Уроки по физике по теме сообщающиеся сосуды

Уроки по физике по теме сообщающиеся сосуды thumbnail

План-конспект

урока «Сообщающиеся сосуды»

Автор: Ощепкова Анна Валериевна, учитель физики МКОУ «Мильковская средняя общеобразовательная школа №1»

Класс: 7

Предмет: физика.

Тема урока: Сообщающиеся сосуды

Базовый учебник: «физика-7» Перышкин А.В., 2010 г.

Тип урока: комбинированный.

Цель урока: изучить свойства сообщающихся сосудов.

Задачи урока:

  • образовательная – продолжить формирование понятия давления жидкости на дно сосуда и изучение закона Паскаля на примере однородных и разнородных жидкостей в сообщающихся сосудах, находить примеры сообщающихся сосудов в быту, технике, природе;
  • развивающая – формировать интеллектуальные умения анализировать, сравнивать, развивать навыки самостоятельной работы;
  • воспитательная – воспитание аккуратности, бережного отношения к оборудованию кабинета, воспитание толерантности( при работе в парах), умения слушать и быть услышанным.

Оборудование: мультимедийный проектор, компьютер, интерактивная доска, различные виды сообщающихся сосудов, пластиковые бутылки, трубки от капельниц, пластилин,  презентация «Сообщающиеся сосуды», ЭОР

Структура урока.

Этап урока

Деятельность учителя

Деятельность ученика

Время

1

Повторение изученного материала (разминка).

Сообщение задания.

Работа на интерактивной доске.

7мин.

2

Постановка учебных проблем.

Наводящие вопросы, демонстрации.

Ответы на вопросы, формулировка цели урока.

2 мин.

3

Изучение нового материала.

Беседа, эксперимент, демонстрации. Просмотр видеоролика.

Записи в тетрадях, исследование зависимости уровня жидкости в сообщающихся сосудах.

15 мин.

4

Физминутка.

Учитель в процессе демонстраций свойств сообщающихся сосудов, подкрашивает жидкость и в это время предлагает построение модели диффузии., используя программу «Живая физика», Мальчики-молекулы воды, девочки- молекулы краски.

Учащиеся, перемещаясь по классу, демонстрируют поведение молекул.

2 мин.

5.

Моделирование.

Учитель предлагает из подручных средств, стоящих на партах у учащихся изготовить сообщающиеся сосуды.

Изготовление сосудов, проверка свойств сосудов.

7 мин.

6.

Применение сообщающихся сосудов в быту, технике, природе.

Беседа.

Ответы на вопросы, беседа.

3 мин.

7.

Выполнение учащимися контрольного задания

Обобщение ответов учащихся.

Работа за компьютерами, выполнение тестирования.

7 мин.

8.

Итоги урока.

Подведение итогов урока, оценивание результатов работы учащихся на уроке, запись домашнего задания на доске.

Обсуждение и оценивание своих результатов работы на уроке, запись домашнего задания в дневниках. Голосование смайлами.

3 мин.

Ход урока.

1. Учитель и ученики приветствуют друг друга.

2. Начинается разминка. Учитель предлагает ученикам выполнить задания различного уровня сложности на интерактивной доске.

1.Анаграммы.

Давление -Ниеледав, Сила-Алси, Высота-Тавысо, Плотность-Ностьплот, Ньютон-Нотнью, Паскаль-Кальсап, Площадь-Щадьпло.

2. Соотнеси физическую величину и её единицу измерения. Соотношение отображается с помощью  инструмента маркер.

3.Соотнеси понятие и его определение. Возможность перетаскивания объектов.

4.Поставь верный знак.

5.Допиши формулу. Это задание с проверкой, верные ответы скрыты за шторкой.

Работают ученики по цепочке, маркер доски служит эстафетной палочкой.

На доске появляется картинка сообщающихся сосудов.  Презентация.

3.Учитель.  Что общего между чайником и фонтаном? Чем интересно строение этих сосудов?

