В два одинаковых сосуда содержащих воду налили ртуть
#хакнем_физика ???? рубрика, содержащая интересный, познавательный контент по физике как для школьников, так и для взрослых ????
Если решая математические задачи, следует руководствоваться только условиями, в том числе и неявно заданными (например: находя градусную меру одного из смежных углов в случаях, когда известна градусная мера другого, непременной частью условия является значение суммы градусных мер смежных углов, равной 180 град.), то при решении физических задач следует учитывать ВСЕ физические явления и процессы, влияющие на результат рассматриваемой в задаче ситуации.
Вот для примера известная и часто встречающаяся во многих учебниках и сборниках задач, в том числе и олимпиадных (и не только для семиклассников) по физике.
ЗАДАЧА
В стакане с водой плавает кусок льда. Изменится ли уровень воды, когда лёд растает?
Прежде чем продолжить чтение, предлагаю читателю дать (хотя бы для себя) обоснованный ответ на вопрос задачи…
В «Сборнике вопросов и задач по физике» [Н.И. Гольдфарб, изд. 2, «Высшая школа», М.: 1969] эта задача, помещённая как часть № 10.7 на стр. 48, на стр.193 приводится ответ:
«Лёд вытесняет воду, вес которой равен весу льда. Когда лёд растает, образуется такое же количество воды, поэтому уровень не изменится».
Такой же ответ приводится и во многих других сборниках…
А вот в популярнейшем и по сей день, выдержавшим множество изданий трёхтомнике «Элементарный учебник физики» под редакцией академика Г.С. Ландсберга [т. I, изд. 7, стереотипное, «Наука», М.: 1971] ответа на эту задачу (№ 162.2, стр. 351) не приводится. И это не случайно!
Что же не учтено в вышеприведённом ответе? Правильно! Не учтено, что при таянии льда вода в стакане охлаждается — именно поэтому мы и бросаем туда кусочек льда!
Вот как должен выглядеть правильный ответ:
«При таянии льда вода в стакане охлаждается. При охлаждении все вещества уменьшаются в объёме. Однако вода, единственная из всех известных веществ, имеет наибольшую плотность при температуре +4 град. С, а это значит, что при дальнейшем охлаждении данная масса воды увеличивается в объёме, что, как мне это было известно из курса природоведения в 5 классе (1961/1962 учебный год), является условием сохранения жизни на Земле, поскольку позволяет достаточно глубоким водоёмам не промерзать до самого дна!).
При этом возможно три варианта развития ситуации:
I. Если температура воды до начала таяния льда была выше 4 град. С и, хотя и понизилась после таяния льда, но осталась выше этой температуры, то уровень воды в стакане уменьшится.
II. Если температура воды до начала таяния льда была ниже 4 град. С, а после таяния льда ещё и уменьшилась, то уровень воды в стакане увеличится.
III. В случае, когда начальная температура воды была выше 4 град. С, а после того как лёд растаял, оказалась ниже этой температуры, то об уровне ничего определённого сказать нельзя — нужны конкретные данные о температуре и массе воды и льда, чтобы дать точный ответ на вопрос задачи!».
С этой задачей связана для меня одна интересная история.
Лет 15 назад во дворе дома, в котором я живу, ко мне с грустным выражением лица подошёл паренёк по имени Серёжа и попросил помочь подготовиться к предстоящей ему завтра апелляции по физике в нашем Политехническом институте (ныне Технический университет).
Поскольку времени было слишком мало, то я ограничился советом: если, по его мнению, апелляция пройдёт не очень удачно, и надежды исправить тройку на вступительном экзамене не будет, то попросить экзаменатора ответить на вопрос этой задачи и заставил его дословно вызубрить приведённый выше ответ и даже отработал с ним интонацию изложения этого ответа. На следующий вечер он подошёл ко мне с достаточно счастливым видом.
