В цилиндрическом сосуде с газом находится в равновесии поршень

В цилиндрическом сосуде с газом находится в равновесии поршень thumbnail

5.4. Практическое применение уравнения состояния идеального газа

5.4.3. Уравнение состояния для газа, находящегося в сосуде под поршнем

Для идеального газа, находящегося в сосуде под поршнем, необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:

m = const;

  • постоянным остается также количество вещества (газа):

ν = const;

  • плотность газа и концентрация его молекул (атомов) изменяются:

ρ ≠ const, n ≠ const.

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).

Рис. 5.9

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , }

где p 1, V 1, T 1 – давление, объем и температура газа в начальном состоянии; p 2, V 2, T 2 – давление, объем и температура газа в конечном состоянии; ν – количество вещества (газа); R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

M g + F A = F 1 , M g + F A + F = F 2 , }

где M – масса поршня; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; S – площадь сечения поршня; F 1 – модуль силы давления газа на поршень в начале процесса, F 1 = p 1S; p 1 – давление газа в сосуде в начальном состоянии; F – модуль силы, вызывающей сжатие газа; F 2 – модуль силы давления газа на поршень в конце процесса, F 2 = p 2S; p 2 – давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется –

T ≠ const;

  • если процесс происходит медленно, то температура газа остается постоянной –

T = const.

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем – неизменно (в том случае, когда из условия задачи не следует обратное) – p = const;
  • в остальных случаях давление газа под поршнем изменяется – p ≠ const.

Масса поршня, закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю –

M = 0;

  • в остальных случаях поршень обладает определенной ненулевой массой –

M ≠ const.

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм2 и массой 1,80 кг находится 360 см3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см3. Температура газа при его сжатии не изменяется. Определить массу гирь.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
  • сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
  • m g → – вес гирь.
Читайте также:  Рецепт для сосудов с сосновыми иголками

Условие равновесия поршня запишем в следующем виде:

  • до сжатия газа –

F 1 = Mg + F A,

где F 1 – модуль силы давления газа, F 1 = p 1S; p 1 – давление газа до сжатия; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; g – модуль ускорения свободного падения;

  • после сжатия газа –

F 2 = Mg + F A + mg,

где F 2 – модуль силы давления газа, F 2 = p 2S; p 2 – давление газа после сжатия; mg – вес гирь; m – масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева – Клапейрона для газа под поршнем следующим образом:

  • до его сжатия –

p 1V 1 = νRT,

где V 1 – первоначальный объем газа под поршнем; ν – количество газа под поршнем; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • после его сжатия –

p 2V 2 = νRT,

где V 2 – объем сжатого поршнем газа.

Равенство

p 1V 1 = p 2V 2

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , }

которую требуется решить относительно массы гирь m.

Для этого выразим отношение давлений p 2/p 1 из первой пары уравнений:

p 2 p 1 = M g + p A S + m g M g + p A S

и из третьего уравнения:

p 2 p 1 = V 1 V 2 ,

запишем равенство правых частей полученных отношений:

M g + p A S + m g M g + p A S = V 1 V 2 .

Отсюда следует, что искомая масса определяется формулой

m = ( M + p A S g ) ( V 1 V 2 − 1 ) .

Вычисление дает результат:

m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Решение. На рисунке показаны силы, действующие на пластину после нагревания газа:

  • сила тяжести пластины M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

F 2 = Mg + F A,

где F 2 – модуль силы давления нагретого газа, F 2 = p 2S; p 2 – давление нагретого газа; S – площадь сечения сосуда; Mg – модуль силы тяжести пластины; M – масса пластины; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление.

Запишем уравнение Менделеева – Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

p 1V = νRT 1,

где p 1 – давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A; V – объем газа в сосуде; ν – количество вещества (газа) в сосуде; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания
Читайте также:  Ощущение боли в сосудах

p 2V = νRT 2,

где p 2 – давление нагретого газа; T 2 – температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; }

систему необходимо решить относительно температуры T 2, до которой следует нагреть газ.

Для этого делением первой пары уравнений

p A V p 2 V = ν R T 1 ν R T 2

получим выражение для давления нагретого газа:

p 2 = p A T 2 T 1

и подставим его в третье уравнение системы:

p A T 2 S T 1 = M g + p A S .

Преобразуем полученное выражение к виду

T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,

а затем найдем разность

Δ T = T 2 − T 1 = M g T 1 p A S .

Произведем вычисление:

Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → , действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :

F → + F → A + M g → = m a → ,

или в проекции на вертикальную ось –

F − F A − Mg = Ma,

где F – модуль силы давления газа под поршнем, F = pS; p – давление газа; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; g – модуль ускорения свободного падения; a – модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a = F − F A − M g M = ( p − p A ) S M − g .