Модель сообщающихся сосудов

Учащиеся. Их части соединены между собой.

Учитель. Правильно. Сообщающимися сосудами называют сосуды, соединенные между собой в нижней части. (Учащиеся записывают определение в тетради).
С сообщающимися сосудами можно проделать простой опыт. (Вся беседа сопровождается демонстрациями.)

 Возьмем две стеклянные трубки, соединенные резиновой трубкой. Сначала резиновую трубку в середине зажимаем и в одну из трубок наливаем  воду. Что произойдет, если открыть зажим?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок поднять?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок опустить?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок наклонить?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. (Учащиеся записывают закон в тетради).

4. Далее проводится ФИЗМИНУТКА. . Ученики строят модель физического понятия диффузия и в программе «Живая физика» моделируют её изменение от температуры.
Изменится ли уровень жидкости, если правый сосуд будет шире левого? уже левого? если сосуды будут иметь разную форму?

Учащиеся. Нет, жидкость установиться в обоих сосудах на одном уровне.

Учитель. При изменении формы сосудов может изменяться лишь высота уровня воды в сосудах, отмеренная от уровня стола (из-за того, что изменяется объем сосудов). Однако уровни воды в сообщающихся сосудах не зависят от формы сосудов и останутся равны. (Демонстрация опыта с сообщающимися сосудами различной формы).

Что произойдет, если в сообщающиеся сосуды налить две несмешивающиеся жидкости разной плотности?

Учащиеся. Высота столбов жидкостей в сосудах будет разной.

Учитель. При равенстве давлений высота столба жидкости большей плотности меньше, чем высота столба жидкости меньшей плотности. (Учащиеся записывают в тетради).

Попробуйте доказать это, используя закон Паскаля и определение гидростатического давления.… Проверим ваш результат.

По закону Паскаля p1 = p2, по определению гидростатического давления p1 = g1h1, p2 = g2h2, отсюда g1h1 = g2h2, т.е  h1 : h2 = 2:1.
Высоты столбов разнородных жидкостей сообщающихся сосуда обратно пропорциональны их плотностям. (Учащиеся записывают в тетради).

Учитель. Давайте просмотрим видеоролик, наглядно демонстрирующий все свойства, которые мы сейчас рассмотрели.

Видеоролик “Закон сообщающихся сосудов” (При загрузке видеоролика учитель должен учитывать время скачивания материала.)

 5.  Учитель. У Вас на партах находятся  пластиковые бутылки, трубки от капельниц, пластилин, используя их, изготовьте модели сообщающихся сосудов и еще раз пронаблюдайте их свойства. (Учащиеся работают в парах)

6.Учитель. Где Вы наблюдали сообщающиеся сосуды на практике?

Учащиеся. Это различные предметы посуды, гейзеры, фонтаны, шлюзы, водопровод с водонапорной башней, гидравлический пресс, водомерные стекла, артезианские колодцы, сифоны под раковиной.

7.Учитель. Молодцы! Ну, а сейчас пришло время проверить ваши знания по данному вопросу. (Учащиеся занимают место у компьютеров.) 

Тест для самопроверки

8.Подведение итогов урока,  запись домашнего задания.

Учитель выставляет оценки и благодарит учеников за работу на уроке. Записывается задание на дом и начинается голосование смайлами.

Если на уроке ученику было комфортно, интересно, то он голосует веселым смайлом, если нет – грустным. Смайлы кладут на чаши рычажных весов.

Источник

Цель урока: сообщающиеся сосуды, закон
сообщающихся сосудов, применение закона
сообщающихся сосудов в жизни человека

Задачи урока:

  • образовательная
  • – продолжить формирование
    понятия давления жидкости на дно сосуда и
    изучение закона Паскаля на примере однородных и
    разнородных жидкостей в сообщающихся сосудах;

  • развивающая
  • – формировать интеллектуальные
    умения анализировать, сравнивать, находить
    примеры сообщающихся сосудов в быту, технике,
    природе, развивать навыки самостоятельной
    работы с дополнительной литературой;

  • воспитательная
  • – воспитание аккуратности,
    бережного отношения к оборудованию кабинета,
    умения слушать и быть услышанным.

