В чем особенность движения крови по сосудам
Непрерывность движения крови. Сердце сокращаемся ритмично, поэтому кровь поступает в кровеносные сосуды порциями. Однако течет кровь по кровеносным сосудам непрерывным потоком. Непрерывный ток крови в сосудах объясняется эластичностью стенок артерий и сопротивлением току крови, возникающим в мелких кровеносных сосудах. Благодаря этому сопротивлению кровь задерживается в крупных сосудах и вызывает растяжение их стенок. Растягиваются стенки артерий и при поступлении крови под давлением из сокращающийся желудочков сердца при систоле. Во время диастолы кровь из сердца в артерии не поступает, стенки сосудов, отличающиеся эластичностью, спадаются и продвигают кровь, обеспечивая непрерывное движение ее по кровеносным сосудам.
Рис. 66. Места прижатия артерий при кровотечениях:
1 — поверхностной височной; 2 — наружной челюстной; 3 — общей сонной; 4 — подключичной; 5 — подкрыльцовой; 6 — плечевой; 7 — лучевой; 5 — локтевой; 9 — бедренной; 10 — передней большеберцовой; 11 —тыльной артерии стопы.
Артерии обычно залегают глубоко между мышцами. Однако на коротком отрезке своего пути артерии могут идти и поверхностно; тогда легко прощупать и сосчитать пульсовые удары. Знать эти места важно при оказании первой помощи при кровотечениях. Главное здесь — остановить кровотечение. Это можно сделать прижатием поврежденной артерии (рис, 66).
На конечностях при кровотечениях накладывают жгут (не более чем на 2 ч), стерильную давящую повязку.
Причины движения крови по сосудам
Кровь движется по сосудам благодаря сокращениям сердца и разнице давления крови, устанавливающейся в разных частях сосудистой системы. В крупных сосудах сопротивление току крови невелико, с уменьшением диаметра сосудов оно возрастает.
Преодолевая трение, обусловленное вязкостью крови, последняя утрачивает часть энергии, сообщенной ей сокращающимся сердцем. Давление крови постепенно снижается. Разность давления крови в различных участках кровеносной системы служит практически основной причиной движения крови в кровеносной системе. Кровь течет от места, где ее давление выше, туда, где давление ниже.
Кровяное давление
Давление, под которым кровь находится в кровеносном сосуде, называют кровяным давлением.
Величина давления крови определяется работой сердца, количеством крови, поступающим в сосудистую систему, сопротивлением стенок сосудов, вязкостью крови.
Наиболее высокое кровяное давление — в аорте. По мере продвижения крови по сосудам давление ее снижается. В крупных артериях и венах сопротивление току крови небольшое, и давление крови в них уменьшается постепенно, плавно. Наиболее заметно снижается давление в артериолах и капиллярах, где сопротивление току крови самое большое.
Кровяное давление в кровеносной системе меняется. Во время систолы желудочков кровь с силой выбрасывается в аорту, давление крови при этом наибольшее. Это наивысшее давление называют систолическим или максимальным. Оно возникает в связи с тем, что из сердца в крупные сосуды при систоле притекает больше крови, чем ее оттекает на периферию. В фазе диастолы сердца артериальное давление понижается и становится диастолическим, или минимальным. До 6—7 лет у детей рост сердца отстает от роста кровеносных сосудов, а в последующие периоды, особенно в период полового созревания, рост сердца опережает рост кровеносных сосудов. Это отражается на величине кровяного давления, которое в период полового созревания значительно повышается, поскольку нагнетательная сила сердца встречает сопротивление со стороны относительно узких кровеносных сосудов. В этом возрасте у подростков нередко наблюдается нарушение ритма сердечной деятельности и учащение сердцебиения.
Рис. 67. Измерение кровяного давления у человека.