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

l = v 2 2 a ,

где l – пройденный путь; v – модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

v = 2 a l

и подставим в записанную формулу выражение для модуля ускорения:

v = 2 l ( ( p − p A ) S M − g ) .

Выполним расчет:

v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.

Источник

2017-10-05

Расположенный горизонтально цилиндрический сосуд, заполненный идеальным газом, разделен поршнем, который может двигаться без трения. В равновесии поршень находится посредине цилиндра. При малых смещениях из положения равновесия поршень совершает колебания. Найти зависимость частоты этих колебаний от температуры, считая процесс изотермическим.

Решение:

В положении равновесия давление $p$ на поршень слева и справа одинаково. Поскольку объем газа слева и справа одинаков, а температура $T$ постоянна, из уравнения Менделеева – Клапейрона

$pV = nu RT$ (1)

следует, что количество газа $nu$ одинаково по обе стороны от поршня. Отметим, что химический состав газов может быть различным.

В цилиндрическом сосуде с газом находится в равновесии поршень

рис.1

Пусть поршень сместился из положения равновесия, например влево, на малую величину $x$, так что $Sx ll V$, где $S$ – площадь поршня (рис. 1). Поскольку температура по условию не меняется, то

Читайте также:  Что нужно для уздг сосудов

$(p + Delta p_{1})(V – Sx) = (p – Delta p_{2}) (V + Sx)$.

Раскрыв скобки и приведя подобные члены, получим

$( Delta p_{1} + Delta p_{2}) V – ( Delta p_{1} – Delta p_{2}) Sx = 2pSx$.

Второе слагаемое слева много меньше первого не только потому, что $Sx ll V$, но и вследствие того, что множителем при $V$ стоит сумма двух близких величин $Delta p_{1}$ и $Delta p_{2}$, а множителем при $Sx$ – их разность. Пренебрегая вторым слагаемым, получаем

$Delta p_{1} + Delta p_{2} = frac{2pS}{V} x$.

Результирующая сила, действующая на поршень, равна

$F = – frac{2pS^{2}}{V} x$.

Знак минус означает, что сила направлена в сторону, противоположную направлению смещения поршня, т. е. к положению равновесия. Под действием силы, пропорциональной смещению, поршень массой $M$ будет совершать гармонические колебания с частотой $omega$, определяемой соотношением

$omega^{2} = 2pS^{2}/VM$. (2)

При решении задачи мы молчаливо предполагали, что масса газа много меньше массы поршня, так что кинетической энергией макроскопического движения газа при колебаниях поршня можно пренебречь но сравнению с кинетической энергией поршня. Подумайте, где использовано это условие.

Выразив $p$ из уравнения Менделеева – Клапейрона (1), получим

$omega^{2} = frac{2 nu RS^{2}}{MV^{2}} T$. (3)

Таким образом, частота колебаний поршня пропорциональна $sqrt{T}$, ибо коэффициент при $T$ в формуле (3) не зависит от температуры, если пренебречь тепловым расширением сосуда.

Подумайте теперь, какие условия должны выполняться, чтобы процесс действительно был изотермическим. Для того чтобы температура газа в процессе колебаний не изменялась, необходим хороший тепловой контакт с большим тепловым резервуаром – термостатом, имеющим постоянную температуру. Что значит хороший тепловой контакт? Это значит, что время установления термодинамического равновесия между газом в сосуде и термостатом должно быть много меньше периода колебаний поршня. Тогда можно считать, что газ в каждый момент имеет ту же температуру, что и термостат. Если, наоборот, период колебаний окажется много меньше времени установления термодинамического равновесия между газом и термостатом, то можно считать, что колебания поршня происходят практически без обмена теплотой с термостатом. В этом случае процесс можно считать адиабатическим, несмотря на отсутствие тепловой изоляции сосуда с поршнем. Оказывается, что зависимость частоты колебаний от температуры при этом будет такой же, как и в изотермическом случае, только коэффициент в формуле (3) умножится на число, большее единицы. Увеличение частоты колебаний при адиабатическом процессе можно объяснить, сравнивая $p-V$ – диаграммы изотермического и адиабатического процессов идеального газа.

Отметим, что приведенное решение в обоих случаях имеет смысл, только если время установления теплового равновесия в самом газе много меньше периода колебаний поршня, так как в противном случае вообще теряют смысл такие равновесные макроскопические характеристики газа, как давление и температура. Другими словами, по отношению к самому газу процесс должен быть квазистатическим.

Источник