Оборудование: различные виды сообщающихся
сосудов, два стеклянных сосуда, соединенных
резиновой трубкой, презентация “Сообщающиеся
сосуды”, диск “Фонтаны С-П”.

Средства обучения: учебник,
карточки-инструкция.

Тип урока: эвристическая беседа.

Структура урока

Этап урокаДеятельность учителяДеятельность ученикаВремя
1Постановка учебных проблем.Сообщение.Запись темы урока в тетради.2 мин.
2Изучение нового материала.Беседа, эксперимент,
демонстрация Приложений 1–4.
Записи в тетрадях,
исследование зависимости уровня жидкости в
сообщающихся сосудах.
15 мин.
3Применение сообщающихся
сосудов в быту, технике, природе.
Демонстрация Приложений 5–8,
обобщение сообщений учащихся.
Сообщения учащихся о
применении сообщающихся сосудов в быту, технике.
18 мин.
4Закрепление материала.Демонстрация Приложений 9–10,
обобщение ответов учащихся.
Решают поставленные учителем
задания, делают записи в тетрадях.
7 мин.
5Итоги урока.Подведение итогов урока,
оценивание результатов работы учащихся на уроке,
запись домашнего задания на доске.
Обсуждение и оценивание своих
результатов работы на уроке, запись домашнего
задания в дневниках.
3 мин.

Ход урока

1. Мотивационный этап

Учитель. Здравствуйте! Сегодня речь пойдет
сосудах, с которыми встречаемся каждый день дома
и в школе, когда наливаем чай или поливаем цветы
из лейки.

Демонстрация: Лека, чайник. Такие сосуды
получили название сообщающиеся сосуды
(Учащиеся записывают дату и тему урока в тетради).

Научное открытие свойства сообщающихся
сосудов датируется 1586 г. (голландский ученый
Стевин). Но оно было известно еще жрецам древней
Греции. Археологи обнаружили в Грузии водопровод
(XIII в), работающий по принципу сообщающихся
сосудов.

2. Формирование умений и навыков

Учитель. Что общего у этих предметов? (Cлайд
1
)

Учащиеся. Вода, налитая, например, в чайник,
стоит всегда в резервуаре чайника и в боковой
трубке на одном уровне. Боковая трубка и
резервуар соединены между собой в нижней части.

Учитель. Правильно. Сообщающимися сосудами
называют сосуды, соединенные между собой в
нижней части. (Учащиеся записывают определение
в тетради).

С сообщающимися сосудами можно проделать
простой опыт. Возьмем две стеклянные трубки,
соединенные резиновой трубкой. Сначала
резиновую трубку в середине зажимают и в одну из
трубок нальем воды. Что произойдет, если открыть
зажим?

Учащиеся. Жидкость установиться в обоих
сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну
из трубок поднять?

Учащиеся. Жидкость установиться в обоих
сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну
из трубок опустить?

Учащиеся. Жидкость установиться в обоих
сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну
из трубок наклонить?

Учащиеся. Жидкость установиться в обоих
сосудах на одном уровне.

Учитель. Однородная жидкость в сообщающихся
сосудах устанавливается на одном уровне. (Слайд
2
)

(Учащиеся записывают закон в тетради).

Изменится ли уровень жидкости, если правый
сосуд будет шире левого? уже левого? если сосуды
будут иметь разную форму?

Учащиеся. Нет, жидкость установиться в обоих
сосудах на одном уровне.

Учитель. При изменении формы сосудов может
изменяться лишь высота уровня воды в сосудах,
отмеренная от уровня стола (из-за того, что
изменяется объем сосудов). Однако уровни воды в
сообщающихся сосудах не зависят от формы сосудов
и останутся равны. (Демонстрация опыта с
сообщающимися сосудами различной формы).

