Уравнительный сосуд для барабана котла принцип работы

Уравнительный сосуд для барабана котла принцип работы thumbnail

Харитонов Н.В. филиал Нижегородская ГРЭС –«ОАО ТГК-6»,

Федоров В.Л., ОАО «ТЕПЛОПРИБОР», г. Рязань

Журнал «Новости теплоснабжения», №1, 2010 г., https://www.ntsn.ru

«Узким местом» в вопросах технологического контроля и полной автоматизации пусковых режимов энергетических барабанных котлов (а так же подогревателях высокого и низкого давления паровых турбин) остается измерение и поддержание норме уровня котловой воды в барабане котла. Это осложнение обусловлено изменением плотности воды в процессе ее нагревания до рабочих параметров.

В настоящее время технологический контроль осуществляется путем оснащения барабанов смотровыми колонками прямого действия и датчиками-перепадомерами с электрической схемой дистанционной передачи показаний на электронные приборы (регистратор уровня, регуляторы уровня (основной и резервный) и не менее двух показывающих приборов, задействованных в схеме технологической защиты котлоагрегата), расположенных на тепловых щитах управления. Уровень в барабане энергетического котла высокого давления в подавляющем большинстве случаев измеряется гидростатическим методом (измерение перепада давления в конденсационном сосуде):

S = ∆ p,

где S – показания прибора, мм; ∆p– перепад давления в преобразователе;

p= ρ·(Нh),

где ρ – плотность воды; h – высота столба питательной воды в барабане котла; Н – высота столба питательной воды в конденсационном сосуде.

Плотность воды при изменении ее термодинамического состояния по границе линии насыщения определяется уравнением формуляции,

ее изменение представлено в таблицах М.П. Вукаловича «Теплофизических свойств воды и водяного пара).

С высокой степенью точности уровень питательной воды в барабане будет определяться по формуле

S = р (Нh)·ά,

где ά – коэффициент относительной плотности воды, ά = ρ*/ρ;

ρ – плотность воды при нормальных условиях;

ρ* – то же в переходном состоянии.

Принципиальная схема измерения уровня представлена на рис. 1.

Уравнительный сосуд для барабана котла принцип работы

Рис. 1. Принципиальная схема измерения уровня:

1 – уравнительный сосуд, соединенный с паровым пространством барабана;

2 – импульсная трубка;

3 – импульсная трубка, соединенная с водяным пространством барабана;

4 – преобразователь давления

Для уменьшения погрешностей измерения, вызванных охлаждением питательной воды в уравнительном сосуде 1, применяются теплоизолированные обогреваемые конденсационные сосуды, показанные на рис. 2.

Рис. 2. Теплоизолируемые обогреваемые конденсационные сосуды

В настоящее время специалисты цеха ТАИ проводят лабораторную калибровку характеристик датчиков-преобразователей перепада давления на рабочие параметры питательной воды

(для котла ТП‑230‑2 плотность питательной воды составляет 671кг/м3)

В переходных режимах в течении всего времени растопки (расхолодки) котла гидростатический метод измерения уровня не работает вследствие большой погрешности измерительного комплекта (более 30%). Предлагаемая система измерения уровня воды в барабане энергетического котла гидростатическим методом предусматривает создание измерительной схемы с применением многопараметрического преобразователя давления, оснащенного следующими электронными устройствами:

сенсором перепада давления;

сенсором абсолютного давления в одной из камер;

электронным блоком измерения электрических импульсов на выходе сенсоров, их преобразование в цифровой сигнал и дальнейшую коррекцию сигнала перепада давления в конденсационном сосуде в зависимости от плотности питательной воды по значению избыточного давления в барабане котла (по линии насыщения), с формированием стандартного токового сигнала 4 – 20 мА или дискретного на выходе.

За основу многопараметрического преобразователя был принят надежный и проверенный отечественный дифференциальный преобразователь давления типа САПФИР‑22МР‑ДД, серийно выпускаемый Рязанским приборостроительным заводом ОАО «ТЕПЛОПРИБОР» (рис. 3).

Уравнительный сосуд для барабана котла принцип работы

Рис. 3. Принципиальная схема многопараметрического преобразователеля давления:

1 – электронный преобразователь; 2 – гермоввод; 3 – прокладки; 4 – тензопреобразователь измерения перепада давления; 5 – тяга; 6 – центральный шток; 7 – плюсовая камера; 8 – мембраны; 9 – основание; 10 – фланцы; 11 – замкнутая полость, заполненная кремнийорганической жидкостью; 12 – минусовая камера; 13 – гермоввод; 14 – тензопреобразователь; 15 – тяга; 16 – мембрана

Дополнительный контур измерения избыточного давление р состоит из мембраны 16, соединенной тягой 15 с тензопреобразователем, который через герметичный ввод 13 связан с электронным преобразователем 1.

