В два цилиндрических сосуда имеющих разную площадь

Страница 1 из 2

211. Полый медный шар (ρ = 8,93 г/см3) весит в воздухе 3 Н, а в воде (ρ’ = 11 /см3) – 2Н. Пренебрегая выталкивающей силой воздуха определите объем внутренней полости шара.

212. На столе стоит цилиндрический сосуд, наполненный водой до уровня H = 20 см от дна. Если в воду (ρ = 1 г/см3) опустить плавать тонкостенный никелевый стакан (ρ` = 8,8 г/см3), то уровень воды поднимается на h = 2,2 см. Определить уровень H1 воды в сосуде, если стакан утопить.

213. По трубе радиусом r = 1,5 см течет углекислый газ (ρ = 7,5 кг/м3) Определите скорость его течения, если за t = 20 мин через поперечное сечение трубы протекает m = 950 г газа.

214. В бочку заливается вода со скоростью 200 см3/с. На дне бочки образовалось отверстие площадью поперечного сечения 0,8 см2. Пренебрегая вязкостью воды, определить уровень воды в бочке.

215. В сосуд заливается вода со скоростью 0,5 л/с. Пренебрегая вязкостью воды, определите диаметр отверстия в сосуде, при котором вода поддерживалась бы в нем на постоянном уровне h = 20 см

216. Бак цилиндрической формы площадью основания 10 м2 и объемом 100 м3 заполнен водой. Пренебрегая вязкостью воды, определить время, необходимое для полного опустошения бака, если на дне бака образовалось круглое отверстие площадью 8 см2.

217. Сосуд в виде полусферы радиусом R = 10 см до краев наполнен водой. На дне сосуда имеется отверстие площадью поперечного сечения S = 4 мм2. Определите время, за которое через это отверстие выльется столько воды, чтобы ее уровень в сосуде понизился на 5 см.

218. Определить работу, которая затрачивается на преодоление трения при перемещении воды объемом V = 1,5 м3 в горизонтальной трубе от сечения с давлением p1 = 40 кПа до сечения с давлением p2 = 20 кПа.

219. В дне сосуда имеется отверстие диаметром d1. В сосуде вода поддерживается на постоянном уровне, равном h. Считая, что струя не разбрызгиваются, и, пренебрегая силами трения в жидкости, определить диаметр струи, вытекающей из сосуда на расстоянии h1 = 2h от его дна.

220. Площадь поршня, вставленного в горизонтально расположенный налитый водой цилиндр, S1 = 1,5 см2, а площадь отверстия S2 = 0,8 мм2. Пренебрегая трением и вязкостью, определить время t, за которое вытечет вода из цилиндра, если на поршень действовать постоянной силой F = 5 H, а ход поршня l = 5 см. Плотность воды ρ = 1000 кг/м3.

224. Для точного измерения малых разностей давления служат U-образные манометры, которые заполнены двумя различными жидкостями. В одном из них при использовании нитробензола (ρ = 1,203 г/см3) и воды (ρ’ = 1,000 г/см3) получили разность уровней Δh = 26 мм. Определите разность давлений.

225. По горизонтальной трубе в направлении, указанном на рисунке стрелкой, течет жидкость. Разность уровней Δh жидкости в манометрических трубках 1 и 2 одинакового диаметра составляет 8 см. Определить скорость течения жидкости по трубе.

226. По горизонтальной трубе переменного сечения течет вода. Площади поперечных сечений трубы на разных её участках соответственно равна S1 = 10 см2 и S2 = 20 см2. Разность уровней Δh воды в вертикальных трубках одинакового составляет 20 см. Определить объем воды, проходящей за 1 с через сечение трубы.

227. Определите, на какую высоту h поднимется вода в вертикальной трубе, впаянной в узкую часть горизонтальной трубы диаметром d2 = 3 см, если в широкой части трубы диаметром d1 = 9 см скорость газа v1 = 25 см/с.