(Слайд 3)

Что произойдет, если в сообщающиеся сосуды
налить две несмешивающиеся жидкости разной
плотности?

Учащиеся. Высота столбов жидкостей в сосудах
будет разной.

Учитель. При равенстве давлений высота
столба жидкости большей плотности меньше, чем
высота столба жидкости меньшей плотности. (Учащиеся
записывают в тетради).

Попробуйте доказать это, используя закон
Паскаля и определение гидростатического
давления… Проверим ваш результат.

(Слайд 4)

По закону Паскаля p1 = p2, по
определению гидростатического давления p1 =
g Уроки по физике по теме сообщающиеся сосуды1h1, p2
= g Уроки по физике по теме сообщающиеся сосуды2h2,
отсюда g Уроки по физике по теме сообщающиеся сосуды1h1
= g Уроки по физике по теме сообщающиеся сосуды2h2,
т.е  h1: h2 = Уроки по физике по теме сообщающиеся сосуды2:Уроки по физике по теме сообщающиеся сосуды1.

Высоты столбов разнородных жидкостей
сообщающихся сосуда обратно пропорциональны их
плотностям. (Учащиеся записывают в тетради).

Применение сообщающихся сосудов в быту,
природе, технике.

Закон сообщающихся сосудов люди используют в
разных технических устройствах: водопроводах с
водонапорной башней; водомерных стеклах;
гидравлическом прессе; фонтанах; шлюзах; сифонах
под раковиной, “водяных затворах” в системе
канализации.

Закон сообщающихся сосудов люди используют в
водопроводах с водонапорной башней.
Водонапорная башня и стояки водопровода
являются сообщающимися сосудами, поэтому
жидкость в них устанавливается на одном уровне.

В водомерном стекле парового котла, паровой
котел (1) и водомерное стекло (3) являются
сообщающимися сосудами. Когда краны (2) открыты,
жидкость в паровом котле и водомерном стекле
устанавливается на одном уровне, так как
давления в них равны.

В устройстве гидравлических машин
используется свойство сообщающихся сосудов. (Демонстрируется
гидравлический пресс).
Так, большой и малый
цилиндры гидравлического пресса являются
сообщающимися сосудами. Высоты столбов жидкости
одинаковы, пока на поршни не действуют силы.

Видео “фонтаны города С-П” Каскады
падающей воды украшают многие города, а
действуют фонтаны благодаря закону сообщающихся
сосудов. Виды знаменитых фонтанов Петродворца.
Фонтаны в парке “Победы”, Тбилиси. Фонтаны на
площади “Дружбы”, Ташкент. Фонтаны Еревана. И
конечно знаменитые фонтаны С-П.

Действие артезианских колодцев и гейзеров
основано на законе сообщающихся сосудов.

(Слайд 6) Горячий фонтан в местечке
Гейзер в Исландии. От названия этого местечка
возник термин “гейзер”.

(Cлайд 7) Римлянам был неизвестен закон
сообщающихся сосудов. Для снабжения населения
водой они возводили многокилометровые акведуки,
водопроводы, доставлявшие воду из горных
источников. Инженеры древнего Рима опасались,
что в водоемах, соединенных очень длинной трубой,
вода не установится на одинаковом уровне. Они
полагали, что если трубы проложены в земле,
следуя уклонам почвы, то в некоторых участках
вода ведь должна течь вверх, – и вот римляне
боялись, что вода вверх не потечет. Поэтому они
обычно придавали водопроводным трубам
равномерный уклон вниз на всем их пути. Одна из
римских труб, Аква Марциа, имеет в длину 100 км,
между тем как прямое расстояние между ее концами
вдвое меньше. Полсотни километров каменной
кладки пришлось проложить из-за незнания
элементарного закона физики!

