В дне сосуда с водой имеется круглое отверстие

4.1. Найти скорость v течения углекислого газа по трубе, если известно, что за время t= 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг. Плотность газа р = 7,5 кг/м3. Диаметр трубы D= 2 см.

Решение:

 

4.2. В дне цилиндрического сосуда диаметром D= 0,5 м име круглое отверстие диаметром d= 1см. Найти зависимость скорости понижения уровня воды в сосуде от высоты hэтого уровня. Найти значение этой скорости для высоты h= 0,2 м.

Решение:

4.3. На столе стоит сосуд с водой, в боковой поверхности которого имеется малое отверстие, расположенное на рас h1 от дна сосуда и на расстоянии h2от уровня воды. Уровень воды в сосуде поддерживается постоянным. На каком расстоянии l от сосуда ( по горизонтали) струя воды падает на стол в случае, если: a) h1= 25 см, h2=16см ; б) h1 =16 см, h2 = 25 см?

Решение:

4.4. Сосуд, наполненный водой, сообщается с атмосферой через стеклянную трубку, закрепленную в горлышке сосуда. Кран К находится на расстоянии h2= 2 см от дна сосуда. Найти скорость v вытекания воды из крана в случае, если расстояние между нижним концом трубки и дном сосуда: а) h1 = 2 см; б) h1 =7,5 см; в) h1 =10 см.

Решение:

4.5. Цилиндрической бак высотой h= 1 м наполнен до краев водой. За какое время t вся вода выльется через отверстие, расположенное у дна бака, если площадь S2поперечного сечения отверстия в 400 раз меньше площади поперечного сечения бака? Сравнить это время с тем, которое понадобилось бы для вытекания того же объема воды, если бы уровень воды в баке поддерживался постоянным на высоте h= 1 м от отверстия.

Решение:

4.6. В сосуд льется вода, причем за единицу времени наливается объем воды V1= 0,2 л/с. Каким должен быть диаметр dотверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровне h =8,3 см?

Решение:

4.7. Какое давление р создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/с? Плотность краски р = 0,8 • 103 кг/м3.

Решение:

4.8. По горизонтальный трубе АВ течет жидкость. Разность уровней этой жидкости в трубах а и bравна dh = 10 см. Диаметры трубок а и bодинаковы. Найти скорость v течения жидкости в трубе АВ.

Решение:

4.9. Воздух продувается через трубку АВ. За единицу времени через трубку АВ протекает объем воздуха V1= 5 л/мин. Площадь поперечного сечения широкой части трубки АВ равна S1 = 2 см2, а узкой ее части и трубки abcравна S2= 0,5 см2. Найти разность уровней dhводы, налитой в трубку abc. Плотность воздуха р = 1,32 кг/м3.

Решение:

4.10. Шарик всплывает с постоянной скоростью v в жид, плотность р1которой в 4 раза больше плоскости мате шарика. Во сколько раз сила трения Fтр , действующая на всплывающий шарик, больше силы тяжести mg, действующей на этот шарик?

Решение:

4.11. Какой наибольшей скорости v может достичь дождевая капля диаметром d= 0,3 мм, если динамическая вязкость воз n= 1,2-10-5 Па*с?

Решение:

4.12. Стальной шарик диаметром d = 1мм падает с посто скоростью v = 0,185 см/с в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость nкасторо масла.

Решение:

4.13. Смесь свинцовых дробинок с диаметрами d1 =3 мм и d2= 1 мм опустили в бак с глицерином высотой h= 1 м. На сколько позже упадут на дно дробинки меньшего диаметра по сравнению с дробинками большего диаметра? Динамическая вязкость глицерина n= 1,47 Па*с.

Решение:

4.14. Пробковый шарик радиусом r = 5 мм всплывает в сосуде, наполненном касторовым маслом. Найти динамическую и кинематическую вязкости касторового масла, если шарик всплывает с постоянной скоростью v = 3,5 см/с.

Решение:

4.15. В боковую поверхность цилиндрического сосуда радиусом R = 2 см вставлен горизонтальный капилляр, внутренний радиус r= 1 мм которого и длина l = 2 см. В сосуд налито касторовое масло, динамическая вязкость которого n= 1,2Па*с. Найти зависимость скорости v понижения уровня касторового масла в сосуде от высоты hэтого уровня над капилляром. Найти значение этой скорости при h= 26 см.