Измерение кровяного давления у человека производят с помощью сфигмоманометра. Этот прибор состоит из полой резиновой манжеты, соединенной с резиновой грушей и ртутным манометром (рис. 67). Манжету укрепляют на обнаженном плече испытуемого и резиновой грушей нагнетают в нее воздух, для того чтобы сжать манжетой плечевую артерию и остановить в ней ток крови. В локтевом сгибе прикладывают фонендоскоп, чтобы можно было прослушать движение крови в артерии. Пока в манжету не накачан воздух, кровь по артерии течет бесшумно, никаких звуков через фонендоскоп не прослушивается. После того как в манжету накачают воздух и манжета сожмет артерию и остановит ток крови, при помощи специального винта медленно выпускают воздух из манжеты до тех пор, пока через фонендоскоп не прослушивается четкий прерывистый звук (туп-туп). При появлении этого звука смотрят на шкалу ртутного манометра, отмечают показание его в миллиметрах ртутного столба и считают это величиной систолического (максимального) давления.
Если продолжить выпускать воздух из манжеты, то вначале звук сменяется шумом, постепенно ослабевающим, и, наконец, совсем исчезает. В момент исчезновения звука отмечают высоту ртутного столба в манометре, что соответствует диастолическому (минимальному) давлению. Описанный метод был предложен Коротковым. Время, в течение которого производится измерение давления по методу Короткова, не должно быть более минуты, так как в противном случае может быть нарушено кровообращение в руке ниже места наложения манжеты.
Вместо сфигмоманометра для определения величины кровяного давления можно пользоваться тонометром. Принцип действия его таков же, как и у сфигмоманометра, только в тонометре манометр пружинный.
Определите величину кровяного давления у ученика в состоянии покоя. Запишите величины максимального и минимального кровяного давления у него. А теперь попросите ученика сделать подряд 30 глубоких приседаний а после этого снова определите величину кровяного давления. Сравните полученные величины кровяного давления после приседаний с величинами давления в состоянии покоя.
Рис. 68. Схема действия венозных клапанов:
слева —мышца расслаблена, справа — сокращена; 1 — вена, нижняя теть которой вскрыта; 2— венозные клапаны; 3— мышца; черные стрелки — давление сократившейся мышцы на вену; белые стрелки — движение крови по вене.
В плечевой артерии человека систолическое давление составляет 110—125 мм рт. ст., а диастолическое — 60—85 мм рт. ст, У детей давление крови значительно ниже, чем у взрослых. Чем меньше ребенок, тем у него больше капиллярная сеть и шире просвет кровеносной системы, а следовательно, и ниже давление крови. После 50 лет максимальное давление обычно повышается до 130—145 мм рт. ст.
В мелких артериях и артериолах из-за большого сопротивления току крови кровяное давление снижается резко и составляет 60—70 мм рт. ст., в капиллярах оно еще ниже — 30— 40 мм рт. ст., в мелких венах составляет 10—20 мм рт. ст., а в верхней и нижней полых венах, в местах впадения их в сердце, давление крови становится отрицательным, т. е. ниже атмосферного давления на 2—5 мм рт. ст.
При нормальном течении жизненных процессов у здорового человека величина кровяного давления поддерживается на постоянном уровне. Кровяное давление, повысившееся при физической нагрузке, нервном напряжении и в других случаях, вскоре возвращается к норме.
В поддержании постоянства кровяного давления важная роль принадлежит нервной системе.
Определение величины кровяного давления имеет диагностическое значение и широко используется в медицинской практике.
Скорость движения крови
Подобно тому как река течет быстрее в своих суженных участках и медленнее там, где она широко разливается, кровь течет быстрее там, где суммарный просвет сосудов самый узкий (в артериях), и медленнее всего там, где суммарный просвет сосудов самый широкий (в капиллярах).