Вот его рассказ, каким я его запомнил:
«Всё получилось так, как Вы и хотели. Апелляцию проводили два человека: профессор и ассистент кафедры общей физики института. Мне выпало общаться с ассистентом, а профессор в это время общался с другим абитуриентом.
В ответ на мою просьбу ответить на мой вопрос ассистент слегка улыбнувшись сказал: «Пожалуйста…».
«После того, как я проговорил условие задачи, ассистент, широко улыбнувшись, произнёс: «Ну, это известная задача. Уровень воды не изменится — это следует из закона Архимеда: плавающий лёд вытесняет массу воды, равную массе льда. Образовавшаяся при таянии льда вода заполнит тот объём, который занимал в воде плавающий лёд…».
«Позвольте с Вами не согласиться», — начал я и затем совершенно спокойно слово в слово пересказал заготовленный нами ответ…
В это время профессор жестом остановил своего абитуриента и стал внимательно меня слушать…
Когда я закончил, возникла небольшая пауза…Профессор, обращаясь к ассистенту спросил: «Что скажешь?».
«Кажется, всё верно», — неуверенно ответил тот, на что профессор сказал, что никогда ещё не слышал столь аргументированного ответа, после чего, уже обращаясь ко мне, добавил: «Молодой человек, мы, к сожалению, не можем поднять Вам оценку сразу на два балла, но четвёрку Вы очевидно заслужили!»».
Мне остаётся лишь добавить, что Серёжа был зачислен студентом!…
Наши читатели могут поделиться своим мнением по поводу решения задачи. Если вам было интересно, не забудьте подписаться на наш канал и хэштег #хакнем_физика
Автор: #себихов_александр 71 год, много лет проработал конструктором-технологом микроэлектронных приборов и узлов в одном из НИИ г. Саратова, затем преподавателем математики и физики.
Другие статьи автора:
Вы читаете контент канала “Хакнем Школа”. Подпишитесь на наш канал, чтобы не терять его из виду.
Источник
Автор
Тема: Жидкости и газы из сборника задач Савченко Н.Е. (Прочитано 43027 раз)
0 Пользователей и 3 Гостей просматривают эту тему.
361. В цилиндрических сообщающихся сосудах находится ртуть. Отношение диаметров сосудов n = d1/d2 = 0,25. В узкий сосуд наливают воду; высота столба воды h = 80 см. На сколько опустится уровень ртути в узком сосуде и на сколько он поднимется в широком? Плотность воды ρ1 = 1,0⋅103 кг/м3, ртути ρ2 = 13,6⋅103 кг/м3.
Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):
рА = рВ,
где pА = ρ2⋅g⋅h2, pВ = ρ1⋅g⋅h. Тогда
ρ2⋅g⋅h2 = ρ1⋅g⋅h или ρ1⋅h = ρ2⋅h2. (1)
Из рисунка 1 видно, что
h2 = Δh1 + Δh2, (2)
где Δh1 — высота, на которую опустится ртуть в узком сосуде, Δh2 — высота, на которую поднимется ртуть в широком сосуде.
Из условия не сжимаемости воды
ΔV1 = ΔV2, S1⋅Δh1 = S2⋅Δh2,
где [ S_{1} = frac{pi cdot d_{1}^{2} }{4}, ; ; ; S_{2} =frac{pi cdot d_{2}^{2} }{4} ] — площади поперечного сечения сосудов, d1/d2 = n — по условию. Тогда
[ frac{pi cdot d_{1}^{2} }{4} cdot Delta h_{1} =frac{pi cdot d_{2}^{2} }{4} cdot Delta h_{2}, ; ; ; Delta h_{2} =Delta h_{1} cdot left(frac{d_{1} }{d_{2} } right)^{2} =n^{2} cdot Delta h_{1}.
]
После подстановки в уравнение (2) получаем:
h2 = Δh1 + n2⋅Δh1 = Δh1⋅(1 + n2).