В контуре измерения перепада давления ∆р (см. рис. 1) разность давлений в плюсовой 7 и минусовой 8 камерах вызывает прогиб мембраны 9, который через тягу 10 и центральный шток передается на тензопреобразователь 11. Деформация тензопреобразователя 11 приводит к изменению его сопротивления, при этом меняется значение напряжения Uр, которое передается в электронный преобразователь 12. Таким образом, выходной сигнал от тензопреобразователя 11 поступает на вход электронного преобразователя 12.

В контуре измерения избыточного давления р изменение давления в минусовой камере 8 вызывает прогиб мембраны 13, который посредством тяги 14 передается на второй тензопреобразователь 15. Деформация последнего приводит к изменению его сопротивления, при этом меняется значение напряжения , которое передается в электронный преобразователь 12.

Электронный блок 1 состоит из блока индикатора и двух плат: клемной и платы микропроцессора. На клемной плате установлена клемная колодка для присоединения жил кабелей питания и нагрузки. На плате микропроцессора расположен микроконтроллер, который оцифровывает сигнал от измерительного блока, ступенчато в пределах класса точности датчика корректирует его, отображает на жидкокристаллическом индикаторе (ЖКИ) и преобразует из цифрового формата в стандартный выходной токовый сигнал.

На верхней поверхности корпуса электронного блока под откидной крышкой расположены четыре колодца, в каждый из которых может быть введен манипулятор ручного управления для контроля и программирования преобразователя.

На подсвечиваемом ЖКИ можно отобразить параметры технологических измерений:

уровня;

дифференциального и абсолютного давления;

значения выходного токового сигнала;

температуры собственно электронного блока.

Воздействием магнитного манипулятора вводятся (задаются) или корректируются данные верхних пределов диапазонов измерений, перепада давлений, абсолютного давления, время демпфирования, метрологическая информации о данном датчике. Так же предусматривается корректировка значений уровня и выходного сигнала, включение функции самотестирования преобразователя.

Комбинированный преобразователь САПФИР-22МР является многопредельным (см. таблицу) и может перенастраиваться на любой тип барабанов котла (с различным избыточным давлением и расстояниями между отверстиями для импульсных отборов на сосуд постоянного уровня), также он может использоваться для измерения уровня в пароводяных теплообменниках (подогревателях высокого и низкого давления турбогенераторов).

Читайте также:  Чем лечить расширенные сосуды носа
Измеряемый параметрКодВерхний предел измеренийПредел допускаемой основной погрешности ±γ, %
кПаМПакгс/см²кгс/м²
Разность
давлений
27ХХ1,001000,25
1,601600,25
2,502500,25
4,004000,25
6,306300,20; 0,25
10,0010000,20; 0,25
37ХХ

38ХХ

4,004000,25
6,306300,25
10,0010000,25
16,0016000,20; 0,25
25,0025000,15; 0,20; 0,25
40,0040000,15; 0,20; 0,25
47ХХ

48ХХ

25,000,250,25
40,000,400,25
63,000,630,20; 0,25
100,001,000,20; 0,25
160,001,600,15; 0,20; 0,25
250,002,500,15; 0,20; 0,25
Абсолютное (избыточное) давление(YY21)1,001000,25
1,601600,25
2,502500,25
4,004000,25
6,306300,20; 0,25
10,0010000,20; 0,25
YY30

(YY31)

4,004000,25
6,306300,25
10,0010000,25
16,0016000,20; 0,25
25,0025000,15; 0,20; 0,25
40,0040000,15; 0,20; 0,25
YY40

(YY41)

25,000,250,25
40,000,400,25
63,000,630,20; 0,25
100,001,000,20; 0,25
160,001,600,15; 0,20; 0,25
250,002,500,15; 0,20; 0,25
YY50

(YY51)

0,252,500,25
0,404,000,25
0,636,300,25
1,0010,000,25
1,6016,000,25
2,5025,000,25
(YY61)1,6016,000,25
2,5025,000,25
4,0040,000,20; 0,25
6,3063,000,20; 0,25
10,00100,000,15; 0,20; 0,25
16,00160,000,15; 0,20; 0,25
(YY71)10,00100,000,25
16,00160,000,25
25,00250,000,20; 0,25
40,00400,000,20; 0,25

В период 2006 – 2008 гг. на ОАО «ТЕПЛОПРИБОР», г. Рязань, были проведены работы по созданию и изготовлению опытно промышленных образцов многопараметрического преобразователя САПФИР-22МР. В 2008 г. данное устройство успешно прошло опытно-промышленные испытания на котлах, станционные № 6 и 8, Игумновской ТЭЦ Дзержинского филиала ТГК-6.