В кровеносной системе самой узкой частью является аорта, в ней самая большая скорость течения крови. Каждая артерия уже аорты, но суммарный просвет всех артерий человеческого тела больше, чем просвет аорты. Суммарный просвет всех капилляров в 800—1000 раз больше просвета аорты. Соответственно и скорость движения крови в капиллярах в 1000 раз медленнее, чем в аорте. В капиллярах кровь течет со скоростью 0,5 мм/с, а в аорте — 500 мм/с. Медленный ток крови в капиллярах способствует обмену газов, а также переходу питательных веществ из крови и продуктов распада тканей в кровь.
Общий просвет вен уже, чем суммарный просвет капилляров, поэтому скорость движения крови в венах
больше, чем в капиллярах, и составляет 200 мм/с.
Движение крови по венам
Стенки вен, в отличие от артерий, тонкие, мягкие и легко сдавливаются. По венам кровь течет к сердцу. Во многих частях тела в венах есть клапаны в виде кармашков. Открываются клапаны только в сторону сердца и препятствуют обратному току крови (рис. 68). Давление крови в венах невысокое (10—20 мм рт. ст.), и поэтому движение крови по венам происходит в значительной степени за счет давления окружающих органов (мышц, внутренних органов) на податливые стенки.
Каждый знает, что неподвижное состояние тела вызывает потребность «размяться», что связано с застоем крови в венах. Вот почему так полезна утренняя гимнастика, а также производственная гимнастика, способствующие улучшению кровообращения и ликвидации застоя крови, который возникает в некоторых частях тела во время сна и продолжительного пребывания в рабочей позе.
Определенная роль в движении крови по венам принадлежит присасывающей силе грудной полости. При вдохе увеличивается объем грудной полости, это приводит к растяжению легких, растягиваются и полые вены, проходящие в грудной полости к сердцу. При растяжении стенок вен их ирчосвет расширяется, давление в них становится ниже атмосферного, отрицательным. В более мелкие венах давление остается 10—20 мм рт. ст. Возникает значительная разница давление в мелких и крупных венах, что способствует продвижению кров» в нижней и верхней- полых венах к сердцу.
Кровообращение в капиллярах
В капиллярах совершается обмен веществ между кровью и тканевой жидкостью. Густя сеть капилляров пронизывает все органы нашего тела. Стенки капилляров очень тонкие (толщина их 0,005 мм), через них легко проникают различные вещества из крови в тканевую жидкость и из нее в кровь. Кровь по капиллярам течет очень медленно и успевает отдавить тканям кислород и питательные вещества. Поверхность соприкосновения крови со стенками сосудов в капиллярной сети в 170 000 раз больше, чем в артериях. Известно, что длинам всех капилляров взрослого человека больше 100 000 км. Просвет
апилляров так узок, что через него может проходить только один эритроцит, и то несколько сплющиваясь. Это создает благоприятные условия для отдачи кровью кислорода тканям.
Пронаблюдайте движение крови в капиллярах плавательной перепонки лягушки. Обездвижьте лягушку. Сразу, как только прекратится двигательная активность лягушки (чтобы не передозировать наркоз), выньте ее из банки и приколите булавками к дощечке спинкой кверху. В дощечке должно быть отверстие, над отверстием осторожно булавками растяните плавательную перепонку задней лапки лягушки. Не рекомендуется сильно растягивать плавательную перепонку: при сильном натяжении могут оказаться сдавленными кровеносные сосуды, что приведет к остановке кровообращения в них. Во время опыта лягушку смачивайте водой.
Можно также обездвижить лягушку, плотно обернув ее мокрым бинтом так, чтобы одна из ее задних конечностей оставалась свободной. Чтобы лягушка эту свободную заднюю конечность не сгибала, к этой конечности прикладывают небольшую палочку, которую прибинтовывают к конечности также влажным бинтом. Плавательная перепонка лапки лягушки остается свободной.
Поместите дощечку с растянутой плавательной перепонкой под микроскоп и сначала при малом увеличении найдите сосуд, в котором эритроциты медленно передвигаются «гуськом». Это капилляр. Рассмотрите его под большим увеличением. Обратите внимание, что кровь движется в сосудах непрерывно (рис. 69).