228. Определите разность давлений в широком и узком (d1 = 9 см, d2 = 6 см) коленах горизонтальной трубы, если в широком колене воздух (ρ = 1,29 кг/м3) продувается со скоростью v1 = 6 м/с.

229. Вдоль оси горизонтальной трубки диаметром 3 см, по которой течет углекислый газ (ρ = 7,5 кг/м3), установлена трубка Пито. Пренебрегая вязкостью, определить объем газа, проходящего за 1 с через сечение трубы, если разность уровней в жидкостном манометре составляет Δh = 0,5 см. Плотность жидкости принять равной ρ` = 1000 кг/м3.

230. Через трубку сечением S1 = 100 см2 продувается воздух со скоростью 2 м3/мин. В трубке имеется короткий участок с меньшим поперечным сечением S2 = 20 см2. Определите: 1) скорость v1 воздуха в широкой части трубки, 2) разность уровней Δh воды, используемой в подсоединенном к данной системе манометре. Плотность воздуха ρ = 1,3 кг/м3, воды ρ’ = 1000 кг/м3

231. Пренебрегая вязкостью жидкости, определить скорость истечения жидкости из малого отверстия в стенке сосуда, если высота h уровня жидкости над отверстием составляет 1,5 м.

Читайте также:  Препараты от спазма сосудов головного

Источник

Автор Тема: Жидкости и газы из сборника задач Савченко Н.Е. (Прочитано 48508 раз)

0 Пользователей и 1 Гость просматривают эту тему.

361. В цилиндрических сообщающихся сосудах находится ртуть. Отношение диаметров сосудов n = d1/d2 = 0,25. В узкий сосуд наливают воду; высота столба воды h = 80 см. На сколько опустится уровень ртути в узком сосуде и на сколько он поднимется в широком? Плотность воды ρ1 = 1,0⋅103 кг/м3, ртути ρ2 = 13,6⋅103 кг/м3.

Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):

рА = рВ,

где pА = ρ2⋅g⋅h2, pВ = ρ1⋅g⋅h. Тогда

ρ2⋅g⋅h2 = ρ1⋅g⋅h или ρ1⋅h = ρ2⋅h2. (1)

Из рисунка 1 видно, что

h2 = Δh1 + Δh2, (2)

где Δh1 – высота, на которую опустится ртуть в узком сосуде, Δh2 – высота, на которую поднимется ртуть в широком сосуде.

Из условия не сжимаемости воды

ΔV1 = ΔV2, S1⋅Δh1 = S2⋅Δh2,

где [ S_{1} = frac{pi cdot d_{1}^{2} }{4}, ; ; ; S_{2} =frac{pi cdot d_{2}^{2} }{4} ] – площади поперечного сечения сосудов, d1/d2 = n – по условию. Тогда

[ frac{pi cdot d_{1}^{2} }{4} cdot Delta h_{1} =frac{pi cdot d_{2}^{2} }{4} cdot Delta h_{2}, ; ; ; Delta h_{2} =Delta h_{1} cdot left(frac{d_{1} }{d_{2} } right)^{2} =n^{2} cdot Delta h_{1}.

]

После подстановки в уравнение (2) получаем:

h2 = Δh1 + n2⋅Δh1 = Δh1⋅(1 + n2).

Подставим в уравнение (1)

[ rho _{1} cdot h=rho _{2} cdot Delta h_{1} cdot left(1+n^{2} right), ; ; ; Delta h_{1} =frac{rho _{1} cdot h}{rho _{2} cdot left(1+n^{2} right)}, ; ; ; Delta h_{2} =frac{rho _{1} cdot h cdot n^{2} }{rho _{2} cdot left(1+n^{2} right)}, ]

Δh1 = 5,5⋅10-2 м, Δh2 = 3,5⋅10-3 м.