Решение:

4.16. В боковую поверхность сосуда вставлен горизон капилляр, внутренний радиус которого r= 1 мм и длина l = 1,5 см. В сосуд налит глицерин, динамическая вязкость которого n= 1,0Па*с. Уровень глицерина в сосуде поддержи постоянным на высоте h = 0,18м выше капилляра. Какое время потребуется на то, чтобы из капилляра вытек объем глицерина V = 5 см3?

Решение:

4.17. На столе стоит сосуд, в боковую поверхность которого вставлен горизонтальный капилляр на высоте h1= 5 см от дна сосуда. Внутренний радиус капилляра r =1 мм и длина l = 1 см. В сосуд налито машинное масло, плотность которого р = 0,9 • 103 кг/м3 и динамическая вязкость n = 0,5 Па*с. Уровень масла в сосуде поддерживается постоянным на высоте h250 см выше капилляра. На каком расстоянии Lот конца капилляра (по горизонтали) струя масла падает на стол?

Решение:

4.18. Стальной шарик падает в широком сосуде, напол   трансформаторным   маслом,   плотность   которого р — 0,9 • 103 кг/ m3 и динамическая вязкость n= 0,8Па*с. Считая, что закон Стокса имеет место при числе Рейнольдса Re< 0,5 (если при вычислении Reв качестве величины Dвзять диаметр шарика), найти предельное значение диаметра Dшарика.

Решение:

4.19. Считая, что ламинарность движения жидкости (или газа) в цилиндрической трубе сохраняется при числе Рейнольдса Rе<3000 (если при вычислении Reв качестве величины Dвзять диаметр трубы), показать, что условия задачи 4.1 соответствуют ламинарному движению. Кинематическая вязкость газа v = 1,33 • 10-6 м2/с.

Решение:

4.20. Вода течет по трубе, причем за единицу времени через поперечное сечение трубы протекает объем воды V1= 200см3/с. Динамическая вязкость воды n =0,001 Па*с. При каком предельном значении диаметра Dтрубы движение воды остается ламинарным? (Смотри условие предыдущей задачи.)

Решение:

/>

Источник

Источник

Страница 1 из 2

211. Полый медный шар (ρ = 8,93 г/см3) весит в воздухе 3 Н, а в воде (ρ’ = 11 /см3) — 2Н. Пренебрегая выталкивающей силой воздуха определите объем внутренней полости шара.

212. На столе стоит цилиндрический сосуд, наполненный водой до уровня H = 20 см от дна. Если в воду (ρ = 1 г/см3) опустить плавать тонкостенный никелевый стакан (ρ` = 8,8 г/см3), то уровень воды поднимается на h = 2,2 см. Определить уровень H1 воды в сосуде, если стакан утопить.

213. По трубе радиусом r = 1,5 см течет углекислый газ (ρ = 7,5 кг/м3) Определите скорость его течения, если за t = 20 мин через поперечное сечение трубы протекает m = 950 г газа.

214. В бочку заливается вода со скоростью 200 см3/с. На дне бочки образовалось отверстие площадью поперечного сечения 0,8 см2. Пренебрегая вязкостью воды, определить уровень воды в бочке.

215. В сосуд заливается вода со скоростью 0,5 л/с. Пренебрегая вязкостью воды, определите диаметр отверстия в сосуде, при котором вода поддерживалась бы в нем на постоянном уровне h = 20 см

216. Бак цилиндрической формы площадью основания 10 м2 и объемом 100 м3 заполнен водой. Пренебрегая вязкостью воды, определить время, необходимое для полного опустошения бака, если на дне бака образовалось круглое отверстие площадью 8 см2.

217. Сосуд в виде полусферы радиусом R = 10 см до краев наполнен водой. На дне сосуда имеется отверстие площадью поперечного сечения S = 4 мм2. Определите время, за которое через это отверстие выльется столько воды, чтобы ее уровень в сосуде понизился на 5 см.

218. Определить работу, которая затрачивается на преодоление трения при перемещении воды объемом V = 1,5 м3 в горизонтальной трубе от сечения с давлением p1 = 40 кПа до сечения с давлением p2 = 20 кПа.

Читайте также:  Камни в почках и сосуды

219. В дне сосуда имеется отверстие диаметром d1. В сосуде вода поддерживается на постоянном уровне, равном h. Считая, что струя не разбрызгиваются, и, пренебрегая силами трения в жидкости, определить диаметр струи, вытекающей из сосуда на расстоянии h1 = 2h от его дна.