Рис. 69. Микроскопическая картина кровообращения в плавательной перепонке лапки лягушки:
1— артерия; 2 и 3—яртериолы при малом я большом увеличении; 4 и 5 — капиллярная сеть при малом и большом увеличении; 6— вена; 7 — венулы; 8 — пигментные клетки.
Организм имеющимся количеством крови обеспечивает необходимую деятельность всех его органов. Это возможно потому, что в органе, находящемся в состоянии покоя, часть капилляров не функционирует. Во время мышечной работы число функционирующих открытых капилляров может увеличиться в 7 и даже 20—30 раз.
Статья на тему Движение крови по сосудам
Источник
Нормальный ток крови по сосудам – основа жизни организма.
В статье будет рассказано о том, что заставляет кровь двигаться по сосудам и не тормозить, какие бывают типы тока крови, чем они отличаются и когда и где возникают. Благодаря огромному количеству исследований, проводимых в кардиоваскулярной отрасли, в данную статью включены пояснения не только о физических факторах течения крови, но и биологических.
Движение крови по сосудам в организме – это целый комплекс биофизических основ давления, потока и сопротивления, оказываемого сосудистыми стенками. С его помощью выполняется самая главная функция кровеносной системы – доставка питательных веществ, кислорода к тканям организма, и, наоборот, транспорт продуктов распада из них, а также поддержание кислотно-основного и водно-электролитных равновесий в организме в целом.
Внимание! Все это позволяет полноценно функционировать как отдельным клеткам и тканям, так и целостному организму.
Общие сведения
Работа каждого органа и системы в целом определяет степень его кровоснабжения, а значит и транспортировки к ним кислорода и нутриентов. Таким образом, сами же ткани определяют, что им необходимо, и в каком количестве.
Поставляемые тканям питательные вещества определяются их потребностью в них, а также их функциональным спектром, что занимает особенно важное место в работе определенных органов и систем. Так, функция почечного аппарата требует высокой степени его кровоснабжения, но не только для покрытия потребностей ткани органа, но и для поддержания его основных функций – фильтрации, реабсорбции, экскреции, что в свою очередь влияет на работу других систем органов.
Важно! Выделяют системную циркуляцию крови и легочную, в связи, с чем существуют два круга кровообращения – большой и малый, соответственно.
На фото представлено схематическое изображение кругов кровообращения.
Физические особенности кровотока
Прежде, чем разобрать, чем обеспечивается движение крови по сосудам, стоит рассмотреть анатомические единицы сосудистой системы.
Артериальное русло
Известно всем, что по артериям кровь течет к тканям, принося им множество питательных веществ. Ввиду высокого давления и большой скорости крови в них, требуется повышенная сопротивляемость их стенок. Поэтому при гистологическом исследовании сосудистую стенку артерии легко отличить от вены ее округлым сечением, в толще которого расположено больше количество гладкомышечных элементов.
Артериолы – также представители данного сосудистого русла, однако отличаются от артерий своим калибром. Давление крови по артериолам значительно ниже. Они играют роль «переходников», по которым кровь перетекает в капилляры.
За счет развитой мышечной оболочки в артериолах, последние могут контролировать кровоток в определенных тканях – спазмируясь, при необходимости уменьшить кровоснабжение определенной области, и, наоборот, расширяясь, если нужно усилить кровоток в тканях.
Сеть капилляров
Данные анатомические структуры сосудистого русла имеют полупроницаемую стенку с капиллярными порами, расположенными между клетками эндотелия, которые позволяют осуществлять двусторонний обмен электролитами, газами, питательными веществами, гормонамишт и продуктами распада.
Венозная система
Венулы, имея малый калибр, собирают кровь из капиллярного русла, и уносят ее из тканей. С удалением от органа их калибр растет, прогрессивно увеличиваясь до вен. Вены – коллекторы крови в кардиоваскулярной системе. По ним собранная со всех систем органов кровь оттекает в сердце.