К положительным результатам применения схемы измерения уровня в барабане энергетического котла гидростатическим методом с использованием многопараметрического преобразователя давления САПФИР-22 МР-К нужно отнести следующее:

исключение человеческого фактора в контроле за уровнем в барабане котлоагрегата в переходных режимах (растопка);

Обеспечение точного измерения уровня в переходных режимах (растопка), т.е выполнение требований п. 4.3.13. ПТЭ;

возможность использования сигнала преобразователя для полной автоматизации растопки котла;

простота лабораторной калибровки и применения, надежность и меньшая стоимость по сравнению с другими электронными вычислителями уровня.

Для модернизации существующих систем контроля, защиты и регулирования в барабане котлов достаточно просто реализовать замену существующих перепадомеров на датчик САПФИР-22МР –К

соответствующей модификации без существенных изменений измерительной схемы.

Ряд энергетических организаций (ОАО «Инженерный центр ЕЭС» Филиал «Нижегородский Теплоэлектропроект», Департамент генеральной инспекции по эксплуатации электростанций) дали положительную оценку датчику САПФИР -22 МР-К с рекомендациями о возможности применения датчика на электростанциях.

Источник

    Разделительные сосуды предназначены для предохранения внутренних полостей измерительных приборов от воздействия агрессивных измеряемых сред, а также предотвращения поступления вязких сред в эти полости. Отделение прибора от измеряемой среды происходит посредством разделительной жидкости.

    Конструктивное исполнение разделительного сосуда не сложное (рис. 8.15,а): к стальному сосуду  приварены подводящий, отводящий и контрольный патрубки. В одной части (верхней или нижней) разделительного сосуда находится измеряемая жидкость (например, газ), поступающая от измеряемого пространства, в другой – иная, не смешивающаяся с измеряемым веществом жидкость, удовлетворяющая требованиям, предъявляемым к заполнению внутренней полости прибора. 

 рис 8.15.jpg

Рис. 8.15. Внешний вид (а) и схема подсоединения (б) разделительного сосуда:

а – вид сосуда; б – схема подсоединения; 1 – металлический объем;   2 – присоединительный патрубок; 3 – трубопровод; 4 – разделительный сосуд; 5 – измерительный прибор

    Применение разделительного сосуда поясняет рис. 8.15,б. Если по трубопроводу протекает мазут, попадание которого во внутренние полости прибора из-за его высокой вязкости (а при низкой температуре и застывании) не желательно, то на выходе пробоотбора через коренной клапан устанавливается разделительный сосуд. Расстояние между ними невелико. Этот сосуд с отводящим трубопроводом и измерительным прибором наполовину заполняется водой. Разогретый мазут из-за более низкой плотности заполняет верхнюю часть разделительного сосуда, а в нижней его части остается вода. Изменение давления приводит к варьированию уровня раздела мазута и воды. При значительно превосходящем объеме сосуда относительно объема внутренней полости чувствительного элемента измерительного прибора варьирование уровня разделения в сосуде мало.

В табл. 8.3 приведены основные параметры и размеры разделительных сосудов.

Таблица 8.3

Основные параметры и усредненные размеры

разделительных сосудов

Внутренний объем сосуда, см3

Внутренний диаметр, мм

Размеры, мм

Высота

Ширина 1

Ширина 2

1100

140

530

280

210

470

90

490

230

160

90

35

440

175

100

     По рабочему давлению сосуды производятся для измерений давлений 6,3; 25 и 40 МПа.

    Рис. 8.13,б иллюстрирует применение разделительного сосуда при условии, что измеряемое вещество легче разделительной жидкости. Если удельный вес измеряемой среды выше удельного веса разделительной жидкости, то разделительный сосуд и измерительный прибор устанавливаются выше пробоотбора.

Читайте также:  Движение сосуда с жидкостью

    В качестве разделительной жидкости могут использоваться вода, глицерин, водоглицериновые смеси, минеральные масла.