3. Систематизация умений и навыков

Учитель. Повторим изученное. Приведите
примеры использования закона сообщающихся
сосудов в природе, быту и технике.

Учащиеся. Это гейзеры, фонтаны, шлюзы,
водопровод с водонапорной башней,
гидравлический пресс, водомерные стекла,
артезианские колодцы, сифоны под раковиной.

Учитель. (Слайд 7) Используя схему
устройства шлюза и схему шлюзования судов,
объясните принцип действия шлюзов.

Учащиеся. В работе шлюзов используется
свойство сообщающихся сосудов: жидкость в
сообщающихся сосудах находится на одном уровне.
Когда ворота 1 открываются, вода в верхнем
течении и шлюзе устанавливается на одном уровне
и т.д., когда последние ворота откроются, уровень
воды в шлюзе и нижнем течении сравняется, корабль
будет опускаться вместе с водой и сможет
продолжить плавание.

4. Итоги урока

Учитель. Сегодня на уроке мы познакомились с
сообщающимися сосудами, в которых жидкость
устанавливается на одном уровне. Мне очень
интересно было работать с вами. Вы показали
отличный уровень подготовки к уроку. Теперь вы
знаете, что закон сообщающихся сосудов люди
используют в разных технических устройствах:
водопроводах с водонапорной башней; водомерных
стеклах; гидравлическом прессе; фонтанах; шлюзах;
сифонах под раковиной, “водяных затворах” в
системе канализации.

5. Домашняя работа

Всем спасибо за работу. Записываем домашнее
задание.

Обязательное: изучить §32 (Учебник, автор
Белага В.В. Ломанченков И.А. Панебратцев Ю.А.)
Создать модель фонтана.

(Учащиеся записывают домашнее задание в
дневники)

Источник

МОУ «Лицей № 47» г.Саратов

                         

Открытый урок

«Сообщающиеся сосуды.

Применение сообщающихся сосудов»

Провела

учитель физики

Чарикова Л.Д.

Саратов

2013

Задачи урока:  дать понятие сообщающихся сосудов; сообщить принцип сообщающихся сосудов и его применение;  развивать творческие способности;  прививать интерес к предмету физики.

Оформление: компьютерная презентация «Сообщающиеся сосуды»,                            мультимедийный проектор, набор сообщающихся сосудов, набор для                            демонстрации фонтана, игра «Проведи корабль через шлюз»,                           физическая карта, CD «Физические эксперименты».

Ход урока

I. Организационный этап. Приветствие. Настрой на урок. Сообщение темы урока (слайд 1).

II.  Актуализация знаний

Учитель. Мы с вами несколько уроков назад начали изучать тему «Давление в газах и жидкостях». Знаем, что внутри жидкости существует давление. Давление на одном и том же уровне жидкости одинаково по всем направлениям. С глубиной давление увеличивается. Также знаем, что давление, которое жидкость оказывает на дно и стенки сосуда, можно вычислить по формуле: p = ρgh.

III.  Объяснение нового материала

На рисунке два кофейника (слайд 2).

Ширина их одинакова, а высота разная. В какой из них можно налить больше жидкости? Ответ кажется очевидным: в тот, который выше. Однако это не так. Объём левого кофейника больше, но если бы пришлось наливать в него жидкость, то вы бы смогли налить её только до уровня отверстия носика. А так как отверстия носиков обоих кофейников на одной высоте, то и жидкости в оба кофейника можно налить одно и то же количество.

Кофейник и трубка носика  сообщающиеся сосуды, то есть сосуды, которые соединены между собой, и однородная жидкость в обоих устанавливается на одном уровне. Поэтому высокий кофейник никак нельзя долить доверху, вода будет выливаться через носик. Рассмотрим форму носика и самого кофейника. Они разные, но уровень воды установится по краешку носика.

Итак, в сообщающихся сосудах любой формы однородная жидкость устанавливается на одинаковых уровнях (слайды 3, 4 с переходом по гиперссылке к видеоролику «Давление в сообщающихся сосудах»). Запишите в тетрадях (пишет на доске): р1 = р2.