Кроме транспортной функции они играют еще одну важную роль, являясь большим резервуаром крови в организме человека. За счет низкого давления в их системе, венозная стенка тонкая, преимущественно состоит из эластических соединительнотканных волокон. Однако, даже небольшое число гладкомышечных элементов в их стенках позволяет им расширяться, накапливая больше крови в своей системе.
Важно! Внутренняя оболочка венозной стенки имеет клапаны, число которых прогрессивно уменьшается от нижних конечностей и до впадения вен в нижнюю полую вену. Они играют важную роль в регулировании односторонности кровотока.
Схематическое изображение артериальной и венозной систем кровообращения.
Принципы системы циркуляции крови
Как уже отмечено было выше, объем поступающей к ткани крови прямо пропорционален ее потребностям. Когда выполняется любого рода физическая (и не только), активность – кровоснабжения всех органов усиливается за счет повышения их потребностей в нутриентах. Изменения могут различаться в 20-30 раз в отличие от состояния покоя.
Сердце – не единственный орган, контролирующий кровоснабжение тканей.
Сердце самостоятельно не может увеличить сердечный выброс более чем в 4-7 раз (способности миокарда зависят от его натренированности, потому высока цена регулярной физической активности). Поэтому когда невозможно изолированно повысить скорость движения крови по сосудам, срабатывает ее контроль посредством исключительно сосудистой системы.
Потребность в кислороде, или, наоборот, степень накопленного углекислого газа и других метаболитов передает сигнал на локальные кровеносные сосуды, что в свою очередь спазмирует их, или, наоборот, расширяет в зависимости от потребности определенной ткани и уровня активности перетекающих в ней процессов. Центральная нервная система и гуморальная, которые дополнительно осуществляют контроль за сосудистой стенкой, также помогают контролировать кровоток в различных тканях организма.
Когда произошел контроль на уровне локальных сосудов, происходит и «подгон» сердечного выброса под сформировавшуюся сумму кровотоков в тканях. Сердце автоматически отвечает на усиленное кровоснабжение путем увеличения своей сократительной способности.
Большое влияние на контроль над уровнем артериального давления оказывает нервная система, а именно рефлексы. Так, при снижении систолического давлении ниже цифры в 100 мм.рт.ст. срабатывает комплекс рефлексов, направленных на его поднятие за короткий промежуток времени.
Пути его повышения следующие:
- повышение силы сокращений сердца;
- сужение просвета больших венозных стволов с целью направления большего объема крови к сердцу;
- повсеместное сужение артериол, что приводит к перераспределению крови в большие по калибру артерии, что в свою очередь результирует повышением систолического давления.
Схематическое изображение циркуляции крови по сердечно-сосудистой системе.
Физические данные тока крови
Рассмотрим далее физические факторы, обеспечивающие движение крови по сосудам:
- Давление и градиент давления. Данный показатель является одним из самых важных, который определяет односторонний поток крови, ее устремление от сердца к тканям, и от органов к сердцу. Градиент давления подразумевает разницу давлений на протяжении сосуда, то есть на двух противоположных его концах.
При одинаковых величинах давления (даже очень высоких) на разных концах одного сосуда не возникает тока крови, так как для него необходим именно градиент давления. - Сосудистое сопротивление. Сопротивление, которое оказывает сосудистая стенка – второй фактор, оказывающий влияние на поток крови по кардиоваскулярной системе. На данный показатель влияют гистологические особенности (процентное соотношение гладкомышечных волокон и соединительнотканных эластических волокон), калибр сосуда.
- Ток крови. Под данным термином понимается то количество крови, которое перетекает за определенный отрезок времени в конкретной точке сосудистого русла. Ток прямо пропорционален описанному выше градиенту давления в сосудах, и обратно пропорционален сосудистому сопротивлению.
