – до 350 мм и более. Вес – до 200 т.
Корпуса аппаратов делятся на СПЛОШНЫЕ и СОСТАВНЫЕ. Сплошные бывают цельнокованые, ковано-сварные и штампованые. Составные – многослойные витые и оплеточные.
При изготовлении СПЛОШНЫХ корпусов используют гидравлические кованые пресса мощностью 10..15 тыс. тонн. Вес заготовки в 2,5 раза больше изделия.
слиток предварительно обжимается
удаляется центральная часть
обрабатываются на токарных станках концевые участки
Недостатки: необходимость применения тяжелого оборудования, большое количество отходов (например, для колонны весом 70 т вес заготовки 150..170 т).
При изготовлении СОСТАВНЫХ корпусов применяется электро-шлаковая сварка.
Многослойные витые корпуса изготавливают следующим образом : на гильзу из стали толщиной 10..12 мм накладываются и привариваются обечайки толщиной 5..6 мм. Прижим полуобечаек к гильзе осуществляется с помощью стальных тросов , охватывающих полуобечайки. Расстояние между тросами 30..40 мм. |
Преимущества: отсутствие тяжелого оборудования, минимальное количество отходов.
Недостатки: большое количество сварных швов.
Оплеточные корпуса представляют собой внутреннюю гильзу толщиной 20..30 мм, на которой снаружи протачивают винтовую линию трапецеидальной формы.
Оплеточная лента имеет профиль: |
Лента наматывается с натягом. Натяг обеспечивается разогревом электрическим током. При остывании боковые поверхности профиля заклиниваются.
Преимущества: отсутствие тяжелого оборудования.
Недостатки: Необходимость изготовления профильной ленты.
Затворы сосудов высокого давления.
Затвор – это комплекс деталей обеспечивающий герметичность между корпусом и крышкой.
По типу уплотняющего элемента различаются затворы:
- С пластичным обтюратором из мягкого металла (Cu, Al).
При сборке затвора и в рабочем состоянии материал обтюратора доводится до пластичного состояния (Cu и Al заполняют микронеровности). - С упругим обтюратором, работающим в области упругих деформаций.
В зависимости от фактора обжатия затворы делятся на 2 группы:
- Затворы принудительного уплотнения, в которых обжатие производится в основном крепежными шпильками.
- Самоуплотняющиеся затворы, в которых обжатие уплотняемых поверхностей осуществляется полностью или частично давлением газа в аппарате. Эти затворы бывают с осевым и радиальным уплотнением.
Конструкции затворов аппаратов высокого давления.
Прокладка прямоугольного сечения шириной 6..20 мм и толщиной 4..6 мм. Обжатие производится шпильками.
Затвор чувствителен к температурным колебаниям.
2.Осевой самоуплотняющийся затвор. |
В рабочем состоянии обтюратор воспринимает всю силу давления газа на крышку.
3. Упругий, радиально самоуплотняющийся затвор с D-обтюратором.
Металл | Оксид | a | Металл | Оксид | a |
Mg | MgO | 0.79 | Zn | ZnO | 1.58 |
Pb | PbO | 1.15 | Zr | ZrO2 | 1.60 |
Cd | CdO | 1.27 | Be | BeO | 1.67 |
Al | Al2O2 | 1.31 | Cu | Cu2O | 1.67 |
Sn | SnO2 | 1.33 | Cu | CuO | 1.74 |
Ni | NiO | 1.52 | Ti | Ti2O3 | 1.76 |
Nb | NbO | 1.57 | Cr | Cr2O3 | 2.02 |
Nb | Nb2O3 | 2.81 |
Существует три вида пленок, которые могут образоваться:
— тонкие (невидимые невооруженным глазом);
— средние (дают цвета побежалости);
— толстые (хорошо видны).
Чтобы оксидная пленка была защитной, она должна отвечать некоторым требованиям: не иметь пор, быть сплошной, хорошо сцепляться с поверхностью, быть химически инертной по отношении к окружающей ее среде, иметь высокую твердость, быть износостойкой.
Если пленка рыхлая и пористая, кроме того имеет еще плохое сцепление с поверхностью — она не будет обладать защитными свойствами.