Оказывается все моря и океаны мира являются тоже сообщающимися сосудами. Ведь все они соединены между собой проливами. Поэтому уровень моря во всем мире одинаков. Только во внутренних морях, которые не сообщаются с океаном, уровень может быть другим. Например, в    Каспийском море, уровень воды на десятки метров ниже «уровня моря».  Поэтому географы часто Каспийское (показывает на физической карте) и другие внутренние моря называют не морями, а озёрами. На морских побережьях устанавливают приливные станции, которых действуют тоже благодаря принципу сообщающихся сосудов (слайд 5 с переходом по гиперссылке к видеоролику «Приливная станция»).

Сообщающиеся сосуды встречаются и в природе. Например, артезианский колодец (слайд 6 с переходом по гиперссылке к видеоролику «Артезианский колодец»).

    Если в колена сообщающихся сосудов налить жидкости, плотности которых будут различны,  то меньший объём более плотной жидкости в одном колене уравновесит больший объём менее плотной жидкости в другом колене сосуда  (слайд 7, демонстрация). Или, другими словами, высота столба жидкости с меньшей плотностью больше, чем высота столба жидкости с большей плотностью.

 Давайте рассчитаем, во сколько высота столба жидкости с меньшей плотностью больше высоты столба жидкости с большей плотностью, если эти две несмешивающиеся жидкости находятся в сообщающихся сосудах.

   p = ρgh,    p1 =  p2,    ρ1 gh1= ρ2 gh2,

отсюда:

Физкульминутка (слайд 8, музыка) – поднимаем руки вверх буквой Г, опускаем одну руку (наливаем водичку), опускаем другую (выливаем), делаем повороты туловищем вправо и влево, приседаем-встаём (насос качает воду), поднимаем руки вверх (фонтан брызгает водой).

Демонстрационный эксперимент. Давай сделаем фонтан, действие которого основано на принципе сообщающихся сосудов. Берём  пустую пластиковую бутылку с отрезанным дном, берём трубку от капельницы или любую другую, соединяем все детали и наливаем воды. Опускаем трубку – из неё  бьёт фонтан.

Водопровод (слайд 9). Практически такой же фонтан вы наблюдаете каждый день, открывая кран, потому что действие водопровода основано на том же принципе. Здесь схематически представлено устройство водопровода. На высокой башне устанавливается бак с водой. От него идут трубы с ответвлениями, в домах они закрыты кранами. Так как трубы и бак –  сообщающиеся сосуды, то при открывании крана вода начинает течь. Такой водопровод не может подавать воду на высоту большую, чем высота уровня воды в баке.

Вернёмся к видеоролику «Артезианский колодец»). Кто-нибудь заметил неточность в этом ролике? (Выслушивает мнения учащихся.) Верно, фонтан показан слишком высоким, он не может подниматься выше уровня воды в грунте.

Водопровод – это старое изобретение, он существовал ещё в Древнем Риме. Послушаем историю возникновения водопровода.

Сообщение ученика

(https://gardenweb.ru/iz-istorii-vodoprovoda;https://travels.co.ua/rus/italy/lazio/vodoprovod.html )

Самые первые сведения о том, как люди научились строить плотины и дамбы, прокладывать каналы, изменять течение рек и создавать системы водоснабжения, обнаружены в письменных источниках древних народов, населяющих Египет, Месопотамию, Индию и Китай. Человечество во многом обязано появлением водопровода природным явлениям, в частности, неравномерному и нерегулярному выпадению осадков. Такая ситуация была характерна для Месопотамии и Египта.

Из-за таких особенностей климата уже в IV тысячелетии до н. э. древние египтяне и жители Месопотамии стали сооружать примитивные оросительные системы (каналы, водохранилища, плотины), которые позволяли не только получать обильные урожаи, но и значительно расширять посевные площади. Такие оросительные системы  способствовали развитию земледелия.