220. Площадь поршня, вставленного в горизонтально расположенный налитый водой цилиндр, S1 = 1,5 см2, а площадь отверстия S2 = 0,8 мм2. Пренебрегая трением и вязкостью, определить время t, за которое вытечет вода из цилиндра, если на поршень действовать постоянной силой F = 5 H, а ход поршня l = 5 см. Плотность воды ρ = 1000 кг/м3.

224. Для точного измерения малых разностей давления служат U-образные манометры, которые заполнены двумя различными жидкостями. В одном из них при использовании нитробензола (ρ = 1,203 г/см3) и воды (ρ‘ = 1,000 г/см3) получили разность уровней Δh = 26 мм. Определите разность давлений.

225. По горизонтальной трубе в направлении, указанном на рисунке стрелкой, течет жидкость. Разность уровней Δh жидкости в манометрических трубках 1 и 2 одинакового диаметра составляет 8 см. Определить скорость течения жидкости по трубе.

226. По горизонтальной трубе переменного сечения течет вода. Площади поперечных сечений трубы на разных её участках соответственно равна S1 = 10 см2 и S2 = 20 см2. Разность уровней Δh воды в вертикальных трубках одинакового составляет 20 см. Определить объем воды, проходящей за 1 с через сечение трубы.

227. Определите, на какую высоту h поднимется вода в вертикальной трубе, впаянной в узкую часть горизонтальной трубы диаметром d2 = 3 см, если в широкой части трубы диаметром d1 = 9 см скорость газа v1 = 25 см/с.

228. Определите разность давлений в широком и узком (d1 = 9 см, d2 = 6 см) коленах горизонтальной трубы, если в широком колене воздух (ρ = 1,29 кг/м3) продувается со скоростью v1 = 6 м/с.

229. Вдоль оси горизонтальной трубки диаметром 3 см, по которой течет углекислый газ (ρ = 7,5 кг/м3), установлена трубка Пито. Пренебрегая вязкостью, определить объем газа, проходящего за 1 с через сечение трубы, если разность уровней в жидкостном манометре составляет Δh = 0,5 см. Плотность жидкости принять равной ρ` = 1000 кг/м3.

230. Через трубку сечением S1 = 100 см2 продувается воздух со скоростью 2 м3/мин. В трубке имеется короткий участок с меньшим поперечным сечением S2 = 20 см2. Определите: 1) скорость v1 воздуха в широкой части трубки, 2) разность уровней Δh воды, используемой в подсоединенном к данной системе манометре. Плотность воздуха ρ = 1,3 кг/м3, воды ρ’ = 1000 кг/м3

231. Пренебрегая вязкостью жидкости, определить скорость истечения жидкости из малого отверстия в стенке сосуда, если высота h уровня жидкости над отверстием составляет 1,5 м.

Источник

211. Полый медный шар (ρ = 8,93 г/см3) весит в воздухе 3 Н, а в воде (ρ’ = 11 /см3) — 2Н. Пренебрегая выталкивающей силой воздуха определите объем внутренней полости шара.

212. На столе стоит цилиндрический сосуд, наполненный водой до уровня H = 20 см от дна. Если в воду (ρ = 1 г/см3) опустить плавать тонкостенный никелевый стакан (ρ` = 8,8 г/см3), то уровень воды поднимается на h = 2,2 см. Определить уровень H1 воды в сосуде, если стакан утопить.

213. По трубе радиусом r = 1,5 см течет углекислый газ (ρ = 7,5 кг/м3) Определите скорость его течения, если за t = 20 мин через поперечное сечение трубы протекает m = 950 г газа.

214. В бочку заливается вода со скоростью 200 см3/с. На дне бочки образовалось отверстие площадью поперечного сечения 0,8 см2. Пренебрегая вязкостью воды, определить уровень воды в бочке.

215. В сосуд заливается вода со скоростью 0,5 л/с. Пренебрегая
вязкостью воды, определите диаметр отверстия в сосуде, при котором вода
поддерживалась бы в нем на постоянном уровне h = 20 см

216. Бак цилиндрической формы площадью основания 10 м2 и объемом 100 м3
заполнен водой. Пренебрегая вязкостью воды, определить время,
необходимое для полного опустошения бака, если на дне бака образовалось
круглое отверстие площадью 8 см2.

217. Сосуд в виде полусферы радиусом R = 10 см до краев наполнен водой. На дне сосуда имеется отверстие площадью поперечного сечения S = 4 мм2. Определите время, за которое через это отверстие выльется столько воды, чтобы ее уровень в сосуде понизился на 5 см.

