В двух сосудах находится кислород и азот
Владислав 3
Ученик
(236),
на голосовании
1 год назад
В одном из двух закрытых баллонов находится кислород, в другом – азот. массы обоих газов одинаковы. Температура обоих газов 27 градусов Цельсия. В каком баллоне давление больше и во сколько раз? До какой температуры следует нагреть содержимое одного баллона, чтобы давление внутри него достигло давления в другом баллоне?
Голосование за лучший ответ
Марго
Мудрец
(18125)
1 год назад
pV=mRT
V=n×Vm
n1=m/28
n2=m/32
1)p*m/28*Vm=mRT
2)p*m/32*Vm=mRT
Сократим 2) на 1), получим в 1,14 раза у кислорода давление больше
27*1,14=31 градус где-то
Вроде так
ДивергентВысший разум (1314751)
1 год назад
Наидичайший горячечный бред сивой кобылы. Садись, два.
Марго
Мудрец
(18125)
Если умный такой, возьми да напиши правильно. Не надо меня хаять. Я написала ВРОДЕ ТАК.
Дивергент
Высший разум
(1314751)
1 год назад
Это техникум, что ли? Задачка по ФИЗИКЕ (а вовсе не по химии!) уровня седьмого класса коррекционной школы для умственно отсталых на знание уравнения Менделеева-Клапейрона.
Давление больше в сосуде с АЗОТОМ в 32/28=1,14 раза. А температуру в сосуде с КИСЛОРОДОМ надо поднять на 300*1,14-300=300*0,14=42 градуса, чтобы давление в обоих сосудах стало равным. Температура в сосуде с кислородом станет равна 27+42=69 градусов Цельсия.
МаргоМудрец (18125)
1 год назад
почему с азотом?? Вы массу кислорода делите на массу азота, а пишете, что с АЗОТОМ??? Что за?
Дивергент
Высший разум
(1314751)
Деточка, давление ОБРАТНО ПРОПОРЦИОНАЛЬНО молярной массе. Открой учебник физики для седьмого класса коррекционной школы для умственно отсталых, найди уравнение Менделеева-Клапейрона…
МаргоМудрец (18125)
1 год назад
Молекулы кислорода больше по массе, давление больше, нет? Почему? Хотя атомный радиус меньше, это да. У вас у самого противоречие с логикой.
Дивергент
Высший разум
(1314751)
Деточка, это У ТЕБЯ противоречие. Давление прямо пропорционально зависит от количества вещества и ОБРАТНО пропорционально от МОЛЯРНОЙ МАССЫ.
МаргоМудрец (18125)
1 год назад
Я правда хочу в этом разобраться. Если вы понимаете, то, что я не понимаю, поясните, пожалуйста
Дивергент
Высший разум
(1314751)
Деточка, подумай, если бы это был ВОДОРОД, а не азот. Молярная масса водорода в 16 раз меньше молярной массы кислорода. Где бы давление было больше при одинаковой температуре и одинаковой массе водорода и азота?
МаргоМудрец (18125)
1 год назад
Я когда решение писала, засомневалась. Во мне возникло противоречие. Ведь по первоначальному решению выходило, что азота. Но я почему-то подумала, что масса прямо пропорц давлению. А если из рV=nRT, то всё верно.
Дивергент
Высший разум
(1314751)
Вы совершенно правы, давление прямо пропорционально массе m, что непосредственно вытекает из уравнения P*V=m/M*R*T. Но масса-то одинакова у обоих веществ…
Виктория Александрова Ученик (183)
1 год назад
Зачем так занижать других, у каждого свой уровень
Дивергент
Высший разум
(1314751)
Вот и иди со своим уровнем в ясельную группу детского сада. А не вводи в заблуждение других людей в том, в чем ты НИ ХРЕНА не понимаешь.
Источник
В данной работе предлагается определенный подход к классификации и способам решения задач на газовые законы. Такой подход позволит быстро сориентироваться в большом количестве задач на свойства газов и применить к ним те или иные приемы решения.