Подставим в уравнение (1)
[ rho _{1} cdot h=rho _{2} cdot Delta h_{1} cdot left(1+n^{2} right), ; ; ; Delta h_{1} =frac{rho _{1} cdot h}{rho _{2} cdot left(1+n^{2} right)}, ; ; ; Delta h_{2} =frac{rho _{1} cdot h cdot n^{2} }{rho _{2} cdot left(1+n^{2} right)}, ]
Δh1 = 5,5⋅10–2 м, Δh2 = 3,5⋅10–3 м.
Записан
362. В сообщающиеся сосуды налита ртуть, поверх которой в один из сосудов налита вода. Разность уровней ртути Δh = 20 мм. Плотность ртути ρ1 = 13,6⋅103 кг/м3, воды ρ2 = 1,0⋅103 кг/м3. Найти высоту столба воды.
Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):
рА = рВ,
где pА = ρ1⋅g⋅Δh, pВ = ρ2⋅g⋅h2. Тогда
ρ1⋅g⋅Δh = ρ2⋅g⋅h2 или ρ1⋅Δh = ρ2⋅h2,
[ h_{2} =frac{rho _{1} cdot Delta h}{rho _{2}}, ]
h2 = 0,27 м.
Записан
363. В двух сообщающихся цилиндрических сосудах с одинаковыми поперечными сечениями площадью S = 1⋅10–2 м2 находится ртуть. В одни из сосудов поверх ртути наливают воду массой m1 = 20 кг и опускают в нее плавать груз массой m2 = 7,2 кг. На сколько поднимется уровень ртути во втором сосуде? Плотность ртути ρ = 13,6⋅103 кг/м3.
Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):
рА = рВ,
где pА = ρ⋅g⋅h. Давление в точке В можно найти разными способами.
1 способ. Давление pВ = ρ1⋅g⋅h3, где ρ1 — плотность воды, h3 = h1 + h2, h1 — высота столбца воды массой m1, h2 — высота столбца воды, вытесненная при погружении в воду тела массой m2 и т.п.
2 способ. Так как тело плавает в воде, то давление воды и плавающего тела в точке В
[ p_{B} = frac{left(m_{1} +m_{2} right)cdot g}{S}. ]
Тогда
[ rho cdot g cdot h=frac{left(m_{1} +m_{2} right)cdot g}{S}, ;; ; rho cdot h=frac{m_{1} +m_{2} }{S}.;;; (1) ]
Из рисунка 1 видно, что
h = Δh1 + Δh2,
где Δh1 — высота, на которую поднимется ртуть, Δh2 — высота, на которую ртуть опустится.
Из условия не сжимаемости воды
ΔV1 = ΔV2, S⋅Δh1 = S⋅Δh2, Δh1 = Δh2.
В итоге получаем, с учетом уравнения (1):
[ h=2Delta h_{1} =frac{m_{1} +m_{2} }{Scdot rho }, ; ; ; Delta h_{1} =frac{m_{1} +m_{2} }{2Scdot rho }, ]
Δh1 = 0,1 м.
Записан
364. Шарик массой m = 40 г плавает в одном из двух одинаковых цилиндрических сообщающихся сосудов, заполненных водой (рис. 1). Площадь поперечного сечения каждого сосуда S = 20 см2. На сколько изменится уровень воды, если вынуть шарик? Плотность воды ρ = 1,0 г/см3.
Решение. На шарик действуют силы тяжести (m⋅g) и архимедова сила (FA). Запишем условие плавания тела:
FA = m⋅g,
где FA = ρ⋅g⋅Vn, Vn — объем части шарика, погруженного в воду. Тогда
ρ⋅g⋅Vn = m⋅g или ρ⋅Vn = m.
Если шарик вынуть из воды, то объем воды уменьшиться на Vn. Так как вода занимается два сообщающихся сосуда площадью S каждый, то уровень воды (высота столбца) уменьшиться на
[ Delta h=frac{V_n}{2S}=frac{m}{2rho cdot S}, ]
Δh = 1⋅10–2 м.