    Для разделения измеряемой среды и полости чувствительного элемента применяют также устройства, используемые в качестве разделительных камер кислородсодержащих сред (см. п.2.2.3).

    Уравнительные сосуды применяются для исключения влияния на результат измерения дифманометров-расхо-домеров и перепадомеров, а также дифманометров-уровнемеров столба жидкости в импульсных подводящих линиях. Причем величина такого воздействия столба может определяться как его высотой, так и плотностью находящейся в нем жидкости. Плотность жидкости в значительной степени зависит от ее температуры. Этим обусловлена необходимость прокладки обеих импульсных линий («плюсовой» и «минусовой») в одинаковых температурных условиях.

    Необходимость применения уравнительных сосудов при измерении перепада давления на сужающем устройстве можно продемонстрировать рис. 8.16. Измерительный преобразователь разности давлений с мембранными коробками в качестве чувствительного элемента установлен на трубопроводе с сужающим устройством. Измеряемая среда в трубопроводе – газ. В определенный момент времени при оптимальном заполнении импульсных линий рабочей жидкостью и дифференциальном давлении, равном нулю, «минусовая» и «плюсовая» камеры имеют одну степень объемной деформации. При увеличении перепада на сужающем устройстве возрастает давление в импульсной линии «плюсового» давления, и «плюсовая» камера сжимается, вытесняя рабочую жидкость в «минусовую». При этом из-за уменьшения объема «плюсовой» камеры снижается уровень рабочей жидкости в импульсной линии «плюсового» давления на величину h. Соответственно выходной сигнал преобразователя будет, согласно выражению (3.6), пропорционально уменьшен на величину hrg. При увеличении перепада давления будут возрастать h и погрешность проводимых измерений. Этим обстоятельством обусловлена необходимость применения уравнительных сосудов.

    Конструктивная особенность уравнительного сосуда состоит в значительном превышении его площади поперечного сечения над площадью поперечного сечения импульсной линии. Механизм этого явления более подробно описан в 3.2 (о чашечных манометрических приборах), где показана возможность снижения погрешности из-за варьирования гидростатическим столбом путем увеличения поперечного сечения сосуда. Таким образом, конструкция уравнительного сосуда предусматривает значительную площадь его поперечного сечения. Эти сосуды устанавливаются как основная цилиндрическая образующая вертикально.

 рис 8.16.jpg 

Рис. 8.16. Схема работы измерительного преобразователя разности давлений на трубопроводе:

 а – при отсутствии перепада давления; б – при воздействии дифференциального давления; 1 – трубопровод с сужающим устройством;    2 – измерительный преобразователь разности давлений; 3, 4 – «плюсовая» и «минусовая» камеры соответственно

     Размеры уравнительных сосудов, а они по конструкции идентичны разделительным (рис. 8.15а), приведены в табл. 8.4.

   Меньший уравнительный сосуд предназначается для работы в комплекте с сильфонными и мембранными дифманометрами, больший – для поплавковых измерителей.

    При использовании современных дифманометров из-за незначительного объема их «плюсовой» и «минусовой» камер применять уравнительные сосуды нецелесообразно.

 Таблица 8.4

Основные параметры и усредненные размеры

уравнительных сосудов

Внутренний диаметр сосуда, мм

Объем вытесняемой жидкости, см3

Размеры, мм

Высота

Ширина 1

Ширина 2

90

250

320

210

160

140

610

360

260

210

     По рабочему давлению уравнительные сосуды аналогичны разделительным и производятся для измерения давлений 6,3; 25 и 40 МПа.

    В паровых средах для обеспечения заполнения подводящих к измерителю импульсных линий жидкой фазой, поддержания этого заполнения постоянным применяются уравнительные конденсационные сосуды. их отличительной особенностью служит горизонтальное расположение образующего сосуд цилиндра (рис. 8.17).

 рис 8.17.jpg 

Рис. 8.17. Схема уравнительного конденсационного сосуда

     Отводящий патрубок расположен снизу по оси цилиндра. Его ось для увеличения высоты рабочего пространства сосуда смещена вверх. Диаметр сосуда составляет 89 или 108 мм, длина – 200…270 мм. Рабочее давление – 4 или 10 МПа. Для более высоких давлений уравнительные конденсационные сосуды изготавливаются по документации, определяемой межведомственными нормами.

   Импульсные линии, особенно в условиях измерения давления пара, не должны теплоизолироваться. Это требуется для охлаждения жидкости, контактирующей с измерительным прибором, до допустимой температуры, а также для конденсации жидкости из измеряемого пара и заполнения импульсных линий.