Археологические находки также доказывают, что задолго до нашей эры человечество многое знало о воде и её свойствах, но эти знания не были научными. В государстве Урарту была обнаружена система каналов, сооруженная в VII в. до н. э. Её использовали для отвода воды самотёком из источников на довольно большие расстояния. В горах высекали туннели, через реки возводили акведуки, представляющие собой мосты с уложенными поверху водоводами в виде труб. Основы же создания централизованных систем водоснабжения были заложены позже  в период греко-римской цивилизации.

В Древнем Риме первый водопровод Анио Ветус (https://ru.wikipedia.org/wiki/ Анио_Ветус) длиной 16,5 км появился в 312 г. до н.э. Инициатором создания этого водного сооружения выступил цензор Аппий Клавдий, он даже вложил свои средства в строительство. Водопровод значительно облегчил водоснабжение жителей столицы, которые ранее пользовались речной, ключевой и дождевой водой, принося её в свои дома в специальных сосудах и храня в больших ёмкостях.

Согласно письменным источникам, второй водопровод (Аква Апиа, длиной около 70 км) был построен в Риме в 274 г. до н. э. Длина третьего, Аква Тепула, составляла 91,33 км, причём последние 10 км водопровода располагались на специально возведённых мощных аркадах, которые сохранились до наших дней. Необходимо отметить, что система водоснабжения, созданная в Риме, по сей день исправно действует. Четвёртый водопровод, Аква Акция, был совсем коротким и последним в Римской республике. Он брал своё начало в 15 км от Рима.

Со вступлением на престол Октавиана Августа строительство водопроводов возобновилось. Их сооружением занимался Марк Агриппа, ближайший друг и соратник императора. Агриппа активно участвовал в строительстве различных сооружений в столице, в ремонте древних водопроводов и провёл 2 новых водовода Аква Вирго и Аква Юлия. Аква Вирго снабжал водой термы (общественные бани) Агриппы, возведённые на Марсовом поле. Вокруг терм были разбиты сады, украшением которых служили многочисленные скульптуры и скульптурные композиции, портики и бассейны. Для постоянного дренажа заболоченной почвы Марсова поля были созданы специальные каналы.

В период империи поступавшая в Рим вода распределялась между тремя основными потребителями: императорским дворцом, общественными учреждениями и большими фонтанами. На каждого человека ежедневно расходовалось от 600 до 900 л воды, это при том, что все столичные водопроводы поставляли по 1,5 млн м3 воды в день.

В конце I в. н. э. в Риме было 7 основных водопроводов. Специальной системой труб источник воды соединялся с водораспределительными сооружениями, разбросанными по всему городу. Всего насчитывалось 247 таких сооружений, а на каждый водопровод их приходилось от 14 до 92. Следует отметить, что водопроводная система Рима, в отличие от акведуков, была технически несовершенна. От каждого распределителя к центрам потребления воды тянулись линии подземных труб, не сообщавшиеся между собой. По сей день остается загадкой, почему умнейшие римские инженеры не замкнули эти трубы в единую водопроводную систему. Кроме того, не поддаётся логическому объяснению тот факт, что умевшие изготавливать краны римляне ими практически не пользовались, и вода текла из водопроводных труб непрерывным потоком.

На завершающем этапе периода Республики в Риме появились общественные купальни, число которых со временем значительно увеличилось. Устройство общественных купален было аналогично устройству домашних: сухие и влажные парильни, залы с горячей и холодной водой и, разумеется, традиционные залы для занятий гимнастикой и для отдыха. Вода в такие заведения поступала по водопроводным трубам.

Современники свидетельствовали, что общественные купальни были очень тесными и грязными. Для того чтобы скрасить негативное впечатление от посещения подобных заведений, для богатых людей по приказу императоров были построены за счёт государственной казны грандиозные термы.