Записан
365. Два цилиндрических сосуда соединены у дна тонкой трубкой с краном (рис. 1). Один сосуд имеет площадь поперечного сечения S1 = 15 см2, второй — S2 = 5,0 см2. Сосуды заполнены водой: первый до высоты h1 = 20 см, второй до высоты h2 = 40 см. Каков будет уровень воды в сосудах, если открыть кран К в соединительной трубке?
Решение. Так как давление на дно сосуда больше в правом сосуде, то после открытия кран К вода будет перетекать с правого сосуда в левый. Пусть высота столбца жидкости в сосудах станет равной h3, уровень воды в сосуде площадью S1 увеличится на Δh1, в сосуде площадью S2 уменьшится на Δh2 (рис. 2). Из рисунка видно, что
Δh1 = h3 – h1, (1)
Δh2 = h2 – h3. (2)
Из условия не сжимаемости воды
ΔV1 = ΔV2, S1⋅Δh1 = S2⋅Δh2. (3)
Решим систему уравнений (1)-(3). Например,
S1⋅(h3 – h1) = S2⋅(h2 – h3), h3⋅(S1 + S2) = S1⋅h1 + S2⋅h2,
[ h_{3} =frac{S_{1} cdot h_{1} +S_{2} cdot h_{2} }{S_{1} +S_{2}}, ]
h3 = 0,25 м.
« Последнее редактирование: 13 Декабря 2011, 19:00 от alsak »
Записан
366. Деталь отлита из сплава железа и никеля. Определить, сколько процентов по объему составляют железо и никель, а также объем всей детали, если в воздухе деталь весит Р1 = 33,52 Н, а в воде — Р2 = 29,60 Н. Плотность железа ρ1 = 7,9⋅103 кг/м3, никеля ρ2 = 8,9⋅103 кг/м3, воды ρ3 = 1,0⋅103 кг/м3. Архимедову силу в воздухе не учитывать.
Решение. Будем считать, что вес детали определяют при помощи динамометра. Тогда вес детали — это сила упругости пружины динамометра.
В воздухе на деталь, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g) и сила упругости (Fy1) (архимедову силу в воздухе не учитывать) (рис. 1). Из проекции второго закона Ньютона получаем:
P1 = Fy1 = (m1 + m2)⋅g,
где m1 = ρ1⋅V1 — масса железа в детали, V1 — объем железа, m2 = ρ2⋅V2 — масса никеля в детали, V2 — объем никеля. Тогда
P1 = (ρ1⋅V1 + ρ2⋅V2)⋅g. (1)
В воде на деталь, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g), сила упругости (Fy2) и архимедова сила (FA) (рис. 2). Из проекции второго закона Ньютона получаем:
P2 = Fy2 = (m1 + m2)⋅g – FA,
где FA = ρ3⋅g⋅V, V = V1 + V2 — объем всей детали. Тогда
P2 = (ρ1⋅V1 + ρ2⋅V2)⋅g – ρ3⋅g⋅(V1 + V2). (2)
Решим систему уравнений (1)-(2) и найдем V1, V2 и V. Например,
[ P_{2} =P_{1} -rho _{3} cdot gcdot left(V_{1} +V_{2} right), ; ; ; V=V_{1} +V_{2} =frac{P_{1} -P_{2} }{rho _{3} cdot g}, ]
V = 4⋅10–4 м3.
V2 = V – V1, P1 = (ρ1⋅V1 + ρ2⋅(V – V1))⋅g,
(ρ1 – ρ2)⋅V1⋅g = P1 – ρ2⋅V⋅g,
[ V_{1} =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} -frac{rho _{2} cdot V}{rho _{1} -rho _{2} }, ; ; ; frac{V_{1} }{V} =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} cdot frac{1}{V} -frac{rho _{2} }{rho _{1} -rho _{2} } = ]
[ =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} cdot frac{rho _{3} cdot g}{P_{1} -P_{2} } -frac{rho _{2} }{rho _{1} -rho _{2} } =left(frac{P_{1} cdot rho _{3} }{P_{1} -P_{2} } -rho _{2} right)cdot frac{1}{rho _{1} -rho _{2}}, ]
V1/V = 0,35 (35%), V2/V = 1 – 0,35 = 0,65 (65%).