Основные теоретические сведения
Состояние газа характеризуется совокупностью трех физических величин или термодинамических параметров:объемом газа V, давлением Р и температурой Т. Состояние газа, при котором эти параметры остаются постоянными считают равновесным состоянием.В этом состоянии параметры газа связаны между собой уравнением состояния. Самый простой вид уравнение состояния имеет для идеального газа. Идеальным газом называют газ, молекулы которого не имеют размеров (материальные точки) и взаимодействуют друг с другом лишь при абсолютно упругих соударениях (отсутствует межмолекулярное притяжение и отталкивание). Реальные газы тем точнее подчиняются законам идеальных газов, чем меньше размеры их молекул (т.е. газ одноатомный), и чем больше он разряжен.
Уравнение состояния идеального газа или уравнение Менделеева-Клапейрона имеет вид:
– универсальная газовая постоянная
Из этого закона вытекает, что для двух произвольных состояний газа справедливо равенство, называемое уравнением Клапейрона:
Так же для идеальных газов имеют место следующие экспериментальные законы:
Закон Бойля — Мариотта:
Закон Гей-Люссака:
Закон Шарля:
Если в сосуде находится смесь нескольких газов, не вступающих друг с другом в химические реакции, то результирующее давление определяется по закону Дальтона: давление смеси равно сумме давлений, производимых каждым газом в отдельности, как если бы он один занимал весь сосуд.
Р = Р1 + Р2 +… + РN
Задачи, решение которых основывается на данных уравнениях, можно разделить на две группы:
§ задачи на применение уравнения Менделеева-Клапейрона.
- задачи на газовые законы.
ЗАДАЧИ НА ПРИМЕНЕНИЕ УРАВНЕНИЯ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА.
Уравнение Менделеева-Клапейрона применяют тогда, когда
I. дано только одно состояние газа изадана масса газа (или вместо массы используют количество вещества или плотность газа).
II. масса газа не задана, но она меняется, то есть утечка газа или накачка.
При решении задач на применение равнения состояния идеального газа надо помнить:
1.если дана смесь газов, то уравнение Менделеева-Клапейрона записывают для каждого компонента в отдельности.Связь между парциальными давлениями газов, входящих в смесь и результирующим давлением смеси, устанавливается законом Дальтона.
2.если газ меняет свои термодинамические параметры или массу, уравнение Менделеева-Клапейрона записывают для каждого состояния газа в отдельности и полученную систему уравнений решают относительно искомой величины.
P.S.
§ Необходимо пользоваться только абсолютной температурой и сразу же переводить значения температуры по шкале Цельсия в значения по шкале Кельвина.
§ В задачах, где рассматривается движение сосуда с газом (пузырька воздуха, воздушного шара) к уравнению газового состояния добавляют уравнения механики.
§ если между газами происходит реакция, то надо составить уравнение реакции и определить продукты реакции
ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ
Определить давление кислорода в баллоне объемом V = 1 м3 при температуре t=27 °С. Масса кислорода m = 0,2 кг.
V = 1 м3 μ = 0,032кг/моль m = 0,2 кг t=27 °С | Т=300К | Записываем уравнение Менделеева-Клапейрона и находим из него давление, производимое газом: |
Р-? |
Баллон емкостью V= 12 л содержит углекислый газ. Давление газа Р = 1 МПа, температура Т = 300 К. Определить массу газа.
V = 12 л μ =0,044кг/моль Т=300К Р =1 МПа | 0,012м3 1∙106Па | Записываем уравнение Менделеева-Клапейрона и находим массу газа |
m -? |
При температуре Т = 309 К и давлении Р = 0,7 МПа плотность газа ρ = 12 кг/м3. Определить молярную массу газа.
V = 12 л Т=309К Р =0,7 МПа ρ = 12 кг/м3 | 0,012м3 0,7∙106Па | Записываем уравнение Менделеева-Клапейрона Так как масса газа может быть определена через плотность газа и его объем имеем: |
μ -? | ||
Отсюда находим молярную массу газа: |
Какова плотность водорода при нормальном атмосферном давлении и температуре 20°С.
V = 12 л t=20°C Р =105 Па μ =0,002кг/моль | 0,012м3 T=293К | Нормальное атмосферное давление – это давление, равное 105 Па. И эту информацию запишем как данные задачи. Записываем уравнение Менделеева-Клапейрона |
ρ -? | ||
Так как масса газа может быть определена через плотность газа и его объем имеем: Отсюда находим плотность газа: |
До какой температуры Т1 надо нагреть кислород, чтобы его плотность стала равна плотности водорода при том же давлении ,но при температуре Т2 = 200 К?
