В цилиндрический сосуд высоты 1м заполняют маслом
- Главная
- Вопросы & Ответы
- Вопрос 6925077
Пармезан Черница
более месяца назад
Просмотров : 30
Ответов : 1
Лучший ответ:
Энджелл
comment
более месяца назад
Ваш ответ:
Комментарий должен быть минимум 20 символов
Чтобы получить баллы за ответ войди на сайт
Лучшее из галереи за : неделю месяц все время
Другие вопросы:
Главный Попко
Человек заметил, что за 10 с поплавок совершил на волнах 20 колебаний, а расстояние между соседними гребнями волн равна 1,2 м Человек заметил, что за 10 с поплавок совершил на волнах 20 колебаний, а расстояние между соседними гребнями волн равна 1,2 м. Какова скорость распространения волн?
более месяца назад
Смотреть ответ
Просмотров : 25
Ответов : 1
Пармезан Черница
Колебательный контур состоит из конденсатора емкостью 2 мкФ и катушки индуктивностью 0,08 Гн. Максимальное напряжение на конденсаторе Колебательный контур состоит из конденсатора емкостью 2 мкФ и катушки индуктивностью 0,08 Гн. Максимальное напряжение на конденсаторе равно 5 В. Определите сил…
более месяца назад
Смотреть ответ
Просмотров : 40
Ответов : 1
Энджелл
Колебательный контур состоит из конденсатора емкостью 4*10^ -11 и катушки. Максимальный заряд на обкладках конденсатора 7*10^-6, максимальный Колебательный контур состоит из конденсатора емкостью 4*10^ -11 и катушки. Максимальный заряд на обкладках конденсатора 7*10^-6, максимальный ток через…
более месяца назад
Смотреть ответ
Просмотров : 20
Ответов : 1
Таня Масян
Колебательный контур имеет собственную частоту 260 кГц. Найдите изменение частоты контура если индуктивность увеличить в 1,69 раза. Колебательный контур имеет собственную частоту 260 кГц. Найдите изменение частоты контура если индуктивность увеличить в 1,69 раза.
более месяца назад
Смотреть ответ
Просмотров : 88
Ответов : 1
Зачетный Опарыш
Колебательный контур имеет собственную частоту 30 кГц. Какой станет его собственная частота, если расстояние между пластинами плоского Колебательный контур имеет собственную частоту 30 кГц. Какой станет его собственная частота, если расстояние между пластинами плоского конденсатора увеличить в 1,44…
более месяца назад
Смотреть ответ
Просмотров : 25
Ответов : 1
Источник
В.Л.БУЛЫНИН,
ЦО № 17 ЦАО, г. Москва
Согласно школьной программе, законы
гидростатики изучаются лишь в 7-м классе,
возвращение к их изучению и закреплению в
дальнейшем не предусмотрено. Тем не менее задачи
на гидростатику относятся к весьма трудным и,
если в старших классах не было решено достаточно
подобных задач, то на вступительных экзаменах в
технические вузы ученик может столкнуться с
очень серьёзными, а то и непреодолимыми
трудностями. Предлагаемая подборка задач имеет
своей целью дать школьнику и преподавателю
физики представление об уровне сложности
материала по этой теме.
Задача 1 (МГТУ им. Н.Э.Баумана).
Плотность раствора соли с глубиной меняется по
закону = 0 + Ah, где 0 = 1 г/см3, А =
0,01 г/см4. В раствор опущены два шарика,
связанные нитью такой длины, что расстояние
между центрами шариков не может превышать L = 5 см.
Объём каждого шарика V = 1 см3,
массы m1 = 1,2 г и m2 = 1,4 г.
На какой глубине находится каждый шарик?
Решение.
В силу симметрии шариков относительно
горизонтальной плоскости, пороходящей через их
центры, сила Архимеда для каждого шарика равна gV, где – плотность жидкости на
уровне центра шарика. Запишем условие равновесия
для каждого из шариков и сложим уравнения:
где
Объединяя все уравнения, находим:
h2 = h1 + L.
Подставляя числовые данные, получаем:
h1 = 27,5 см; h2 = 32,5 см.
Задача 2 (МГТУ им. Н.Э.Баумана).