Записан
367. Браслет массой М = 80 г сделан из сплава золота и серебра. Вычислить массу золота, содержащегося в браслете, располагая следующими данными: плотность золота ρ1 = 19,3 г/см3, плотность серебра ρ2 = 10,5 г/см3; при погружении браслета в воду, находящуюся в сосуде с вертикальными стенками и площадью основания S = 25 см2, уровень воды поднимается на h = 2,0 мм.
Решение. Масса браслета равна
M = m1 + m2,
где m1 = ρ1⋅V1 — масса золота в браслете, V1 — объем золота, m2 = ρ2⋅V2 — масса серебра в браслете, V2 — объем серебра. Тогда
M = ρ1⋅V1 + ρ2⋅V2. (1)
При погружении в воду браслет вытесняет объем воды, равный объему тела, т.е.
V = S⋅h = V1 + V2. (2)
Решим систему уравнений (1)-(2). Например,
V2 = S⋅h – V1, M = ρ1⋅V1 + ρ2⋅(S⋅h – V1),
(ρ1 – ρ2)⋅V1 = M – ρ2⋅S⋅h,
[ V_{1} =frac{M-rho _{2} cdot Scdot h}{rho _{1} -rho _{2}}, ; ; ; m_{1} =rho _{1} cdot V_{1} =rho _{1} cdot frac{M-rho _{2} cdot Scdot h}{rho _{1} -rho _{2}}, ]
m1 = 6,0⋅10–2 кг.
Записан
368. Согласно желанию сиракузского властителя, Архимед должен был определить содержание золота в короне, состоящей из золотых и серебряных частей, не разрушая ее. Для этого Архимед взвесил корону в воздухе и получил вес P1 = 25,4 Н, а затем в воде, получив вес Р2 = 23,4 Н. Зная плотность золота, серебра и воды (соответственно ρ1 = 19,3 г/см3, ρ2 = 10,5 г/см3 и ρ3 = 1,00 г/см3), определить, как и Архимед, массу золота, содержащегося в этой короне. Ускорение свободного падения считать равным g = 10,0 м/с2.
Решение. Будем считать, что вес короны определяли при помощи динамометра. Тогда вес короны — это сила упругости пружины динамометра.
В воздухе на корону, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g) и сила упругости (Fy1) (архимедову силу в воздухе не учитывать) (рис. 1). Из проекции второго закона Ньютона получаем:
P1 = Fy1 = (m1 + m2)⋅g,
где m1 = ρ1⋅V1 — масса золота в короне, V1 — объем золота, m2 = ρ2⋅V2 — масса серебра в детали, V2 — объем серебра. Тогда
P1 = (ρ1⋅V1 + ρ2⋅V2)⋅g. (1)
В воде на корону, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g), сила упругости (Fy2) и архимедова сила (FA) (рис. 2). Из проекции второго закона Ньютона получаем:
P2 = Fy2 = (m1 + m2)⋅g – FA,
где FA = ρ3⋅g⋅V, V = V1 + V2 — объем всей короны. Тогда
P2 = (ρ1⋅V1 + ρ2⋅V2)⋅g – ρ3⋅g⋅(V1 + V2). (2)
Решим систему уравнений (1)-(2), найдем V1 и m1. Например,
[ P_{2} =P_{1} -rho _{3} cdot gcdot left(V_{1} +V_{2} right), ; ; ; V=V_{1} +V_{2} =frac{P_{1} -P_{2} }{rho _{3} cdot g}, ]
V2 = V – V1, P1 = (ρ1⋅V1 + ρ2⋅(V – V1))⋅g,
(ρ1 – ρ2)⋅V1⋅g = P1 – ρ2⋅V⋅g,
[ V_{1} =frac{P_{1} -rho _{2} cdot Vcdot g}{left(rho _{1} -rho _{2} right)cdot g} =frac{rho _{3} cdot P_{1} -rho _{2} cdot left(P_{1} -P_{2} right)}{left(rho _{1} -rho _{2} right)cdot rho _{3} cdot g}, ; ; ; m_{1} =rho _{1} cdot V_{1} =rho _{1} cdot frac{rho _{3} cdot P_{1} -rho _{2} cdot left(P_{1} -P_{2} right)}{left(rho _{1} -rho _{2} right)cdot rho _{3} cdot g} , ]
m1 = 0,965 кг.