Т2=200К ρ1 = ρ2 μ1 =0,032кг/моль μ2 =0,002кг/моль | Записываем уравнение Менделеева-Клапейрона для кислорода и для водорода через плотности газов: Так как по условию давление у двух газов одинаковое, то можно приравнять правые части данных уравнений: Сократим на R и на плотность ρ (по условию плотности газов равны) и найдем Т1 |
Т1 -? | |
В сосуде объемом 4·10-3 м3 находится 0,012 кг газа при температуре 177°С. При какой температуре плотность этого газа будет равна 6·10-6 кг /см3, если давление газа остается неизменным.
Смесь газов
В баллоне объемом 25 литров находится 20г азота и 2 г гелия при 301К. Найдите давление в баллоне.
Определить плотность смеси, состоящей из 4 граммов водорода и 32 граммов кислорода при давлении 7°С и давлении 93кПа?
Сосуд емкостью 2V разделен пополам полупроницаемой перегородкой. В одной половине находится водород массой mВ и азот массой mА. В другой половине вакуум. Во время процесса поддерживается постоянная температура Т. Через перегородку может диффундировать только водород. Какое давление установиться в обеих частях сосуда?
μа m1 = m2 = m3 = m μв μк Т | отсек №1 отсек №2 отсек №3 Диффундирует только водород. Следовательно, после завершения установочных процессов, в отсеке I будет водород, массой на |
РI-? РII-? | |
половину меньшей, чем была, и весь азот. А во втором отсеке только половина массы водорода. Тогда для первого отсека установившееся давление равно: Для отсека II можно так же определить установившееся давление: |
Вакуумированный сосуд разделен перегородками на три равных отсека, каждый объемом V. В средний отсек ввели одинаковые массы кислорода, азота и водорода. В результате чего давление в этом отсеке стало равно Р. Перегородка I проницаема только для молекул водорода, перегородка II проницаема для молекул всех газов. Найти давления Р1 Р2 и Р3, установившиеся в каждом отсеке, если температура газа поддерживается постоянной и равной Т.
μа m1 = m2 = m3 = m μв μк Р | отсек №1 отсек №2 отсек №3 После диффундирования газов через перегородки в первом отсеке окажется треть массы водорода. Во втором и в третьем отсеках будет треть водорода, половина массы кислорода и половина всей массы азота. Тогда для первого отсека установившееся давление равно: |
Р1-? Р2-? Р3-? | |
Если до диффундирования первоначальное давление во втором отсеке было Р, то можно записать: Отсюда можно найти Находим выражение для давления во втором и в третьем отсеках | |
И тогда давление в первом отсеке равно: |
С химическими реакциями
В сосуде находится смесь азота и водорода. При температуре Т, когда азот полностью диссоциирован на атомы, давление равно Р (диссоциацией водорода можно пренебречь). При температуре 2Т, когда оба газа полностью диссоциированы, давление в сосуде 3Р. Каково отношение масс азота и водорода в смеси?
μа μв Т1 =Т Т2 =2Т Р1=Р Р2=3Р | mв μвmа При температуре Т параметры газов в сосуде следующие: И результирующее давление в сосуде по закону Дальтона равно: |
2Т 2Т При температуре 2Т параметры газов в сосуде следующие: И результирующее давление в сосуде по закону Дальтона равно: |
В герметично закрытом сосуде находится 1 моль неона и 2 моля водорода. При температуре Т1=300К, когда весь водород молекулярный, атмосферное давление в сосуде Р1=105 Па. При температуре Т2=3000К давление возросло до Р2=1,5∙105 Па. Какая часть молекул водорода диссоциировала на атомы?
ν1=1 моль ν2=2 моль Т1 =300К Т2 =3000К Р1=105 Па Р2=1,5∙105 Па | При температуре Т1 давление газа в сосуде складывается из парциальных давлений двух газов и равно: При температуре Т2 давление газа равно: |
Из уравнения (1): Из первого находим объем V: | |
В закрытом баллоне находится смесь из m1= 0,50 г водорода и m2 = 8,0 г кислорода при давлении Р1= 2,35∙105 Па. Между газами происходит реакция с образованием водяного пара. Какое давление Р установится в баллоне после охлаждения до первоначальной температуры? Конденсации пара не происходит.