218. Определить работу, которая затрачивается на преодоление трения
при перемещении воды объемом V = 1,5 м3 в горизонтальной трубе от
сечения с давлением p1 = 40 кПа до сечения с давлением p2 = 20 кПа.

219. В дне сосуда имеется отверстие диаметром d1. В сосуде
вода поддерживается на постоянном уровне, равном h. Считая, что струя
не разбрызгиваются, и, пренебрегая силами трения в жидкости, определить
диаметр струи, вытекающей из сосуда на расстоянии h1 = 2h от его дна.

220. Площадь поршня, вставленного в горизонтально расположенный налитый водой цилиндр, S1 = 1,5 см2, а площадь отверстия S2 = 0,8 мм2.
Пренебрегая трением и вязкостью, определить время t, за которое вытечет
вода из цилиндра, если на поршень действовать постоянной силой F = 5 H,
а ход поршня l = 5 см. Плотность воды ρ = 1000 кг/м3.

224. Для точного измерения малых разностей давления служат U-образные
манометры, которые заполнены двумя различными жидкостями. В одном из
них при использовании нитробензола (ρ = 1,203 г/см3) и воды (ρ‘ = 1,000 г/см3) получили разность уровней Δh = 26 мм. Определите разность давлений.

225. По горизонтальной трубе в направлении, указанном на рисунке
стрелкой, течет жидкость. Разность уровней Δh жидкости в манометрических
трубках 1 и 2 одинакового диаметра составляет 8 см. Определить скорость
течения жидкости по трубе.

226. По горизонтальной трубе переменного сечения течет вода. Площади
поперечных сечений трубы на разных её участках соответственно равна S1 = 10 см2 и S2 = 20 см2.
Разность уровней Δh воды в вертикальных трубках одинакового составляет
20 см. Определить объем воды, проходящей за 1 с через сечение трубы.

Читайте также:  Процедура проведения узи сосудов

227. Определите, на какую высоту h поднимется вода в вертикальной трубе, впаянной в узкую часть горизонтальной трубы диаметром d2 = 3 см, если в широкой части трубы диаметром d1 = 9 см скорость газа v1 = 25 см/с.

228. Определите разность давлений в широком и узком (d1 = 9 см, d2 = 6 см) коленах горизонтальной трубы, если в широком колене воздух (ρ = 1,29 кг/м3) продувается со скоростью v1 = 6 м/с.

229. Вдоль оси горизонтальной трубки диаметром 3 см, по которой течет углекислый газ (ρ = 7,5 кг/м3),
установлена трубка Пито. Пренебрегая вязкостью, определить объем газа,
проходящего за 1 с через сечение трубы, если разность уровней в
жидкостном манометре составляет Δh = 0,5 см. Плотность жидкости принять
равной ρ` = 1000 кг/м3.

230. Через трубку сечением S1 = 100 см2 продувается воздух со скоростью 2 м3/мин. В трубке имеется короткий участок с меньшим поперечным сечением S2 = 20 см2. Определите: 1) скорость v1 воздуха в широкой части трубки, 2) разность уровней Δh воды, используемой в подсоединенном к данной системе манометре. Плотность воздуха ρ = 1,3 кг/м3, воды ρ’ = 1000 кг/м3

231. Пренебрегая вязкостью жидкости, определить скорость истечения
жидкости из малого отверстия в стенке сосуда, если высота h уровня
жидкости над отверстием составляет 1,5 м.

232. В боковой поверхности цилиндрического сосуда, стоящего на
горизонтальной поверхности, имеется отверстие, поперечное сечение
которого значительно меньше поперечного сечения самого сосуда. Отверстие
расположено на расстоянии h1 = 49 см от уровня воды в сосуде, который поддерживается постоянным, и на расстоянии h2
= 25 см от дна сосуда. Пренебрегая вязкостью воды, определите
расстояние по горизонтали от отверстия до места, куда попадает струя
воды.

233. На столе стоит наполненный водой широкий цилиндрический сосуд высотой h
= 40 см. Пренебрегая вязкостью, определите, на какой высоте от дна
сосуда должно располагаться небольшое отверстие, чтобы расстояние по
горизонтали от отверстия до места, куда попадает струя воды, было
максимальным.

234. Для вытекания струи жидкости из сосуда с постоянной скоростью
применяют устройство, приведенное на рисунке (сосуде Мариотта).
Определить скорость истечения струи.