Записан
369. В цилиндрическом сосуде с не смешивающейся с водой жидкостью, плотность которой ρ = 1,2 г/см3, при температуре t = 0 °С плавает льдинка массой m = 1 кг. На сколько изменится уровень этой жидкости в сосуде, когда льдинка растает? Площадь основания сосуда S = 0,1 м2.
Решение. После того как льдинка растаяла, объем жидкости в сосуде увеличился на объем воды V, полученной из льдинки. Но плотность воды меньше плотности жидкости, поэтому вся вода окажется сверху, и уровень жидкости опустится до первоначальной высоты h.
1 способ. Объем вытесненной жидкости
[V_{vt} =V_{1} +V_{2} =frac{mcdot g}{rho cdot g} =frac{m}{rho } =S_{1} cdot left(h_{1} +h_{2} right).]
Объем жидкости, которая поднялась — это
[V_{1} =left(S-S_{1} right)cdot h_{2} =S_{1} cdot h_{1} .]
Из второго уравнения получаем
[S_{1} cdot left(h_{1} +h_{2} right)=Scdot h_{2} .]
И тогда
[S_{1} cdot left(h_{1} +h_{2} right)=Scdot h_{2} =frac{m}{rho } ,; ; h_{2} =frac{m}{Scdot rho } .]
2 способ. Изменение давления на дно сосуда равно
[Delta p=frac{mcdot g}{S} =rho cdot gcdot Delta h,; ; Delta h=h_{2} =frac{m}{rho cdot S} .]
Ответ. Уровень жидкости опустится на h2 = 8,3⋅10–3 м.
« Последнее редактирование: 21 Августа 2019, 17:27 от alsak »
Записан
370. Теплоход, войдя в гавань, выгрузил часть груза; при этом его осадка уменьшилась на h = 0,6 м. Найти массу груза, оставленного теплоходом в гавани, если площадь поперечного сечения теплохода на уровне ватерлинии S = 5400 м2. Плотность воды ρ = 1⋅103 кг/м3.
Решение. На теплоход с грузом действуют сила тяжести теплохода (m1⋅g), архимедова сила (FA1) и вес груза (m2⋅g) (рис. 1, а). Тело неподвижно, поэтому уравнение второго закона Ньютона в проекции на вертикальную ось имеет вид:
FA1 – m1⋅g – m2⋅g = 0,
где FA1 = ρ⋅g⋅V1, V1 = S⋅h1, h1 — глубина погружения теплохода с грузом. Тогда
ρ⋅g⋅S⋅h1 – m1⋅g – m2⋅g = 0. (1)
На теплоход без груза действуют сила тяжести теплохода (m1⋅g), архимедова сила (FA2) (рис. 1, б). В проекции на вертикальную ось получаем:
FA2 – m1⋅g = 0,
где FA2 = ρ⋅g⋅V2, V2 = S⋅h2, h2 — глубина погружения теплохода без груза, h2 = h1 – h. Тогда
ρ⋅g⋅S⋅(h1 – h) – m1⋅g = 0. (2)
Решим систему уравнений (1)-(2). Например,
ρ⋅g⋅S⋅h1 – m1⋅g = m2⋅g, ρ⋅g⋅S⋅h1 – m1⋅g – ρ⋅g⋅S⋅h = 0,
m2⋅g = ρ⋅g⋅S⋅h, m2 = ρ⋅S⋅h,
m2 = 3,2⋅106 кг.