Записан

362. В сообщающиеся сосуды налита ртуть, поверх которой в один из сосудов налита вода. Разность уровней ртути Δh = 20 мм. Плотность ртути ρ1 = 13,6⋅103 кг/м3, воды ρ2 = 1,0⋅103 кг/м3. Найти высоту столба воды.

Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):

рА = рВ,

где pА = ρ1⋅g⋅Δh, pВ = ρ2⋅g⋅h2. Тогда

ρ1⋅g⋅Δh = ρ2⋅g⋅h2 или ρ1⋅Δh = ρ2⋅h2,

[ h_{2} =frac{rho _{1} cdot Delta h}{rho _{2}}, ]

h2 = 0,27 м.

Записан

363. В двух сообщающихся цилиндрических сосудах с одинаковыми поперечными сечениями площадью S = 1⋅10-2 м2 находится ртуть. В одни из сосудов поверх ртути наливают воду массой m1 = 20 кг и опускают в нее плавать груз массой m2 = 7,2 кг. На сколько поднимется уровень ртути во втором сосуде? Плотность ртути ρ = 13,6⋅103 кг/м3.

Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):

рА = рВ,

где pА = ρ⋅g⋅h. Давление в точке В можно найти разными способами.

1 способ. Давление pВ = ρ1⋅g⋅h3, где ρ1 – плотность воды, h3 = h1 + h2, h1 – высота столбца воды массой m1, h2 – высота столбца воды, вытесненная при погружении в воду тела массой m2 и т.п.

2 способ. Так как тело плавает в воде, то давление воды и плавающего тела в точке В

[ p_{B} = frac{left(m_{1} +m_{2} right)cdot g}{S}. ]

Тогда

[ rho cdot g cdot h=frac{left(m_{1} +m_{2} right)cdot g}{S}, ;; ; rho cdot h=frac{m_{1} +m_{2} }{S}.;;; (1) ]

Из рисунка 1 видно, что

h = Δh1 + Δh2,

где Δh1 – высота, на которую поднимется ртуть, Δh2 – высота, на которую ртуть опустится.

Из условия не сжимаемости воды

ΔV1 = ΔV2, S⋅Δh1 = S⋅Δh2, Δh1 = Δh2.

В итоге получаем, с учетом уравнения (1):

[ h=2Delta h_{1} =frac{m_{1} +m_{2} }{Scdot rho }, ; ; ; Delta h_{1} =frac{m_{1} +m_{2} }{2Scdot rho }, ]

Δh1 = 0,1 м.

Записан

364. Шарик массой m = 40 г плавает в одном из двух одинаковых цилиндрических сообщающихся сосудов, заполненных водой (рис. 1). Площадь поперечного сечения каждого сосуда S = 20 см2. На сколько изменится уровень воды, если вынуть шарик? Плотность воды ρ = 1,0 г/см3.

Решение. На шарик действуют силы тяжести (m⋅g) и архимедова сила (FA). Запишем условие плавания тела:

FA = m⋅g,

где FA = ρ⋅g⋅Vn, Vn – объем части шарика, погруженного в воду. Тогда

ρ⋅g⋅Vn = m⋅g или ρ⋅Vn = m.

Если шарик вынуть из воды, то объем воды уменьшиться на Vn. Так как вода занимается два сообщающихся сосуда площадью S каждый, то уровень воды (высота столбца) уменьшиться на

Читайте также:  Сужение сосудов понижает давление

[ Delta h=frac{V_n}{2S}=frac{m}{2rho cdot S}, ]

Δh = 1⋅10-2 м.

Записан

365. Два цилиндрических сосуда соединены у дна тонкой трубкой с краном (рис. 1). Один сосуд имеет площадь поперечного сечения S1 = 15 см2, второй – S2 = 5,0 см2. Сосуды заполнены водой: первый до высоты h1 = 20 см, второй до высоты h2 = 40 см. Каков будет уровень воды в сосудах, если открыть кран К в соединительной трубке?