235. Площадь соприкосновения слоев текущей жидкости S = 10 см2, коэффициент динамической вязкости жидкости η = 10-3 Па с, а возникающая сила трения между слоями F = 0,1 мН. Определить градиент скорости.

236. Шарик всплывает с постоянной скоростью в жидкости, плотность
которой в три раза больше плотности материала шарика. Определить
отношение силы трения, действующей на всплывающий шарик, к его весу.

237. Смесь свинцовых дробинок (плотность ρ = 11,3 г/см3) диаметром 4 мм и 2 мм одновременно опускают в широкий сосуд глубиной h = 1,5 м с глицерином (плотность ρ = 1,26 г/см3,
динамическая вязкость η = 1,48 Па*с). Определить, насколько больше
времени потребуется дробинам меньшего размера, чтобы достичь дна сосуда.

238. В широком сосуде, наполненном глицерином (плотность ρ = 1,26 г/см3, динамическая вязкость η = 1,48 Па * с), падает свинцовый шарик (плотность ρ = 11,3 г/см3).
Считая, что при числе Рейнольдса Re <= 0,5 выполняется закон Стокса
(при вычислении Re в качестве характерного размера берется диаметр
шарика), определите предельный диаметр шарика.

239. Стальной шарик (плотность ρ = 9 г/см3) диаметром d = 0,8 см падает с постоянной скоростью в касторовом масле (плотность ρ` = 0,96 г/см3, динамическая вязкость η = 0,99 Па*с). Учитывая, что критическое значение числа Рейнольдса Reкр = 0,5, определить характер движения масла, обусловленный падением в нем шарика.

240. Пробковый шарик (плотность ρ = 0,2 г/см3) диаметром d = 6 мм всплывает в сосуде, наполненном касторовым маслом (плотность ρ` = 0,96 г/см3),
с постоянной скоростью v = 1,5 см/с. Определить для касторового масла:
1) динамическую вязкость η; 2) кинетическую вязкость ν.

241. В боковую поверхность сосуда вставлен горизонтальный капилляр с внутренним диаметром d = 2 мм и длиной l = 1,2 см. Через капилляр вытекает касторовое масло (плотность ρ = 0,96 г/см3, динамическая вязкость η = 0,99 Па * с), уровень которого в сосуде поддерживается постоянным на высоте h = 30 см выше капилляра. Определите время, которое требуется для протекания через капилляр 10 см3 масла.

242. В боковую поверхность цилиндрического сосуда D вставлен капилляр
с внутренним диаметром d и длиной l. В сосуд налита жидкость с
динамической вязкостью η. Определить зависимость скорости и понижение
уровня жидкости в сосуде от высоты h этого уровня над капилляром.

243. В боковую поверхность цилиндрического сосуда, установленного на столе, вставлен на высоте h1 = 10 см от его дна капилляр с внутренним диаметром d = 2 мм и длиной l = 1 см. В сосуде поддерживается постоянный уровень машинного масла (плотность ρ = 0,9 г/см3, динамическая вязкость η = 0,1 Па * с) на высоте h2 = 70 см выше капилляра. Определите расстояние по горизонтали от конца капилляра до места, куда попадает струя масла.

244. Определить наибольшую скорость, которую может приобрести свободно падающий в воздухе (ρ = 1,29 кг/м3) свинцовый шарик (ρ` = 11,3 г/см3) массой m = 12 г. Коэффициент сопротивления Cx принять равным 0,5.

245. Парашют (m1 = 32 кг) пилот (m2 = 65 кг) в раскрытом состоянии имеет форму полусферы диаметром d = 12 м, обладая коэффициентом сопротивления Cx = 1,3. Определить максимальную скорость, развиваемую пилотом, при плотности воздуха 1,29 кг/м3.

246. Автомобиль с площадью миделя (наибольшая площадь сечения в направлении, перпендикулярном скорости) S = 2,2 м2, коэффициентом лобового сопротивления Сх
= 0,4 и максимальной мощностью P = 45 кВт может на горизонтальных
участках дороги развивать скорость до 140 км/ч. При реконструкции
автомобиля уменьшают площадь миделя до S1 = 2 м2, оставляя Сх
прежним. Принимая силу трения о поверхность дороги постоянной,
определить, какую максимальную мощность должен иметь автомобиль, чтобы
он развивал на горизонтальных участках дороги скорость до 160 км/ч.
Плотность воздуха принять равной 1,29 кг/м3.

247. Объясните, зависит ли разность давлений на нижнюю и верхнюю поверхность крыла самолета от высоты его подъема.

Источник