В цилиндрическом сосуде с площадью дна s плавает плоская льдина

Задачи, тесты

Е. М.
Раводин,
, МОУ СОШ № 2, г. Прокопьевск, Кемеровская обл.

Окончание. См. № 5,
8/2010

18. Прямоугольная коробочка из жести массой m = 76 г с дном площадью S = 38 см2 и высотой = 6 см плавает в воде. Определите высоту h надводной части коробочки.

Решение. Коробочка плавает, если действующая на неё сила тяжести равна по модулю действующей на неё силе Архимеда: mg = FА, причём FА = Vпчgρв, где – объём погружённой части коробочки. Подставляя числовые данные, получаем

Отсюда глубина погружения коробочки равна

Значит h = H – x = 4 см.

19. Льдина плавает на поверхности пресной воды. Какую часть составляет объём подводной части от объёма всей льдины? Если задача не решается в общем виде, то, для упрощения, примите объём льдины равным 100 м3. Плотность льда 900 кг/м3.

Решение. Раз льдина плавает, то её сила тяжести равна по модулю силе Архимеда: mg = FА, т. е.:

20. На поверхности широкого озера лёд имеет толщину 2 м. Какой минимальной длины надо взять верёвку, чтобы зачерпнуть кружкой воды из проруби?

Решение. Так как озеро широкое, то лёд на его поверхности может только плавать, а не держаться за берега за счёт примерзания к ним. Согласно решению задачи № 19, в проруби под поверхностью воды окажется 0,9 толщи льда, т. е. 0,9 · 2 м = 1,8 м, а над поверхностью воды 0,2 м = 20 см. Для зачерпывания воды с такой глубины верёвка не нужна.

21. В стакане с пресной водой плавает кусок льда. Изменится ли уровень воды, когда лёд растает? Рассмотрите дополнительно случаи: когда в лёд вмёрзла дробинка; когда в лёд вмёрз пузырёк воздуха.

Решение. Лёд плавает, если его вес равен весу жидкости в объёме погружённой части. Образовавшаяся изо льда пресная вода имеет тот же вес, что и лёд, и, следовательно, точно заполнит объём, который вытеснял плавающий лёд. Значит, уровень воды не изменится.

Если во льду была дробинка, лёд вытеснял больше воды, чтобы поддерживать на плаву дробинку. Когда лёд растаял, дробинка утонула (её вес больше веса вытесненной ею воды), уровень воды понизился.

В случае вмёрзшего пузырька уровень воды после таяния льдины практически не изменится. Хотя, если подсчитать точно, уровень воды несколько понизится, т. к. масса воздуха в пузырьке хоть и мала, но не равна нулю.

22. В прямоугольный сосуд с водой пустили плавать модель судна массой m = 4 кг. На сколько при этом повысился уровень воды, если площадь дна сосуда S = 2000 см2?

Решение. Вес сосуда при опускании в него модели увеличится на вес модели mg. Это увеличение веса можно интерпретировать как следствие подъёма уровня воды на ∆h и, следовательно, увеличения силы давления воды ∆Fд = ρвghS. Отсюда:

23. Кусок парафина массой m = 200 г плавает на границе раздела воды и бензина. Определите объём V1 надводной части бруска. Плотность парафина 900 кг/м3, бензина 700 кг/м3.

Решение. Если парафин плавает, то сила тяжести равна сумме сил Архимеда в обеих жидкостях: mg = Vвρвg + V1ρб g, где Vв – объём, погружённый в воду, V1 – искомый надводный объём (в бензине). Общий объём парафина

Решая совместно оба уравнения, получаем:

24. Кусок льда, внутрь которого вморожен шарик из свинца, плавает в цилиндрическом сосуде с водой. Площадь дна сосуда S. Какова масса шарика, если после полного таяния льда уровень воды в сосуде понизился на H? Плотность свинца ρ1, плотность воды ρ2.

Решение. На плавающую льдину со свинцовым шариком действует бóльшая сила Архимеда, чем на такую же льдину без шарика, т. к. она тяжелее на силу тяжести шарика mg. Следовательно, объём вытесняемой в первом случае воды больше, чем во втором, на Но когда льдина растает, шарик упадёт на дно и займёт объём V1 = m/ρ1. Общее уменьшение объёма воды в конечном счёте ∆V = ∆Vп – V1. Так как ∆V = SH (по условию), то приходим к уравнению:

25. Корона царя Гиерона в воздухе весит P1 = 20 Н, а в воде P2 = 18,75 Н. Вычислите плотность вещества короны. Была ли она из чистого золота? Дополнение: найдите, сколько золота и сколько серебра было в короне. Плотность золота округлённо принять 20 000 кг/м3, а серебра 10 000 кг/м3.