Источник
➤ Adblock
detector
Источник
Надежность и себестоимость гидроприводов в значительной степени определяется качеством уплотнений подвижных соединений. Для надежной работы уплотнений необходимо обеспечить прецизионную точность изготовления, минимальную шероховатость контактирующих поверхностей, высокую износостойкость материалов и большую жесткость конструкции [4]. Хотя проблема уплотнений актуальна и для обычных гидроприводов, особое значение она приобретает для гидроприводов сверхвысокого давления (СВД), к которому в трубопроводной арматуре относят давление свыше 80 МПа, а в уплотнительной технике – свыше 40 МПа [2].
В условиях СВД напряжение в деталях приближаются к пределам текучести материалов, поэтому даже незначительные утечки вызывают эрозию стенок канала течи. Одновременно увеличиваются деформации деталей, приводящие к потере начальных натягов и экструзии уплотнителя в зазоры; вследствие ухудшения условий смазывания и увеличения контактных напряжений резко повышаются интенсивность изнашивания и тепловыделение, особенно при герметизации жидкостей с плохой смазывающей способностью (например, воды).
Для герметизации лабораторных гидросистем с давлением до 1000 МПа, появившихся в 40-х годах нашего столетия, американский физик П.В. Бриджмен создал так называемые дифференциальные контактные уплотнения (КУ), работа которых основана на принципе усиления эффекта самоуплотнения с повышением давления уплотняемой среды (рис.1), так как считал, что в резиновых уплотнениях этот эффект не достаточен для СВД. Такие уплотнения применяются и в настоящее время, однако, как следует из анализа механизма герметизации [4], при СВД могут надежно работать и обычные резиновые уплотнения, если они имеют прочные защитные кольца.
Практика эксплуатации простейших контактных эластичных уплотнений (рис.2,а) с клиновыми защитными кольцами из высокотвердой (35-40 HRCэ) бериллиевой бронзы БрБ2 в гидроэкструзионных установках, работающих при давлении до 2000 МПа, подтверждает этот вывод [1]. Имеется большой опыт применения пластмассовых и эластичных уплотнений с пластмассовыми или бронзовыми защитными кольцами в гидроприводах высокого давления (до 300 МПа) кузнечно-прессового оборудования, гидродомкратах, устройствах для гидрораспора прессовых соединений, гидропружинах и гидродемпферах, стендах для испытания на прочность. При этом уплотнения успешно применяются не только для жидкостей на нефтяной основе, но также и для плохо смазывающих сред.
Альтернативой контактным являются бесконтакные (щелевые) уплотнения (БУ) (рис.2,б), герметичность которых обеспечивается силами внутреннего трения в слоях жидкости, находящейся в микронных зазорах между сопрягаемыми деталями [3]. Наиболее отработаны БУ плунжерных пар в топливных насосах дизельных двигателей и насосах-форсунках [5], работающих при давлении до 200 МПа, а также в гидромашинах и гидрораспределителях при давлении до 100 МПа. Имеется опыт применения при давлениях жидкости до 2000 МПа в поршневых манометрах, динамометрах и гидравлических весах.
В современных насосах и гидромультипликаторах, работающих на воде при давлении в диапазоне 200-400 МПа, применяются как КУ, так и БУ плунжеров. В связи с этим полезно сопоставить основные параметры и качественные признаки работоспособного состояния уплотнений этих видов (см. таблицу).
По главному параметру – герметичности – КУ выгодно отличаются от БУ, утечки в которых сравнительно велики и нестабильны, так как зависят от многих факторов и прогрессируют по мере увеличения наработки. Что бы утечки не превышали нескольких процентов от подачи насоса, зазоры в БУ плунжерных пар в условиях СВД не должны превышать 3 мкм, а для топливных насосов и дизелей – 1 мкм. Наличие утечек обусловливает необходимость применения дренажной системы с дополнительными уплотнениями и трубопроводами. Для поддержания минимальных зазоров в плунжерных парах используются толстостенные гильзы, так как их рассчитывают исходя из условия обеспечения высокой жесткости.