В водоёме укреплена вертикальная труба с поршнем
так, что нижний конец её погружён в воду. Поршень,
лежавший вначале на поверхности воды, медленно
поднимают на высоту H = 15 м. Какую
работу пришлось на это затратить, если площадь
поршня 1 дм2, атмосферное давление p0 = 105 Па?
Массой поршня пренебречь.
Решение. Сила, которую надо
прикладывать к поршню, линейно возрастает от 0 до Fmax = pS.
Зависимость этой силы от высоты столба поднятой
воды равна F(h) = ghS, где – плотность воды, h – высота столба
поднятой воды, S – площадь поршня.
Максимально возможная высота столба
воды, поднятой таким способом, h1 = 10 м,
при этом gh1 = p0.
График зависимости F = F(h)
изображён на рисунке. Очевидно, что работа по
подъёму поршня равна площади трапеции под
графиком F(h):
Подставив числовые данные, получаем A = 104 Дж.
Задача 3. Льдина площадью
1 м2 и толщиной 0,4 м плавает в воде.
Какую минимальную работу надо совершить, чтобы
полностью погрузить льдину в воду? Плотность
льда 900 кг/м3, g = 10 м/с2.
Решение. Пусть в исходном
состоянии h – глубина погружения плавающей
льдины. Запишем условие равновесия и следствия
из него:
где в,
л –
плотности воды и льда соответственно, Vпогр
– объём погружённой части льдины, V – её
полный объём, Н – толщина льдины, h –
толщина погружённой части.
При погружении льдины сила нажима
линейно возрастает от нуля до Fmax,
совершая работу
Задача 4. Бетонная однородная
свая массой m лежит на дне водоёма глубиной h,
большей, чем длины сваи l. Привязав трос к
одному концу сваи, её медленно вытаскивают из
воды так, что центр тяжести сваи поднимается на
высоту H от поверхности воды (H > l).
Какая работа совершается при подъёме сваи?
Плотность бетона в n раз больше плотности
воды. Силами сопротивления пренебречь.
Решение
1-й способ. Разобьём работу на три
этапа:
Подъём верхнего конца сваи до
поверхности воды:
– центр тяжести поднимается на высоту
– сила натяжения троса постоянна и
равна mg – FA;
– работа (плотность бетона, по условию, в n
раз больше плотности воды).
Подъём сваи на высоту l – такую,
чтобы нижний конец сваи касался поверхности
воды:
– сила натяжения троса линейно
возрастает от mg – FA до mg, и
работа этой силы равна
Наконец, подъём центра тяжести на
высоту H над поверхностью воды:
– сила натяжения троса постоянна и
равна mg;
– работа (на высоту центр тяжести уже был поднят на
предыдущем этапе).
Общая работа A = A1 + A2 + A3:
2-й способ. Применим закон
сохранения энергии. Работа равна изменению
энергии системы свая–вода. Потенциальная
энергия сваи возросла на mg(H + h).
Потенциальная энергия воды уменьшилась на – вода из верхнего
слоя водоёма опустилась на дно и заняла объём,
прежде занятый сваей. Отсюда:
Задача 5 (МГТУ им. Н.Э.Баумана). В
сосуде находятся три несмешивающиеся жидкости
плотностями (сверху вниз) , 2 и 3. Толщина этих слоёв
Н/3, H и H соответственно. На дне
сосуда лежит стержень из материала плотностью 6, массой m,
длиной H. Какую работу надо совершить,
поднимая стержень за один конец вертикально,
чтобы его верхний торец коснулся поверхности
жидкости плотностью ? Толщиной стержня пренебречь. Трение
отсутствует.
Решение
Пусть V – объём стержня, A1
– работа по подъёму стержня в жидкости
плотностью 3 в
вертикальное положение (подъём центра масс на
высоту H/2):
При перемещении стержня из жидкости
плотностью 3 до
верхнего уровня жидкости плотностью 2 сила линейно изменяется
от При этом
центр тяжести стержня перемещается на высоту H.
Следовательно, работа равна:
A3 – работа по подъёму части
стержня длиной
внутри жидкости плотностью 2 (при этом нижний конец стержня и
соответственно центр тяжести этой части стержня
поднимается на ):
A4 – работа по перемещению
части стержня длиной из жидкости плотностью 2 в жидкость плотностью :
Полная работа равна:
A = A1 + A2 + A3 + A4
=
где –
масса стержня.