Решение. Так как давление на дно сосуда больше в правом сосуде, то после открытия кран К вода будет перетекать с правого сосуда в левый. Пусть высота столбца жидкости в сосудах станет равной h3, уровень воды в сосуде площадью S1 увеличится на Δh1, в сосуде площадью S2 уменьшится на Δh2 (рис. 2). Из рисунка видно, что

Δh1 = h3 – h1, (1)

Δh2 = h2 – h3. (2)

Из условия не сжимаемости воды

ΔV1 = ΔV2, S1⋅Δh1 = S2⋅Δh2. (3)

Решим систему уравнений (1)-(3). Например,

S1⋅(h3 – h1) = S2⋅(h2 – h3), h3⋅(S1 + S2) = S1⋅h1 + S2⋅h2,

[ h_{3} =frac{S_{1} cdot h_{1} +S_{2} cdot h_{2} }{S_{1} +S_{2}}, ]

h3 = 0,25 м.

« Последнее редактирование: 13 Декабря 2011, 19:00 от alsak »

Записан

366. Деталь отлита из сплава железа и никеля. Определить, сколько процентов по объему составляют железо и никель, а также объем всей детали, если в воздухе деталь весит Р1 = 33,52 Н, а в воде – Р2 = 29,60 Н. Плотность железа ρ1 = 7,9⋅103 кг/м3, никеля ρ2 = 8,9⋅103 кг/м3, воды ρ3 = 1,0⋅103 кг/м3. Архимедову силу в воздухе не учитывать.

Решение. Будем считать, что вес детали определяют при помощи динамометра. Тогда вес детали – это сила упругости пружины динамометра.

В воздухе на деталь, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g) и сила упругости (Fy1) (архимедову силу в воздухе не учитывать) (рис. 1). Из проекции второго закона Ньютона получаем:

P1 = Fy1 = (m1 + m2)⋅g,

где m1 = ρ1⋅V1 – масса железа в детали, V1 – объем железа, m2 = ρ2⋅V2 – масса никеля в детали, V2 – объем никеля. Тогда

P1 = (ρ1⋅V1 + ρ2⋅V2)⋅g. (1)

В воде на деталь, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g), сила упругости (Fy2) и архимедова сила (FA) (рис. 2). Из проекции второго закона Ньютона получаем:

P2 = Fy2 = (m1 + m2)⋅g – FA,

где FA = ρ3⋅g⋅V, V = V1 + V2 – объем всей детали. Тогда

P2 = (ρ1⋅V1 + ρ2⋅V2)⋅g – ρ3⋅g⋅(V1 + V2). (2)

Решим систему уравнений (1)-(2) и найдем V1, V2 и V. Например,

[ P_{2} =P_{1} -rho _{3} cdot gcdot left(V_{1} +V_{2} right), ; ; ; V=V_{1} +V_{2} =frac{P_{1} -P_{2} }{rho _{3} cdot g}, ]

V = 4⋅10-4 м3.

V2 = V – V1, P1 = (ρ1⋅V1 + ρ2⋅(V – V1))⋅g,

(ρ1 – ρ2)⋅V1⋅g = P1 – ρ2⋅V⋅g,

[ V_{1} =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} -frac{rho _{2} cdot V}{rho _{1} -rho _{2} }, ; ; ; frac{V_{1} }{V} =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} cdot frac{1}{V} -frac{rho _{2} }{rho _{1} -rho _{2} } = ]

[ =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} cdot frac{rho _{3} cdot g}{P_{1} -P_{2} } -frac{rho _{2} }{rho _{1} -rho _{2} } =left(frac{P_{1} cdot rho _{3} }{P_{1} -P_{2} } -rho _{2} right)cdot frac{1}{rho _{1} -rho _{2}}, ]

V1/V = 0,35 (35%), V2/V = 1 – 0,35 = 0,65 (65%).