Решение. Для оценки добросовестности мастера найдём плотность короны по формуле полученной при решении задачи 9 (см. № 5/2010):

– корона не из чистого золота.

Чтобы найти состав короны, используем два факта: 1) общая масса короны m = mз + mс; 2) общий объём короны V = Vз + Vс (индексы «з» и «с» относятся к золоту и серебру соответственно). Заменяя объёмы их выражениями через массы и плотности, получаем систему из двух уравнений:


Решение

Опуская громоздкие промежуточные вычисления, запишем ответ:

26. Какую силу надо приложить к пробковому телу массой 400 кг, чтобы удерживать его, когда оно целиком погружено в воду? ρп = 200 кг/м3; g = 10 м/с2.

Читайте также:  Пороки развития сосудов у детей

Решение. Сила тяжести тела mg = 4000 Н направлена вниз, сила Архимеда направлена вверх и равна

Чтобы удержать тело в воде, надо приложить направленную вниз силу F = FА – mg = 16 кН.

27. Чугунная плита толщиной 0,5 м, длиной 10 м и шириной 4 м лежит на глинистом дне, выдавив из-под себя воду. Глубина водоёма 2,5 м. Какую силу необходимо приложить, чтобы начать подъём плиты?

Решение. Объём плиты V = 0,5 м · 10 м · 4 м = 20 м3.

Её масса m = Vρч = 20 м3 · 7000 кг/м3 = 140 000 кг.

Сила тяжести mg = 1 400 000 Н.

Поскольку под плитой нет воды, сила Архимеда на неё не действует. Вниз на плиту, кроме силы тяжести, действуют сила давления воды на глубине 2,5 – 0,5 = 2 (м) и сила давления атмосферы, которую передаёт вода по закону Паскаля. При нормальном атмосферном давлении общее давление на плиту:

p = pв + pа =  1,2 · 105 Па.

Горизонтальная площадь поверхности плиты
S = 40 м2. Сила давления на плиту F = pS = 4,8 · 106 Н.

Полная сила, прижимающая плиту к грунту:

F = mg + Fа = 1,4 · 106 Н + 4,8 · 106 Н = 6,2 ·106 Н.

Для отрыва от грунта нужна сила F > 6,2 МН.

Источник

В.Л.БУЛЫНИН,
ЦО № 17 ЦАО, г. Москва

Согласно школьной программе, законы
гидростатики изучаются лишь в 7-м классе,
возвращение к их изучению и закреплению в
дальнейшем не предусмотрено. Тем не менее задачи
на гидростатику относятся к весьма трудным и,
если в старших классах не было решено достаточно
подобных задач, то на вступительных экзаменах в
технические вузы ученик может столкнуться с
очень серьёзными, а то и непреодолимыми
трудностями. Предлагаемая подборка задач имеет
своей целью дать школьнику и преподавателю
физики представление об уровне сложности
материала по этой теме.

Задача 1 (МГТУ им. Н.Э.Баумана).
Плотность раствора соли с глубиной меняется по
закону = 0 + Ah, где 0 = 1 г/см3, А =
0,01 г/см4. В раствор опущены два шарика,
связанные нитью такой длины, что расстояние
между центрами шариков не может превышать L = 5 см.
Объём каждого шарика V = 1 см3,
массы m1 = 1,2 г и m2 = 1,4 г.
На какой глубине находится каждый шарик?

Решение.

В силу симметрии шариков относительно
горизонтальной плоскости, пороходящей через их
центры, сила Архимеда для каждого шарика равна gV, где – плотность жидкости на
уровне центра шарика. Запишем условие равновесия
для каждого из шариков и сложим уравнения:

где

Объединяя все уравнения, находим:

h2 = h1 + L.

Подставляя числовые данные, получаем:

h1 = 27,5 см; h2 = 32,5 см.

Задача 2 (МГТУ им. Н.Э.Баумана).
В водоёме укреплена вертикальная труба с поршнем
так, что нижний конец её погружён в воду. Поршень,
лежавший вначале на поверхности воды, медленно
поднимают на высоту H = 15 м. Какую
работу пришлось на это затратить, если площадь
поршня 1 дм2, атмосферное давление p0 = 105 Па?
Массой поршня пренебречь.