Давление в сосудах в различных отделах сосудистой системы человека.
Важно! Вышеописанные факторы вместе поставляют комплекс, что обеспечивает непрерывность движения крови по сосудам.
Немаловажную роль в особенностях движения крови играет ее вязкость, то есть отношение ее форменных элементов к жидкостной структуре (плазме). Изменения нормальных величин имеет последствия.
Варианты тока крови по сосуду
Существует несколько вариантов течения крови по сосудам. Характеристика каждого из них приведена ниже.
Ламинарный ток
При данной модели потока крови по сосудистому руслу ток крови представлен слоями, каждый из которых расположен на одинаково удаленном расстоянии от стенки сосуда, и характеризуется определенной скоростью потока. Эти скорость и темп постоянны.
При этом, чем ближе кровь находится к центральной части сосуда (по отношению к его поперечному сечению) – тем выше ее скорость, и тем больше в ней находится форменных элементов. Таким образом, ток крови вблизи эндотелия замедлен и состоит в большей части из жидкостной основы крови – плазмы.
Ламинарный ток наблюдается в большей части кровеносной системы человека при состоянии физиологического покоя.
Турбулентный ток
Является полной противоположностью ламинарному току крови. При данной модели кровь не имеет однонаправленности в движении и упорядоченности по слоям, а движется в разных направлениях в просвете одного сосуда. Кровь настолько смешивается в одном сосуде, что даже формирует завитки наподобие волн.
Нормальная физиология предусматривает наличие турбулентного тока крови в областях, где расположены клапаны, в магистральных сосудах, особенно в проксимальном отделе аорты и легочной артерии (там, где они выходят из левого и правого желудочка соответственно), в местах анатомических бифуркаций и сужений, а также при состоянии физической активности (см. также Клапаны сердечно-сосудистой системы – анатомия ворот для крови.)
Остальные ситуации, когда встречается турбулентное течение крови, относятся к патологическим состояниям – неровность эндотелия за счет наличия его повреждения или атеросклеротической бляшки, обструкции сосуда, или его сужения извне.
Турбулентный ток приводит к повышенному сопротивлению сосудистой стенки, что результирует в усилении сердечных сокращений. Таким образом, такая модель тока крови оказывает большую нагрузку на сердце, и на сам сосуд, который поддается воздействию на него турбулентного потока.
Ламинарный и турбулентный механизм движения крови по сосудам.
Как оценить параметры кровотока
На сегодняшний день существует множество методик, позволяющих как инвазивно, так и вовсе без вмешательств оценить все факторы, которые оказывают влияние на адекватность кровотока, что в свою очередь напрямую влияет на кровоснабжение органов и тканей.
Оценка тока крови в сосудах
Наиболее используемым методом диагностики кровотока в различных отделах сердечно-сосудистой системы на сегодняшний день является ультразвуковое исследование с использованием Допплеровского метода. Его широкое распространение в медицине обусловлено точностью предоставляемых данных, транспортабельностью, низкой затратностью самой процедуры и универсальностью.
Эффект Допплера позволяет оценить, как кровь движется по сосудам.
Принцип его работы заключается в эффекте Допплера. Трансдьюсер аппарата посылает множество ультразвуковых волн высокой частоты, которые проходят через ткани и сосудистые стенки, отражаются от поверхности эритроцитов, безостановочно двигающихся в просвете сосудов. (см. также Ультразвуковая допплерография сосудов шеи и головы.)
Отраженные волны имеют более низкую частоту за счет постоянного отдаления красных кровяных телец от датчика. Обработка получаемых сигналов позволяет показать ток крови в просвете сосуда (красным цветом картируется ток крови к трансдьюсеру, и от него, соответственно, синим цветом). Более подробно об это рассказано в видео в этой статье.
В комплексе с B-режимом ультразвуковой диагностики Допплеровский метод позволяет оценить не только адекватность тока крови в просвете сосудов, но и в полостях сердца. На основании результата данного обследования врач может сделать вывод о кровотоке в камерах сердца, по магистральным или периферическим сосудам.