Источник

Средства измерения уровня жидкости среды называют уровнемерами. Уровнемеры нашли применение для измерения уровня воды в котельных агрегатах.

Существуют следующие методы измерения уровня жидкости: поплавковый, манометрический, емкостный, ультраакустический, радиационный, радиочастотный.

Поплавковый метод измерения уровня жидкости

На рис. 2.28, а представлена конструкция механического уровнемера с поплавком /, плавающим на поверхности жидкости 4. Положение поплавка и, следовательно, связанного с ним

Рис. 2.28. Поплавковые методы измерения уровня жидкости: а — конструкция поплавкового уровнемера: 1 — поплавок;

  • 2 — уравновешивающий груз; 3 — шкала; 4 — жидкость; б — конструкция уровнемера с тонущим поплавком-буйком:
  • 1 пружина; 2 — рычаг; 3 — шкала; 4 — стрелка; 5 — ось;
  • 6 поплавок-буек; в — схема поплавкового электрического уровнемера: х — уровень жидкости; ЯГ..Я4 — сопротивление плеч моста;

Ях — сопротивление преобразователя; Ям и Rk2 — сопротивление логометра уравновешивающего груза 2 относительно шкалы 3 определяет уровень жидкости.

Чаще применяются тонущие поплавки-буйки, частично погруженные в жидкость (рис. 2.28, б), поплавок-буек 6 подвешен на рычаге 2и пружине 1. При изменении уровня жидкости изменяется степень погружения и, следовательно, растягивающее усилие пружины 1 под действием массы буйка. Перемещение буйка через рычаг 2 передается на ось 5, на которой установлена стрелка 4, показывающая по шкале 3 уровень жидкости.

На рис. 2.28, в приведена схема поплавкового электрического уровнемера. Определенный уровень жидкости X с помощью поплавка и потенциометра преобразователя Rx, измерительного моста Rv..R4 фиксируется на магнитоэлектрическом логометре, сопротивление которого Rkl и RkT Преобразователь уровнемера включается в матовую схему таким образом, что одновременно изменяются два соседних плеча моста.

При использовании манометрического метода измерения уровня определяется давлением столба жидкости в резервуаре. Для измерения уровня жидкости в барабанах котлов, котлах-утилизаторах применяются мембранные дифманометры, отградуированных в единицах уровня.

Читайте также:  В сосуды соединенные трубкой с краном налита вода

На рис. 2.29 показана схема манометрического уровнемера с применением электрической схемы преобразования сигнала. Жесткий центр манометра через шар соединен с тензорезистором Rx, включаемым в плечо моста. При изменении уровня жидкости X меняется тензосопротивление, что приводит к разбалансу моста. Сигнал рассогласования, снимаемый с моста, усиливается в усилителе У и подается на двигатель Д. Последний уравновешивает мост и через редуктор перемещает стрелку показывающего или сигнализирующего устройства.

Изменение уровня жидкости играет важную роль при автоматизации процессов в системах газоснабжения. Эти измерения особенно важны, когда поддержание некоторого постоянного уровня, например уровня воды в барабане котла, уровня жидкости в резервуаре, связано с условиями безопасной работы оборудования.

Технические средства, применяемые для измерения уровня жидкости, называются уровнемерами. Приборы, предназначенные для сигнализации предельные уровней жидкости, называются сигнализаторами уровня.

Нормальная эксплуатация барабанных котлов может осуществляться только при условии строгого поддержания уровня воды в барабане в допустимых пределах.

Рис. 2.29. Схема манометрического уровнемера: Я0…R3 — сопротивление плеч моста;

Д — двигатель; У — усилитель; R — тензорезистор

На рис. 2.30 показана схема измерения уровня воды в барабане котла дифманометром с использованием стандартного двухкамерного уравнительного сосуда. В широкой части сосуда /, присоединенного к паровому пространству барабана, уровень воды (конденсата) поддерживается постоянным. В трубке 2, присоединенной к водяному пространству барабана, уровень воды меняется при изменении уровня воды в барабане. При установке запорного клапана на трубке, соединяющей паровое пространство барабана с уравнительным сосудом, необходимо, чтобы шпиндель его находился в горизонтальном положении.

Разность давлений (Па), создаваемая двухкамерным уравнительным сосудом, которую измеряет дифманометр 3, определяется выражением

где Н и h — разность столба воды в сосуде и трубе соответственно, м;

р’ и р” — плотность воды и пара в состоянии насыщения при давлении Р, кгс/м3;

g — ускорение свободного падения, м/с2.