Задача 6. Акселерометр
представляет собой изогнутую под прямым углом
трубку, заполненную маслом. Трубка располагается
в вертикальной плоскости, угол При движении трубки в
горизонтальном направлении с ускорением a
уровни масла в коленах трубки соответственно
равны h1 = 8 см и h2 =
12 см. Найдите величину ускорения a.
Решение
Рассмотрим сосуд с жидкостью
(аквариум), который движется в горизонтальном
направлении с ускорением a. При
таком движении поверхность жидкости составляет
угол с
горизонтальной плоскостью, такой что
Такой же перепад высот имеет и
жидкость в трубке акселерометра, движущегося с
тем же ускорением. Получаем l = h2 + h1,
т.к., по условию, = 45°.
Задача 7 (НГУ). Вертикальный
цилиндрический сосуд радиусом R, частично
заполненный жидкостью, вращается вместе с
жидкостью вокруг своей оси.
К боковой стенке сосуда на нити длиной l
привязан воздушный шарик радиусом r; во
время вращения нить образует со стенкой угол . Найдите угловую
скорость вращения сосуда.
Решение
Задача 8 (МГТУ им. Н.Э.Баумана).
Цилиндрический сосуд с жидкостью плотностью вращается с
постоянной угловой скоростью вокруг вертикальной оси ОО1.
Внутри сосуда к оси OO1 в точке A
прикреплён тонкий горизонтальный стержень AB,
по которому без трения может скользить муфта в
виде шара радиусом r. Шар связан с концом A
стержня пружиной жёсткостью k, длина которой
в нерастянутом состоянии равна L0.
Определите расстояние до центра шара от оси
вращения, если плотность материала шара в четыре
раза меньше плотности жидкости.
Решение
Направим ось X по направлению
стержня AB, а ось Y по вертикальной оси OO1.
По условию задачи, перемещение шара возможно
лишь вдоль стержня. Так как плотность шара меньше
плотности жидкости, составляющая силы Архимеда
вдоль оси X больше составляющей силы mgэфф,
и шар будет вытесняться жидкостью к оси вращения,
сжимая пружину. Исходное положение центра шара L0 + r.
Пусть во время вращения центр шара находится на
расстоянии x от оси, при этом пружина сжата
на величину L0 + r – x.
Уравнение движения шара массой m по
окружности радиусом x с угловой скоростью имеет вид m2x = Fц,
где сила Fц – результат сложения
горизонтальной составляющей силы Архимеда и силы упругости
сжатой пружины: Fупр = k(L
+ r – x).
Если –
плотность материала шара, то
Отсюда получаем:
По условию, В итоге получаем ответ:
Задача 9 (НГУ). Цилиндрический
космический корабль радиусом R вращается
вокруг своей оси с угловой скоростью . Бассейн в корабле имеет
глубину H, а дном бассейна служит боковая
стенка корабля. Определите плотность плавающей в
бассейне палочки длиной l < H,
если из воды выступает её верхняя часть длиной .
Решение
Во вращающейся неинерциальной системе
отсчёта роль силы тяжести играет центробежная
сила инерции Fц = m2r, где r –
расстояние элемента массы m от оси вращения.
Центр масс погружённой части палочки находится
от оси вращения на расстоянии
Сила Архимеда, действующая на
погружённую часть палочки длиной l – , равна FA
= ж2rц(l
– )S, где ж – плотность
жидкости (воды), S – площадь поперечного
сечения палочки.
Центр масс всей палочки находится от
оси вращения на расстоянии
Условие плавания палочки: P = FA,
где P – вес палочки.
где –
плотность палочки;
Приравняв P и FА,
находим плотность палочки:
Вячеслав Леонидович Булынин окончил
физический факультет Ленинградского
государственного университета в 1964 г. и по 1992
г. работал в научно-исследовательских институтах
в области прикладной сверхпроводимости. С
1993 г. преподаёт в школе физику, астрономию,
математику; педагогический стаж 15 лет. Учитель
высшей квалификационной категории, методист ЦО
№ 17. Автор двух пособий по физике, изданных
«Континентом-Пресс» в 2004 г.: «Физика. Тесты и
задачи» и «Физика. Пособие для подготовки к
государственному экзамену». Женат, имеет двух
дочерей.