V = 25 л μ1 = 2г/моль m1 = 0,5 г μ2 = 32г/моль m2 = 8 г | В сосуде будет происходить реакция водорода с кислородом с образованием воды:
|
Р-? | Из уравнения реакции видно, что если в реакцию вступит весь водород, то кислорода только половина |
В результате образуется ν3=0,25 молей водяного пара и останется ν4= 0,125молей кислорода. По закону Дальтона результирующее давление в сосуде равно сумме парциальных давлений Так как известно, что до реакции давление в сосуде было Р1, то для этого момента можно так же применить закон Дальтона: Решаем полученные уравнение в системе относительно неизвестного: Дата добавления: 2018-04-04; просмотров: 2806; |
Источник
АВТОРСКАЯ РАЗРАБОТКА
Тема «Химическая термодинамика и кинетика»,
предполагающая изучение условий, влияющих на
скорость химической реакции, встречается в
школьном курсе химии дважды – в 9-м и в 11-м
классах. Однако именно эта тема является одной из
наиболее трудных и достаточно сложной не только
для понимания «средним» учеником, но даже для
изложения некоторыми учителями, особенно
неспециалистами, работающими в сельской
местности, для которых химия является
дополнительным предметом, с учетом часов
которого у педагога набирается ставка, а значит,
и надежда на более-менее приличную зарплату.
В условиях резкого уменьшения числа учащихся в
сельских школах, в силу хорошо известных причин,
учитель вынужден быть универсалом. Посетив 2–3
курса, он начинает преподавание предметов,
зачастую очень далеких от его основной
специальности.
Данная разработка ориентирована в первую
очередь на начинающих учителей и предметников,
вынужденных преподавать химию в условиях
рыночной экономики. Материал содержит задачи на
нахождение скоростей гетерогенных и гомогенных
реакций и увеличения скорости реакции при
повышении температуры. Несмотря на то, что данные
задачи базируются на школьном, хотя и сложном для
усвоения «средним» учеником материале,
целесообразно прорешать несколько из них на
уроке химии в
11-м классе, а остальные предложить на кружковом
или факультативном занятии учащимся, которые
планируют свою дальнейшую судьбу связать с
химией.
Помимо подробно разобранных и снабженных
ответами задач данная разработка содержит
теоретический материал, который поможет учителю
химии, в первую очередь неспециалисту, понять
суть этой сложной темы курса общей химии.
С опорой на предлагаемый материал можно создать
свой вариант урока-лекции, в зависимости от
способностей учащихся в классе, причем
использовать предложенную теоретическую часть
можно при изучении этой темы как в 9-м, так и в 11-м
классе.
Наконец, материал, содержащийся в данной
разработке, будет нелишним разобрать
самостоятельно выпускнику, готовящемуся к
поступлению в вуз, в том числе и в тот, в котором
химия является профилирующим предметом.
Условия, влияющие на скорость
химической реакции
1. Скорость химической реакции зависит от
природы реагирующих веществ.
П р и м е р ы.
Металлический натрий, имеющий щелочную
природу, бурно реагирует с водой с выделением
большого количества теплоты, в отличие от цинка,
имеющего амфотерную природу, который реагирует с
водой медленно и при нагревании:
Порошкообразное железо более энергично
взаимодействует с сильной минеральной соляной
кислотой, чем со слабой органической уксусной
кислотой:
2. Скорость химической реакции зависит от
концентрации реагирующих веществ, находящихся в
растворенном или газообразном состоянии.
П р и м е р ы.
В чистом кислороде сера горит более энергично,
чем на воздухе:
С 30%-м раствором соляной кислоты
порошкообразный магний реагирует более
энергично, чем с 1%-м ее раствором:
3. Скорость химической реакции прямо
пропорциональна площади поверхности
реагирующих веществ, находящихся в твердом
агрегатном состоянии.
П р и м е р ы.
Кусок древесного угля (углерод) очень трудно
поджечь спичкой, но древесная угольная пыль
сгорает со взрывом:
С + О2 = СО2.
Алюминий в виде гранулы не реагирует с
кристаллом йода количественно, но измельченный
йод энергично соединяется с алюминием в виде
пудры:
4. Скорость химической реакции зависит от
температуры, при которой происходит процесс.
П р и м е р.