Решение. Сила, которую надо
прикладывать к поршню, линейно возрастает от 0 до Fmax = pS.
Зависимость этой силы от высоты столба поднятой
воды равна F(h) = ghS, где – плотность воды, h – высота столба
поднятой воды, S – площадь поршня.

Максимально возможная высота столба
воды, поднятой таким способом, h1 = 10 м,
при этом gh1 = p0.
График зависимости F = F(h)
изображён на рисунке. Очевидно, что работа по
подъёму поршня равна площади трапеции под
графиком F(h):

Подставив числовые данные, получаем A = 104 Дж.

Задача 3. Льдина площадью
1 м2 и толщиной 0,4 м плавает в воде.
Какую минимальную работу надо совершить, чтобы
полностью погрузить льдину в воду? Плотность
льда 900 кг/м3, g = 10 м/с2.

Решение. Пусть в исходном
состоянии h – глубина погружения плавающей
льдины. Запишем условие равновесия и следствия
из него:

где в,
л –
плотности воды и льда соответственно, Vпогр
– объём погружённой части льдины, V – её
полный объём, Н – толщина льдины, h
толщина погружённой части.

При погружении льдины сила нажима
линейно возрастает от нуля до Fmax,
совершая работу

Задача 4. Бетонная однородная
свая массой m лежит на дне водоёма глубиной h,
большей, чем длины сваи l. Привязав трос к
одному концу сваи, её медленно вытаскивают из
воды так, что центр тяжести сваи поднимается на
высоту H от поверхности воды (H > l).
Какая работа совершается при подъёме сваи?
Плотность бетона в n раз больше плотности
воды. Силами сопротивления пренебречь.

Решение

1-й способ. Разобьём работу на три
этапа:

  • Подъём верхнего конца сваи до
    поверхности воды:

– центр тяжести поднимается на высоту

– сила натяжения троса постоянна и
равна mg – FA;

– работа (плотность бетона, по условию, в n
раз больше плотности воды).

  • Подъём сваи на высоту l – такую,
    чтобы нижний конец сваи касался поверхности
    воды:

– сила натяжения троса линейно
возрастает от mg – FA до mg, и
работа этой силы равна

  • Наконец, подъём центра тяжести на
    высоту H над поверхностью воды:

– сила натяжения троса постоянна и
равна mg;

– работа (на высоту центр тяжести уже был поднят на
предыдущем этапе).

  • Общая работа A = A1 + A2 + A3:

Читайте также:  Что выпить при сужении головных сосудов

2-й способ. Применим закон
сохранения энергии. Работа равна изменению
энергии системы свая–вода. Потенциальная
энергия сваи возросла на mg(H + h).
Потенциальная энергия воды уменьшилась на – вода из верхнего
слоя водоёма опустилась на дно и заняла объём,
прежде занятый сваей. Отсюда:

Задача 5 (МГТУ им. Н.Э.Баумана). В
сосуде находятся три несмешивающиеся жидкости
плотностями (сверху вниз) , 2 и 3. Толщина этих слоёв
Н/3, H и H соответственно. На дне
сосуда лежит стержень из материала плотностью 6, массой m,
длиной H. Какую работу надо совершить,
поднимая стержень за один конец вертикально,
чтобы его верхний торец коснулся поверхности
жидкости плотностью ? Толщиной стержня пренебречь. Трение
отсутствует.

Решение

Пусть V – объём стержня, A1
– работа по подъёму стержня в жидкости
плотностью 3 в
вертикальное положение (подъём центра масс на
высоту H/2):

При перемещении стержня из жидкости
плотностью 3 до
верхнего уровня жидкости плотностью 2 сила линейно изменяется
от При этом
центр тяжести стержня перемещается на высоту H.
Следовательно, работа равна:

A3 – работа по подъёму части
стержня длиной
внутри жидкости плотностью 2 (при этом нижний конец стержня и
соответственно центр тяжести этой части стержня
поднимается на ):

A4 – работа по перемещению
части стержня длиной из жидкости плотностью 2 в жидкость плотностью :

Полная работа равна:

A = A1 + A2 + A3 + A4
=

где –
масса стержня.

Задача 6. Акселерометр
представляет собой изогнутую под прямым углом
трубку, заполненную маслом. Трубка располагается
в вертикальной плоскости, угол При движении трубки в
горизонтальном направлении с ускорением a
уровни масла в коленах трубки соответственно
равны h1 = 8 см и h2 =
12 см. Найдите величину ускорения a.