На Руси первый водопровод появился в 1492 г. Он предназначался для поставки воды в Московский кремль и был самотёчным. Обычно русские города возводились вблизи источников воды, поэтому самым распространённым способом водоснабжения было получение воды из них, а также из колодцев, прудов и подземных источников.

    В XVIII в. развернулось строительство городов-крепостей, а вместе с ними и специальных сооружений, предназначенных для обеспечения общественных зданий и жилых домов водой. В гидротехнические системы этих городов входили плотины, водопроводящие галереи, колодцы и резервуары с водой. И лишь в 1804 г. в Москве был введён в действие первый централизованный водопровод. Вода в него подавалась из подземных источников верховьев Яузы. В XIX в. уже не только в Москве, но и в других городах имелись водопроводы.

Подводя итог сказанному, следует ещё раз отметить, что идею создания водопровода, без сомнения, подсказало поливное земледелие, где требовалось подавать воду на значительные расстояния. Со временем водопровод проник в жилые дома. Конечно, древние водопроводы немногим напоминали современные сети коммунальных служб, но тем не менее в своё время их считали чудом.

Человеческая мысль не стояла на месте, и развитие водопроводов продолжалось. Сотню лет назад люди и представить не могли ныне существующий уровень комфорта, который сегодня доступен практически любому. Вот лишь некоторые цифры: в России в 1911 г. чуть больше 20% от общего числа городов с населением 10 тыс. человек имели водопровод. В Москве лишь в 20% строений были проведены домовые водопроводы. Даже после Великой Отечественной войны водопровод в доме был в диковинку и являлся гордостью его владельцев.

Шлюзы. Может ли судно переплыть из одной водного бассейна в другой, если уровни  воды в них разные? Может, если использовать такое гидротехническое устройство, как шлюз.  Устройство шлюза также основано на принципе сообщающихся сосудов (слайд 10 с переходом по гиперссылке к видеоролику «Схема работы шлюза»). В первых воротах шлюза открывается клапан, камера соединяется с водоёмом, они становятся сообщающимися сосудами, уровни воды в них выравниваются. После этого ворота открываются, и судно проходит в первую камеру. Открывается следующий клапан, после выравнивания уровней воды открываются ворота, и так повторяется столько раз, сколько камер имеет цифровой шлюз. (Игра-анимация  «Проведи корабль через шлюз» [Единая коллекция ЦОР https://school-collection.edu.ru/catalog/rubr/3b19dfa9-7bdf-441a-89e4-fdbf8383e844/110312/?interface=pupil%20]. Для воспроизведения swf-файла необходим выход в Интернет (https://files.school-collection.edu.ru/dlrstore/03a4baaa-284b-4e9a-9303-58cd9e83f2a1/7_194.swf, программа  Adobe Flash).

IV. Итог урока  

Учитель.  Перечислите все сообщающиеся сосуды, которые мы                               сегодня рассмотрели. По какой формуле можно рассчитать, во сколько раз высота столба жидкости с меньшей плотностью больше высоты                               столба жидкости с большей плотностью, если эти две                               несмешивающиеся жидкости находятся в сообщающихся                               сосудах?

Отметьте своё настроение на листочках (слайд 11).

Домашнее задание. § 39 по учебнику: Пёрышкин А.В., Гутник Е.М.. Физика. 7 класс: (учеб. для общеобразоват. учреждений. М.: Дрофа, 2012). Посмотреть видеоролик «Уровни столбов разнородной жидкости в сообщающихся сосудах» на диске «Физические эксперименты» (электронный ресурс:  Обучающие программы нового поколения. 2CD. Кирилл и Мефодий, 2010»). Задача: В U-образную трубку налиты вода и растительное масло, даны высоты столбов этих жидкостей. Определите плотность растительного масла. Нарисуйте U-образные сообщающиеся сосуды и покажите уровни однородной жидкости и неоднородных жидкостей.

Источник

Читайте также:  Лечение народными методами сужения сосудов