При повышении температуры на каждые 10 °С
скорость большинства химических реакций
увеличивается в 2–4 раза. Конкретное увеличение
скорости химической реакции определяется особым
температурным коэффициентом (гамма).
Рассчитаем, во сколько раз возрастет скорость
реакции:
2NO + O2 = 2NO2,
если температурный коэффициент равен 3, а температура процесса
возросла с 10 °С до 50 °С.
Изменение температуры составляет:
t = 50 °С – 10 °С
= 40 °С.
Используем формулу:
где –
скорость химической реакции при повышенной
температуре, –
скорость химической реакции при начальной
температуре.
Тогда
Следовательно, скорость химической реакции при
повышении температуры с 10 °С до 50 °С
возрастет в 81 раз.
5. Скорость химической реакции зависит от
присутствия некоторых веществ.
Катализатор – это вещество, ускоряющее ход
химической реакции, но само в процессе реакции не
расходующееся. Катализатор понижает
активационный барьер химической реакции.
Ингибитор – это вещество, замедляющее ход
химической реакции, но само в процессе реакции не
расходующееся.
П р и м е р ы.
Катализатором, ускоряющим ход данной
химической реакции, является оксид марганца(IV).
Катализатором, ускоряющим ход данной
химической реакции, является красный фосфор.
Ингибитором, замедляющим ход данной химической
реакции, является вещество органической природы
– уротропин (гексаметилентетрамин).
• Скорость гомогенной химической реакции
измеряется числом молей вещества, вступившего в
реакцию или образовавшегося в результате
реакции за единицу времени в единице объема:
где гомог
– скорость химической реакции в гомогенной
системе, – число
молей одного из вступивших в реакцию или одного
из образовавшихся в результате реакции веществ, V
– объем,
t – время, – изменение числа молей
вещества за время реакции t.
Поскольку отношение числа молей вещества к
объему системы представляет собой концентрацию с,
то
Следовательно:
Скорость гомогенной химической реакции
измеряется в моль/(л•с).
Учитывая это, можно дать следующее определение:
• скорость гомогенной химической реакции
равна изменению концентрации одного из
вступивших в реакцию или одного из образующихся
в результате реакции веществ в единицу времени.
Если реакция протекает между веществами в
гетерогенной системе, то реагирующие вещества
соприкасаются между собой не во всем объеме, а
только на поверхности твердого тела. Так,
например, при горении кусочка кристаллической
серы молекулы кислорода реагируют только с теми
атомами серы, которые находятся на поверхности
кусочка. При измельчении кусочка серы площадь
реагирующей поверхности возрастает, и скорость
горения серы увеличивается.
В связи с этим определение скорости
гетерогенной химической реакции следующее:
• скорость гетерогенной химической реакции
измеряется числом молей вещества, вступившего в
реакцию или образовавшегося в результате
реакции в единицу времени на единице
поверхности:
где S – площадь поверхности.
Скорость гетерогенной химической реакции
измеряется в моль/(см2•с).
1. В сосуд для проведения химических реакций
ввели 4 моль оксида азота(II) и избыток кислорода.
Через 10 с количество вещества оксида азота(II)
оказалось равным 1,5 моль. Найдите скорость данной
химической реакции, если известно, что объем
сосуда равен 50 л.
2. Количество вещества метана в сосуде для
проведения химических реакций равно 7 моль. В
сосуд ввели избыток кислорода и смесь взорвали.
Опытным путем было установлено, что через 5 с
количество вещества метана уменьшилось в 2 раза.
Найдите скорость данной химической реакции, если
известно, что объем сосуда равен 20 л.
3. Начальная концентрация сероводорода в
сосуде для сжигания газов была равна 3,5 моль/л. В
сосуд ввели избыток кислорода и смесь взорвали.
Через 15 с концентрация сероводорода составила 1,5
моль/л. Найдите скорость данной химической
реакции.
4. Начальная концентрация этана в сосуде для
сжигания газов была равна 5 моль/л. В сосуд ввели
избыток кислорода и смесь взорвали. Через 12 с
концентрация этана составила 1,4 моль/л. Найдите
скорость данной химической реакции.
5. Начальная концентрация аммиака в сосуде
для сжигания газов была равна 4 моль/л. В сосуд
ввели избыток кислорода и смесь взорвали. Через 3
с концентрация аммиака составила 1 моль/л.