Решение

Рассмотрим сосуд с жидкостью
(аквариум), который движется в горизонтальном
направлении с ускорением a. При
таком движении поверхность жидкости составляет
угол с
горизонтальной плоскостью, такой что

Такой же перепад высот имеет и
жидкость в трубке акселерометра, движущегося с
тем же ускорением. Получаем l = h2 + h1,

т.к., по условию,  = 45°.

Задача 7 (НГУ). Вертикальный
цилиндрический сосуд радиусом R, частично
заполненный жидкостью, вращается вместе с
жидкостью вокруг своей оси. 

К боковой стенке сосуда на нити длиной l
привязан воздушный шарик радиусом r; во
время вращения нить образует со стенкой угол . Найдите угловую
скорость вращения сосуда.

Решение

Задача 8 (МГТУ им. Н.Э.Баумана).
Цилиндрический сосуд с жидкостью плотностью вращается с
постоянной угловой скоростью вокруг вертикальной оси ОО1.
Внутри сосуда к оси OO1 в точке A
прикреплён тонкий горизонтальный стержень AB,
по которому без трения может скользить муфта в
виде шара радиусом r. Шар связан с концом A
стержня пружиной жёсткостью k, длина которой
в нерастянутом состоянии равна L0.
Определите расстояние до центра шара от оси
вращения, если плотность материала шара в четыре
раза меньше плотности жидкости.

Решение

Направим ось X по направлению
стержня AB, а ось Y по вертикальной оси OO1.
По условию задачи, перемещение шара возможно
лишь вдоль стержня. Так как плотность шара меньше
плотности жидкости, составляющая силы Архимеда
вдоль оси X больше составляющей силы mgэфф,
и шар будет вытесняться жидкостью к оси вращения,
сжимая пружину. Исходное положение центра шара L0 + r.
Пусть во время вращения центр шара находится на
расстоянии x от оси, при этом пружина сжата
на величину L0 + r – x.
Уравнение движения шара массой m по
окружности радиусом x с угловой скоростью имеет вид m2x = Fц,
где сила Fц – результат сложения
горизонтальной составляющей силы Архимеда и силы упругости
сжатой пружины: Fупр = k(L
+ rx).

Если –
плотность материала шара, то

Отсюда получаем:

По условию, В итоге получаем ответ:

Задача 9 (НГУ). Цилиндрический
космический корабль радиусом R вращается
вокруг своей оси с угловой скоростью . Бассейн в корабле имеет
глубину H, а дном бассейна служит боковая
стенка корабля. Определите плотность плавающей в
бассейне палочки длиной l < H,
если из воды выступает её верхняя часть длиной .

Решение

Во вращающейся неинерциальной системе
отсчёта роль силы тяжести играет центробежная
сила инерции Fц = m2r, где r
расстояние элемента массы m от оси вращения.
Центр масс погружённой части палочки находится
от оси вращения на расстоянии

Сила Архимеда, действующая на
погружённую часть палочки длиной l – , равна FA
= ж2rц(l
– )S, где ж – плотность
жидкости (воды), S – площадь поперечного
сечения палочки.

Центр масс всей палочки находится от
оси вращения на расстоянии

Условие плавания палочки: P = FA,
где P – вес палочки.

где –
плотность палочки;

Приравняв P и FА,
находим плотность палочки:

Вячеслав Леонидович Булынин окончил
физический факультет Ленинградского
государственного университета в 1964 г. и по 1992
г. работал в научно-исследовательских институтах
в области прикладной сверхпроводимости. С
1993 г. преподаёт в школе физику, астрономию,
математику; педагогический стаж 15 лет. Учитель
высшей квалификационной категории, методист ЦО
№ 17. Автор двух пособий по физике, изданных
«Континентом-Пресс» в 2004 г.: «Физика. Тесты и
задачи» и «Физика. Пособие для подготовки к
государственному экзамену». Женат, имеет двух
дочерей.

Читайте также:  Куркума для сосудов при атеросклерозе

Источник

Классика в гидростатике

В статье пойдет речь о законе Архимеда и его применении в задачах на плавание тел погруженных в цилиндрический сосуд с вертикальными стенками. Формулировка закона известна с древних времен. На целиком погруженное в жидкость или газ тела действует выталкивающая сила модуль которой равен весу жидкости или газа в объеме погруженной части тела. За такое большое время придумали огромное количество задач, и несколько приемов их решения. остановимся на классическом решении которое применяют большинство учеников использующих условие плавания тел и то что объем жидкости изначально налитой в сосуд не изменяется. Рассмотрим как реализуют этот прием в решении конкретных задач предлагаемых в различные вузы.