Источник
Задача по физике – 7019
Садовод-любитель поставил в пустой цилиндрический таз площадью $S_{T} = 500 см^{2}$ пустую открытую банку массой $m = 100 г$, площадью дна $S_{Д} = 50 см^{2}$ и горловины $S_{Г} = 20 см^{2}$. Пошёл дождь — таз и банка начали наполняться водой. Через некоторое время стоявшая на дне банка начала вертикально всплывать. Определите, сколько осадков (высота выпавшего слоя воды в мм) выпало к этому моменту. Плотность воды $rho = 1 г/см^{3}$.
Подробнее
Задача по физике – 7021
На дне сосуда находится тонкая невесомая пластинка, под которую не подтекает вода. К пластинке на нити привязан невесомый шарик. Если в сосуд медленно наливать воду, то пластинка начинает отрываться от дна, когда шарик оказывается наполовину погруженным в воду. В этот момент уровень воды в сосуде равен $h$. Если же до того, как пластинка начнёт отрываться, придержать шарик и налить в сосуд много воды, то пластинка перестаёт отрываться от дна, даже если шарик не придерживать. При каком минимальном уровне воды $H$ в сосуде это возможно? Ускорение свободного падения $g$, атмосферное давление $P_{0}$, плотность воды $rho$.
Подробнее
Задача по физике – 7028
Полностью заполненная водой ванна с вертикальными боковыми стенками освобождается от воды через открытое сливное отверстие в её горизонтальном дне за время $tau$. Отверстие расположено в середине дна, и его площадь во много раз меньше площади поперечного сечения ванны. При открытом сливном отверстии вода свободно (без труб) выливается на пол. Если в ванну сначала насыпать до краев мелкую гальку, а затем заполнить ванну водой, то в этом случае ванна опорожняется за время $tau /2$. При этом камешки гальки не закрывают сливного отверстия! Через какое время опорожнится ванна, если 75% гальки убрать (то есть оставшиеся камушки будут находиться в нижней четверти ванны) и снова заполнить её водой до краёв? Вязкостью воды можно пренебречь. При решении задачи считайте, что камешки гальки уменьшают площадь поперечного сечения ванны, доступную для воды.
Подробнее
Задача по физике – 7709
Открытый сверху цилиндрический тонкостенный стакан высоты $H$ и объёма $V$ плавает в сосуде большего размера на поверхности жидкости плотности $rho$, причём в жидкость погружена часть стакана высоты $h$. Стакан утопили в жидкости. С какой силой он давит на дно сосуда?
Подробнее
Задача по физике – 7716
В цилиндрический сосуд поперечного сечения $S_{1}$ с цилиндрическим горлышком поперечного сечения $S_{2}$ налили одинаковые объёмы двух несмешивающихся жидкостей с плотностями $rho_{1}$ и $rho_{2}$ ($rho_{1} > rho_{2}$). Сосуд хорошо взболтали, так что образовалась эмульсия — взвесь капелек одной жидкости в другой, — и поставили на стол. Уровень жидкости находится на высоте $H$ от дна сосуда; горлышко заполнено до высоты $h$. Насколько изменится давление на дно сосуда после того как эмульсия опять расслоится на две компоненты? Ускорение свободного падения равно $g$.
Подробнее
Задача по физике – 7720
Открытая с обоих концов однородная тонкая трубка длиной $2L$, согнутая посередине в виде буквы V с углом $90^{ circ}$ при вершине, расположена в вертикальной плоскости. Колена трубки составляют угол $45^{ circ}$ с горизонтом. Трубка заполнена: левое колено наполовину маслом, наполовину водой, в правом колене — столбик воды длиной $5/6L$. Трубку начали медленно поворачивать вправо — из неё стала вытекать вода. При некотором угле правого колена относительно горизонта вместе с водой начало вытекать масло. Найдите этот угол. Эффектами поверхностного натяжения пренебречь.
Подробнее
Задача по физике – 7745
Жидкая ртуть залита водой. В этой системе находится стакан кубической формы, изготовленный из меди. Сторона квадратного дна стакана $b$, высота $b$, толщина стенок $d ll b$, дно стакана очень тонкое. Плотность меди $rho_{м}$, воды $rho_{в}$, ртути $rho_{рт}$.