Записан

367. Браслет массой М = 80 г сделан из сплава золота и серебра. Вычислить массу золота, содержащегося в браслете, располагая следующими данными: плотность золота ρ1 = 19,3 г/см3, плотность серебра ρ2 = 10,5 г/см3; при погружении браслета в воду, находящуюся в сосуде с вертикальными стенками и площадью основания S = 25 см2, уровень воды поднимается на h = 2,0 мм.

Решение. Масса браслета равна

M = m1 + m2,

где m1 = ρ1⋅V1 – масса золота в браслете, V1 – объем золота, m2 = ρ2⋅V2 – масса серебра в браслете, V2 – объем серебра. Тогда

M = ρ1⋅V1 + ρ2⋅V2. (1)

При погружении в воду браслет вытесняет объем воды, равный объему тела, т.е.

V = S⋅h = V1 + V2. (2)

Решим систему уравнений (1)-(2). Например,

V2 = S⋅h – V1, M = ρ1⋅V1 + ρ2⋅(S⋅h – V1),

(ρ1 – ρ2)⋅V1 = M – ρ2⋅S⋅h,

[ V_{1} =frac{M-rho _{2} cdot Scdot h}{rho _{1} -rho _{2}}, ; ; ; m_{1} =rho _{1} cdot V_{1} =rho _{1} cdot frac{M-rho _{2} cdot Scdot h}{rho _{1} -rho _{2}}, ]

m1 = 6,0⋅10-2 кг.

Записан

368. Согласно желанию сиракузского властителя, Архимед должен был определить содержание золота в короне, состоящей из золотых и серебряных частей, не разрушая ее. Для этого Архимед взвесил корону в воздухе и получил вес P1 = 25,4 Н, а затем в воде, получив вес Р2 = 23,4 Н. Зная плотность золота, серебра и воды (соответственно ρ1 = 19,3 г/см3, ρ2 = 10,5 г/см3 и ρ3 = 1,00 г/см3), определить, как и Архимед, массу золота, содержащегося в этой короне. Ускорение свободного падения считать равным g = 10,0 м/с2.

Читайте также:  Эндартериит сосудов нижних конечностей

Решение. Будем считать, что вес короны определяли при помощи динамометра. Тогда вес короны – это сила упругости пружины динамометра.

В воздухе на корону, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g) и сила упругости (Fy1) (архимедову силу в воздухе не учитывать) (рис. 1). Из проекции второго закона Ньютона получаем:

P1 = Fy1 = (m1 + m2)⋅g,

где m1 = ρ1⋅V1 – масса золота в короне, V1 – объем золота, m2 = ρ2⋅V2 – масса серебра в детали, V2 – объем серебра. Тогда

P1 = (ρ1⋅V1 + ρ2⋅V2)⋅g. (1)

В воде на корону, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g), сила упругости (Fy2) и архимедова сила (FA) (рис. 2). Из проекции второго закона Ньютона получаем:

P2 = Fy2 = (m1 + m2)⋅g – FA,

где FA = ρ3⋅g⋅V, V = V1 + V2 – объем всей короны. Тогда

P2 = (ρ1⋅V1 + ρ2⋅V2)⋅g – ρ3⋅g⋅(V1 + V2). (2)

Решим систему уравнений (1)-(2), найдем V1 и m1. Например,

[ P_{2} =P_{1} -rho _{3} cdot gcdot left(V_{1} +V_{2} right), ; ; ; V=V_{1} +V_{2} =frac{P_{1} -P_{2} }{rho _{3} cdot g}, ]

V2 = V – V1, P1 = (ρ1⋅V1 + ρ2⋅(V – V1))⋅g,

(ρ1 – ρ2)⋅V1⋅g = P1 – ρ2⋅V⋅g,

[ V_{1} =frac{P_{1} -rho _{2} cdot Vcdot g}{left(rho _{1} -rho _{2} right)cdot g} =frac{rho _{3} cdot P_{1} -rho _{2} cdot left(P_{1} -P_{2} right)}{left(rho _{1} -rho _{2} right)cdot rho _{3} cdot g}, ; ; ; m_{1} =rho _{1} cdot V_{1} =rho _{1} cdot frac{rho _{3} cdot P_{1} -rho _{2} cdot left(P_{1} -P_{2} right)}{left(rho _{1} -rho _{2} right)cdot rho _{3} cdot g} , ]

m1 = 0,965 кг.