Большое преимущество БУ – возможность эффективно выполнять функцию отключаемого уплотнения в устройствах регулирования подачи рабочей жидкости, поскольку в отличие от КУ они не чувствительны к наличию боковых отверстий на сопрягаемых деталях
Потери на трение в КУ несоизмеримо выше, чем в БУ, особенно в режиме холостого хода. При рабочем ходе силы трения возникают и в БУ вследствие неуравновешенности давления в щели, а также внецентренной нагрузки плунжера. С повышением давления радиальные нагрузки увеличиваются даже при наличии кольцевых разгрузочных канавок на рабочих поверхностях втулки или плунжера. Стремление к минимизации износа обусловливает необходимость увеличения твердости и прочности, снижения шероховатости поверхности сопряженных деталей (что актуально, кстати, и для КУ). Повышенное трение существенно снижает допустимые скорости скольжения для КУ (по сравнению с БУ).
Главное конструктивное преимущество КУ – пониженные требования к точности изготовления его деталей (квалитет 8-9 вместо 1-3), благодаря эластичности уплотнителей. Расширенные допуски на изготовление позволяют выполнять КУ больших размеров для работы в условиях СВД, в то время как получить микронные зазоры в БУ затруднительно при диаметрах свыше 50 мм. КУ менее чувствительны к тепловым, силовым и структурным деформациям узла, работоспособны при значительных износах плунжера, имеют повышенную ремонтопригодность.
Уход от микронных зазоров исключает такие частые и характерные для БУ отказы, как защемление и задиры плунжерной пары, связанные не только с подбором материалов и точностью изготовления, но и с деформациями деталей (например, вследствие аустенситно-мартенситных преобразований в структуре стали, вызванных неполной обработкой холодом).
Причиной задиров часто является заклинивание в зазоре твердых включений, содержащихся в жидкости. КУ сравнительно малочувствительны к загрязнению жидкости и могут работать даже в абразивосодержащих буровых растворах, в то время как для плунжерных пар топливных насосов необходима фильтрация рабочей жидкости с точностью 3-5 мкм.
Малая осевая протяженность современных КУ и возможность их размещения в глухих канавках позволяют резервировать уплотнения, предусматривать камеры для подвода смазочного материала и охлаждающей жидкости (рис.3).
Таким образом, БУ целесообразно использовать, например, в топливных насосах дизелей с регулируемой подачей, в которых быстроходные плунжеры с малыми диаметрами и ходами работают в паре с втулками, имеющими боковые каналы, а утечки способствуют охлаждению пар трения.
Для тихоходных машин и мультипликаторов больших размеров целесообразно использовать КУ, так как при увеличении диаметров и ходов трудоемкость изготовления БУ резко увеличивается, а надежность снижается. Поскольку силы трения в уплотнениях пропорциональны диаметрам плунжеров, а мощность гидромашин пропорциональна квадратам диаметров, недостатки КУ в части повышения потерь не трение становятся менее заметными. Для мультипликаторов, работающих на воде в условиях СВД (при 400 МПа и выше) при скоростях движения плунжера до 0,2 м/с и хороших условиях охлаждения, определяющими являются такие преимущества КУ, как высокая технологичность конструкции, нечувствительность к загрязнениям и неравномерным деформациям деталей силового контура, минимальные потери энергии на утечки, возможность многократного резервирования. Среди многочисленных типов КУ плунжеров наиболее совершенными являются компактные пластмассовые уплотнения [6, 7].
Малая осевая протяженность и возможность монтажа в глухие канавки позволяет использовать их в многоступенчатых уплотнительных узлах. Высокая самосмазывающая способность современных антифрикционных пластмасс на основе фторопластов, полиуретанов и полиэфиров обеспечивает их надежную работу и в плохо смазывающих жидкостях (например, в водопроводной воде). При подводе смазочного материала между ступенями уплотнения дополнительно повышается ресурс уплотнительного узла.
Поскольку в настоящее время нет методики расчета ресурса уплотнений в условиях СВД, основным способом решения проблемы остается экспериментальная отработка конструкции.
Современные уплотнения, в том числе для работы в условиях сверхвысокого давления, поставляет фирма «ЭЛКОНТ».
Источник