Измерение давления
Давление крови определяется как такая сила, сформированная потоком крови, которая воздействует на любую единицу поверхности сосудистой стенки. Наиболее точным методом, позволяющим оценить кровяное давление, является ртутный манометр, потому что он не реагирует на изменение уровня давления, которое происходит быстрее, чем за 2-3 сек.
Принципы измерения артериального давления очень просты.
Водный манометр менее точный в своих показаниях, однако, и он применяется при измерении давления.
В медицинской практике используется как неинвазивная методика определения кровяного давления, например, при помощи известного каждому сфигмоманометра. Инструкция к использованию данного аппарата известна каждому второму человеку.
Инвазивный метод оценки артериального и венозного давления также нашел свое применение, однако, только в стенах медицинских учреждений (в основном в отделениях интенсивной терапии и операционных) ввиду наличия определенных показания к своему применению. Данные прямого измерения давления являются наиболее точными.
Механизм для инвазивного измерения артериального давления.
Не смотря на простоту в использовании стандартного сфигмоманометра, стоит обращать внимание на правила измерения артериального давления, что позволяет получить наиболее точные показания.
- рука, на которой измеряют давление, должна находиться на уровне сердца;
- пациент должен быть в состоянии покоя как минимум за 10-15 минут до начала процедуры измерения давления;
- нижние конечности должны располагаться свободно, и не скрещиваться;
- плечо, на которое накладывается манжета сфигмоманометра, должно быть освобождено от одежды;
- пациенту необходимо воздержаться от разговоров на момент процедуры;
- мочевой пузырь должен быть опорожнен.
Также в зависимости от патологии и состояния пациента может потребоваться измерение давления не только на обеих руках, но и на нижних конечностях.
Оценка вязкости крови
Кроме давления, сопротивления и собственно тока крови, среди величин, оказывающих влияние на особенности движения крови по сосудам, являются ее реологические свойства, и в первую очередь, вязкость крови. При постоянных вышеописанных физических критериях кровотока, повышение вязкости крови приводит к замедлению ее тока.
Вязкость крови определяется подвешенными в ней форменными элементами (в основном эритроцитами), каждый из которых оказывает сопротивление, направленное не только на стенки сосудов, но и на прилегающие вблизи от них клетки.
Чем ниже вязкость крови – тем выше скорость кровотока по сосудам.
Определение гематокрита – отношения форменных элементов крови к плазме является опосредованным показателем вязкости крови. Другими факторами, оказывающими влияние (значительно меньшее, чем гематокрит) на вязкость, являются концентрация белков плазмы крови и их тип.
В заключении стоит отметить, что описанные выше причины движения крови по сосудам, имеют в своей основе физические и биологические характеристики. Регулярная физическая активность, индивидуально подобранная для каждого человека, позволяет тренировать выносливость сердечно-сосудистой системы, что оказывает положительное влияние на ее работу и профилактику множества заболеваний.
Вопросы врачу
Застой крови
Добрый день. Меня зовут Станислав, и меня беспокоит вопрос о застое крови в ногах. Дело в том, что в последние месяцы начал замечать на правой и левой голенях венозные узелки. Знакомый сказал, что это варикоз и, что кровь в ногах из-за него застаивается и не движется к сердцу. Так ли это и что я могу с этим сделать?
Здравствуйте, Станислав. Доля правды в суждениях Вашего друга есть. Однако их неточность не позволяет ответить на Ваш вопрос положительно. На самом деле описанные Вами «венозные» узелки вполне могут быть проявлением варикозной болезни нижних конечностей. Последняя проявляется вследствие недостаточности клапанного аппарата венозной системы данной области, из-за чего отток крови действительно нарушен.
Хроническая венозная недостаточность может повлечь за собой застой крови в ногах, однако, специфическая терапия оказывает положительн