Задача 1. В цилиндрический сосуд с водой опустили железную коробочку, из-за чего уровень воды в сосуде поднялся на 2 см. На сколько опустится уровень воды, если коробочку утопить.

Сделаем рисунок, на котором укажем развитие ситуации. Был объем воды SH стал SH1–Vж где Vж объем жидкости вытесненнной плавающим телом найдем его из условия плавания mg = r0gVж

В цилиндрическом сосуде с площадью дна s плавает плоская льдинаПолучим Для первого и третьего рисунка где объем железной коробочки. Перепишем эти выражения

(1)

(2)

Разделив первое на второе получим откуда

и ∆h = ∆h1 – ∆h2

Задача 2. В одном из двух одинаковых заполненных водой цилиндрических сообщающихся сосудах плавает шарик (рис). Масса шарика m, площадь сечения дна каждого сосуда S. На сколько изменится уровень воды, если вынуть шарик?

В решении изменим условие. Пусть шарик плавает

в цилиндрическом сосуде, изобразим как развивалось ситуация. Объем жидкости в сосуде не меняется

SH1 = SH2 – Vж

Vж – объем жидкости вытесненный погруженной частью тела. Из условия плавания

mg = rgVж

Для нашей задачи очевидно

Задача 3. В прямой цилиндрический сосуд, площадь основания которого 100см2, налили 1л соленой воды плотностью 1,15 г/см3 и опустили льдинку из пресной воды массой 1кг. Определите, как изменится уровень воды в сосуде, если половина льдинки растает. Считать, что при растворении соли в воде объем жидкости не изменится.

Найдем плотность воды после таяния льда r2 если до этого ее плотность была по условию

r1 =1,15 г/см3

r2 =1,1 г/см3

Изобразим развитие действия

Объем воды не меняется Из условия плавания mg = r1 gVж

В цилиндрическом сосуде с площадью дна s плавает плоская льдина

Для второго случая

Задача 4. В цилиндрическом сосуде площадью сечения 11см2 находится кубик льда массой 11г при температуре -100С. Какое минимальное количество теплоты нужно сообщить льду для того, чтобы уровень воды в сосуде не изменялся. При расчете принять, что при плавлении лед сохраняет форму куба.

Уровень вод в сосуде не будет меняться в процессе плавления льда когда он плавает так как в этом случае объем содержимого не меняется и давление на дно остается постоянным. Количество теплоты идет на нагревание и частичное плавление льда Q =cm∆t + l∆m; ∆m масса растаявшего льда ∆m = m –m1;

В цилиндрическом сосуде с площадью дна s плавает плоская льдинаm1 масса плавающего льда. Изобразим процесс на рисунке. В момент плавания льда m1g = rgVж =rgHa2 Объем воды равен . Заменим Н в последнем выражении раскрыв скобки получим с другой стороны m1=ra3 Заменим а отсюда Окончательно

Упражнения

1.  В цилиндрическом стакане с водой плавает льдинка, притянутая нитью ко дну. Когда льдинка растаяла, уровень воды изменился на ∆h. Каково было натяжение нити? Площадь дна стакана S

(Ответ T =r0gS∆h)

2.  Дубовый цилиндр высотой 12см плавает в стакане с водой, как изменится уровень воды в стакане, если поверх воды налить слой керосина толщиной 2 см. Площадь поперечного сечения стакана в четыре раза больше площади цилиндра. Плотность керосина и дуба равна 0,8 г/см3

(Ответ ∆Н = 4мм)

3.  В двух цилиндрических сообщающихся сосудах имеющих одинаковые поперечные сечения 11,5см2, находится ртуть. В один из сосудов поверх ртути наливают один литр воды, в другой один литр масла. На какое расстояние переместится уровень ртути в сосудах? Каков будет ответ, если в воду опустить плавать тело массой 150г? rm = 800кг/м3

(Ответ: 0,64см, 1,2см)

4.  В сосуд с водой цилиндрической формы, отпустили кусок льда, в который был вморожен осколок стекла. В результате уровень воды в сосуде поднялся на 11мм, а лед стал плавать целиком погрузившись в воду. На сколько опустится уровень воды в сосуде за время таяния льда? Плотность стекла 2г/см3

(Ответ ∆h =1мм)

5.  В цилиндрический сосуд радиусом 10см налили воду до уровня 15см. В сосуд бросили губку массой 60г которая впитала в себя часть воды, но продолжала плавать на поверхности. Найдите установившийся уровень воды в сосуде

(Ответ 15,3см)

Источник