Эксплуатация газонаполнительных станций вызывает необходимость в измерении уровня сжиженного газа, находящегося в резервуарах хранения. Для этого применяются различные устройства, в частности, указатели уровня следующих типов: с постоянными трубками; с мерным стеклом; с поворотной или скользящей трубкой; поплавковые; магнитные; электронные; радиоактивные.

Рис. 2.30. Схема измерения уровня воды в барабане дифференциальным манометром с использованием двухкамерного уравнительного сосуда:

  • 1 — двухкамерный уравнительный сосуд; 2 — трубка;
  • 3 — дифференциальный манометр; Н — разность столба воды в сосуде; h — разность столба воды в трубке; h — уровень воды в барабане котла

В настоящее время широко используются указатели уровня с постоянными трубками. Данный указатель (рис. 2.31) состоит из трех трубок различной длины, которые привариваются к существующему стальному фланцу и опускаются внутрь резервуара на различную глубину.

Сверху на выступающие концы трубок приварены стальные штуцеры с внутренней резьбой, в которые ввертываются запорные угловые вентили. Контрольные трубки свободным концом опущены в резервуар на различную глубину и оканчиваются на уровнях, соответствующих заполнению резервуара на 10, 30 и 60%. Для проверки уровня 90%-ного заполнения имеется трубка Dy = 32 мм, служащая для соединения паровых фаз. При открытии запорных вентилей определяют примерный уровень заполнения резервуара сжиженным газом.

Рис. 2.31. Указатель уровня с постоянными трубками: 1 — трубка; 2 — фланец; 3 — штуцер; 4 — прокладка; 5 — запорный угловой клапан; 6 — сбросной штуцер

Указатель уровня (рис. 2.32) выполнен в виде вертикальной колонки из трубы, присоединенной концами к резервуару. Наблюдение за уровнем ведется через ряд последовательно установленных стеклянных трубок. С обеих сторон трубы установлены запорные вентили с автоматическим шариковым затвором, отключающие указатель от резервуара в случае поломки одной из трубок. На верхнем горизонтальном участке трубы до запорного вентиля установлен манометр с разделительной мембраной под фланцем, защищающий манометр от коррозии.

На горизонтальных резервуарах диаметром до 2 м применяются указатели уровня с поворотной трубкой (рис. 2.33). Указатель состоит из изогнутой трубки 4, которую при помощи стрелки-указателя 2 можно повернуть в любое положение поворотом в пределах 180°. Стрелка 2 указывает на шкале 3 количество жидкости в процентах от общего объема резервуара. Уровень определяется вращением стрелки указателя при открытом вентиле-заглушке 1 с резиновым уплотнителем и отверстием в сальнике 5до тех пор, пока из отверстия

Рис. 2.32. Указатель уровня для горизонтальных надземных резервуаров: 1 — труба; 2 — запорный вентиль с автоматическим шариковым затвором; 3 — фланцевое соединение; 4 — вентиль; 5 — манометр; 6 — резервуар; 7 — стеклянные трубки; 8 — рейка; 9 — подвижный визир

не появится или, наоборот, не перестанет выходить (если он шел) белый туман.

Поплавковый указатель уровня позволяет вести постоянный контроль за уровнем сжиженного газа в подземных резервуарах.

На рис. 2.34 показан аналогичный по принципу работы поплавковый указатель для измерения уровня сжиженного газа в резервуарах автоцистерн. Указатель уровня представляет собой прибор бессальникового типа, состоит из корпуса 6, поплавкового устройства 2, магнита-датчика 3, магнита-приемника 4 со стрелкой 5, шкалы 1.

Рис. 2.33. Уровнемер с поворотной трубкой:

1 — вентиль-заглушка; 2 — стрелка-указатель; 3 — шкала; 4 — поворотная трубка; 5 — сальник

Рис. 2.34. Поплавковый указатель уровня для автоцистерн: 1 — шкала; 2 — поплавковое устройство; 3 — магнит-датчик; 4 — магнит-приемник; 5 — стрелка; 6 — корпус

Указатель уровня является средством визуального контроля за производством сливно-наливных операций. При наливе газа в автоцистерну или сливе поплавковое устройство указателя уровня поворачивает шток с магнитом-датчиком. Магнитное поле магнита- датчика взаимодействует через стенку корпуса с магнитным полем магнита-приемника, который поворачивается вместе со стрелкой, показывающей по шкале объем газа в автоцистерне в кубометрах.

Источник