Записан

369. В цилиндрическом сосуде с не смешивающейся с водой жидкостью, плотность которой ρ = 1,2 г/см3, при температуре t = 0 °С плавает льдинка массой m = 1 кг. На сколько изменится уровень этой жидкости в сосуде, когда льдинка растает? Площадь основания сосуда S = 0,1 м2.

Решение. После того как льдинка растаяла, объем жидкости в сосуде увеличился на объем воды V, полученной из льдинки. Но плотность воды меньше плотности жидкости, поэтому вся вода окажется сверху, и уровень жидкости опустится до первоначальной высоты h.

1 способ. Объем вытесненной жидкости

[V_{vt} =V_{1} +V_{2} =frac{mcdot g}{rho cdot g} =frac{m}{rho } =S_{1} cdot left(h_{1} +h_{2} right).]

Объем жидкости, которая поднялась – это

[V_{1} =left(S-S_{1} right)cdot h_{2} =S_{1} cdot h_{1} .]

Из второго уравнения получаем

[S_{1} cdot left(h_{1} +h_{2} right)=Scdot h_{2} .]

И тогда

[S_{1} cdot left(h_{1} +h_{2} right)=Scdot h_{2} =frac{m}{rho } ,; ; h_{2} =frac{m}{Scdot rho } .]

2 способ. Изменение давления на дно сосуда равно

[Delta p=frac{mcdot g}{S} =rho cdot gcdot Delta h,; ; Delta h=h_{2} =frac{m}{rho cdot S} .]

Ответ. Уровень жидкости опустится на h2 = 8,3⋅10-3 м.

« Последнее редактирование: 21 Августа 2019, 17:27 от alsak »

Записан

370. Теплоход, войдя в гавань, выгрузил часть груза; при этом его осадка уменьшилась на h = 0,6 м. Найти массу груза, оставленного теплоходом в гавани, если площадь поперечного сечения теплохода на уровне ватерлинии S = 5400 м2. Плотность воды ρ = 1⋅103 кг/м3.

Решение. На теплоход с грузом действуют сила тяжести теплохода (m1⋅g), архимедова сила (FA1) и вес груза (m2⋅g) (рис. 1, а). Тело неподвижно, поэтому уравнение второго закона Ньютона в проекции на вертикальную ось имеет вид:

FA1 – m1⋅g – m2⋅g = 0,

где FA1 = ρ⋅g⋅V1, V1 = S⋅h1, h1 – глубина погружения теплохода с грузом. Тогда

ρ⋅g⋅S⋅h1 – m1⋅g – m2⋅g = 0. (1)

На теплоход без груза действуют сила тяжести теплохода (m1⋅g), архимедова сила (FA2) (рис. 1, б). В проекции на вертикальную ось получаем:

FA2 – m1⋅g = 0,

где FA2 = ρ⋅g⋅V2, V2 = S⋅h2, h2 – глубина погружения теплохода без груза, h2 = h1 – h. Тогда

ρ⋅g⋅S⋅(h1 – h) – m1⋅g = 0. (2)

Решим систему уравнений (1)-(2). Например,

ρ⋅g⋅S⋅h1 – m1⋅g = m2⋅g, ρ⋅g⋅S⋅h1 – m1⋅g – ρ⋅g⋅S⋅h = 0,

m2⋅g = ρ⋅g⋅S⋅h, m2 = ρ⋅S⋅h,

m2 = 3,2⋅106 кг.

Записан

Источник