Записан
Источник
Учебник по физике
10 класс
При решении большей части задач на тему «Основы моле-кулярно-кинетической теории» нужно уметь определять молярные массы вещества. Для этого по известным из таблицы Д. И. Менделеева относительным атомным массам надо определить относительную молекулярную массу, а затем и молярную массу по формуле М = 10-3Мr кг/моль, где М — молярная масса, Мr — относительная молекулярная масса.
Во многих задачах требуется по известной массе тела определить количество вещества или число атомов (молекул) в нем. Для этого используются формулы v = и N = NA. Массы отдельных молекул определяются по формуле m0 = . В некоторых задачах массу вещества нужно выразить через его плотность ρ и объем V: m = ρV.
Задача 1
В двух сосудах находятся вода и ртуть одинакового объема. Сравните число атомов в этих жидкостях.
Решение. Вода содержит молекул или атомов, а ртуть содержит атомов.
Масса воды m1 = ρ1F; масса ртути m2 = ρ2V, где ρ1 = 1000 кг/м3 — плотность воды, а ρ2 = 13 600 кг/m3 — плотность ртути. Молярная масса воды М1 = 18 • 10-3 кг/моль; молярная масса ртути М2 = 0,2006 кг/моль. Следовательно,
Число атомов в воде примерно в 2,5 раз больше, чем в ртути.
Задача 2
Определите среднее расстояние d между центрами соседних молекул в куске льда. Плотность льда ρ = 900 кг/м3.
Решение. При плотной упаковке молекул среднее расстояние d между центрами соседних молекул равно линейным размерам самих молекул. Поэтому
V = d3N,
где V — объем куска льда, а N — число молекул в нем.
Согласно (2.2.7) . Поэтому
Отсюда
Задача 3
Вычислите примерные размеры атома золота.
Решение. Объем одного моля золота равен VM = , где ρ = 1,93 • 104 кг/м3 — плотность золота, М = 0,197 кг/моль — его молярная масса. Объем одного атома золота равен
Пренебрегая промежутками между атомами ввиду их плотной упаковки, найдем приближенно линейный размер атома:
Упражнение 1
- Известно, что нельзя заставить капельку оливкового масла объемом 1 мм3 расплыться по поверхности воды так, чтобы она заняла площадь больше 0,6 м2. Оцените по этим данным минимальные размеры молекулы оливкового масла.
- При образовании соединения азота с кислородом отношение масс прореагировавших веществ равно 7 : 16. Какова химическая формула этого соединения?
- Считая диаметр атома вольфрама d = 2 • 10-10м, оцените количество атомов, покрывающих поверхность острия иглы. Острие считать полушаром радиусом r = 5 • 10-8 м.
- Определите относительную молекулярную массу и молярную массу натрия Na, оксида углерода СО, оксида азота NO, медного купороса CuSO4.
- Какое количество вещества содержится в слитке серебра массой 5,4 кг?
- Какова масса воды, взятой в количестве 100 моль?
- Вычислите массу одного атома гелия Не, молекулы оксида азота NO и молекулы метана СН4.
- Вода из блюдца полностью испарилась за 10 сут. Сколько в среднем вылетало молекул с поверхности воды за 1 с, если масса воды равнялась 100 г?
- Сколько атомов содержится в стакане воды (200 г)?
- В озеро средней глубиной 20 м и площадью поверхности 10 км2 бросили кристаллик поваренной соли массой 0,01 г. Сколько атомов хлора оказалось бы в капле воды объемом 10 мм3, взятой из озера, если считать, что соль после растворения равномерно распределилась в озере?
- Сколько атомов углерода содержится в графитовом стержне длиной l = 10 см и площадью сечения S = 4 мм2? Плотность графита р = 1,6 • 103 кг/м3.
- Какую площадь S имеет поверхность золотой фольги массой m = 1 г, если толщина ее составляет n = 104 молекулярных слоев. Плотность золота р = 1,93 -104 кг/м3.
Источник