На какую глубину стакан погрузится в ртуть ?
Подробнее
Задача по физике – 7987
Полая тонкостенная металлическая капсула в форме шара лежит на дне цилиндрического сосуда с площадью дна $S = 5 м^{2}$. Капсула наполовину заполнена водой, а наполовину – воздухом. Масса оболочки капсулы равна $M = 2 т$, а масса воды в ней – $m = 1,5 т$. С помощью легкого насоса, встроенного в корпус капсулы, вода переливается из неё в сосуд, и капсула всплывает. На сколько изменится (поднимется или опустится) уровень воды в сосуде в этом процессе (считая от момента, когда вся вода еще находится в капсуле, и до момента, когда капсула плавает опустошённая)? Плотность воды $rho = 1000 кг/м^{3}$.
Подробнее
Задача по физике – 7989
На крючке ручных пружинных весов висит ведро с водой. Весы показывают 9,5 кг. В воду полностью погрузили кирпич массой 2,5 кг с размерами 5 см $times$ 10 см $times$ 20 см, удерживая его на тонкой веревочке. Кирпич стенок и дна ведра не касается. Теперь весы показывают 10 кг. Найдите массу воды, вылившейся из ведра. Плотность воды 1000 $кг/м^{3}$.
Подробнее
Задача по физике – 8000
Полностью заполненная водой ванна с вертикальными боковыми стенками освобождается от воды через открытое сливное отверстие в её горизонтальном дне за время $tau$. Отверстие расположено в середине дна, и его площадь во много раз меньше площади поперечного сечения ванны. При открытом сливном отверстии вода свободно (без труб) выливается на пол. Если в ванну сначала насыпать до краев мелкую гальку, а затем заполнить ванну водой, то в этом случае ванна опорожняется за время $tau/2$. При этом камешки гальки не закрывают сливного отверстия! Через какое время опорожнится ванна, если 75% гальки убрать (то есть оставшиеся камушки будут находиться в нижней четверти ванны) и снова заполнить её водой до краёв? Вязкостью воды можно пренебречь. При решении задачи считайте, что камешки гальки уменьшают площадь поперечного сечения ванны, доступную для воды.
Подробнее
Задача по физике – 8001
Цилиндрический сосуд перекрыт поршнем толщины $h$ с круглым отверстием сечения $S$, в которое вставлен диск из того же материала и той же толщины, что и поршень. Выше поршня воздух, ниже вода. На диск начинают медленно насыпать песок. При какой массе песка m диск вывалится из отверстия? Плотность воды $rho$, трением пренебречь.
Подробнее
Задача по физике – 8012
Вертикальный цилиндр герметически закрыт круговой шайбой, в отверстие которой вставлена цилиндрическая пробка из того же материала. Выше этого составного поршня воздух, ниже жидкость. Во сколько раз плотность жидкости больше плотности материала поршня, если трения нет, а пробка одинаково выступает из шайбы снизу и сверху?
Подробнее
Задача по физике – 8018
На весах стоит цилиндрическая кастрюля высоты $H$ и плошадью дна $S$, заполненная жидкостью до высоты $h$. Кастрюлю сняли с весов и аккуратно опустили в нее брусок массы $m$ и объема $V$. Часть жидкости вытекла, а брусок плавает, погрузившись на 4/5 своего объема. Как изменятся показания весов, если снова поставить кастрюлю на весы?
Подробнее
Задача по физике – 8020
В большом стакане с водой плавает тонкостенный стакан меньшего сечения. В меньший стакан аккуратно наливают воду со скоростью $V см^{3}/минуту$. С какой скоростью изменяется уровень воды в меньшем стакане $h$? Что можно сказать об уровне воды $H$ в большом стакане? Площади сечения, массы стаканов, плотность воды и т.п. считать известными.
Подробнее
Задача по физике – 8022
Вертикальная труба сечения $S$ и высоты $2H$ наполовину погружена в воду. Сверху в нее наливают более легкую жидкость плотности $rho$. Какой наибольший объем жидкости $V$ можно налить в трубу, чтобы она не выливалась ни сверху, ни снизу? Плотность воды $rho_{0}$. Постройте график зависимости $V$ от $rho$.
Подробнее
Источник