Найдите скорость данной химической реакции.
6. Начальная концентрация оксида углерода(II)
в сосуде для сжигания газов была равна 6 моль/л. В
сосуд ввели избыток кислорода и смесь взорвали.
Через 5 с концентрация оксида углерода(II)
уменьшилась вдвое. Найдите скорость данной
химической реакции.
7. Кусочек серы с площадью реагирующей
поверхности 7 см2 сожгли в кислороде с
образованием оксида серы(IV). За 10 с количество
вещества серы уменьшилось с 3 моль до 1 моль.
Найдите скорость данной химической реакции.
8. Кусочек углерода с площадью реагирующей
поверхности 10 см2 сожгли в кислороде с
образованием оксида углерода(IV). За 15 с
количество вещества углерода уменьшилось с 5
моль до 1,5 моль. Найдите скорость данной
химической реакции.
9. Кубик магния с общей площадью реагирующей
поверхности 15 см2 и количеством вещества
6 моль сожгли в избытке кислорода. При этом через 7
с после начала реакции количество вещества
магния оказалось равным 2 моль. Найдите скорость
данной химической реакции.
10. Брусок из кальция с общей площадью
реагирующей поверхности 12 см2 и
количеством вещества 7 моль сожгли в избытке
кислорода. При этом через 10 с после начала
реакции количество вещества кальция оказалось в
2 раза меньше. Найдите скорость данной химической
реакции.
Решения и ответы
1.
Дано:
1(NO) = 4 моль,
О2 – избыток,
t2 = 10 c,
t1 = 0 c,
2(NO) = 1,5
моль,
V = 50 л.
Найти:
р-ции.
Решение
2NO + О2 = 2NO2.
Используя формулу:
найдем скорость данной химической реакции:
р-ции
= (4 – 1,5)/(50•(10 – 0)) = 0,005 моль/(л•с).
Ответ. р-ции
= 0,005 моль/(л•с).
2.
Дано:
1(CH4) =
7 моль,
О2 – избыток,
t2 = 5 c,
t1 = 0 c,
2(CH4) =
3,5 моль,
V = 20 л.
Найти:
р-ции.
Решение
CH4 + 2О2 = СО2 + 2Н2О.
Используя формулу:
найдем скорость данной химической реакции:
р-ции
= (7 – 3,5)/(20•(5 – 0)) = 0,035 моль/(л•с).
Ответ. р-ции
= 0,035 моль/(л•с).
3.
Дано:
с1(H2S) = 3,5 моль/л,
О2 – избыток,
t2 = 15 c,
t1 = 0 c,
с2(H2S) = 1,5 моль/л.
Найти:
р-ции.
Решение
2H2S + 3О2 = 2SО2 + 2Н2О.
Используя формулу:
найдем скорость данной химической реакции:
р-ции
= (3,5 – 1,5)/(15 – 0) = 0,133 моль/(л•с).
Ответ. р-ции
= 0,133 моль/(л•с).
4.
Дано:
с1(С2H6) = 5 моль/л,
О2 – избыток,
t2= 12 c,
t1 = 0 c,
c2(С2H6) = 1,4 моль/л.
Найти:
р-ции.
Решение
2С2H6 + 7О2 = 4СО2 + 6Н2О.
Используя формулу:
найдем скорость данной химической реакции:
р-ции
= (5 – 1,4)/(12 – 0) = 0,3 моль/(л•с).
Ответ. р-ции
= 0,3 моль/(л•с).
5.
Дано:
с1(NH3) = 4 моль/л,
О2 – избыток,
t2 = 3 c,
t1 = 0 c,
с2(NH3) = 1 моль/л.
Найти:
р-ции.
Решение
4NH3 + 3О2 = 2N2 + 6Н2О.
Используя формулу:
найдем скорость данной химической реакции:
р-ции
= (4 – 1)/(3 – 0) = 1 моль/(л•с).
Ответ. р-ции.
= 1 моль/(л•с).
6. Ответ. р-ции.
= 0,6 моль/(л•с).
7.
Дано:
1(S) = 3 моль,
t2 = 10 c,
t1 = 0 с,
2(S) = 1 моль,
S(кус. S) = 7 см2.
Найти:
р-ции.
Решение
S + О2 = SО2.
Используя формулу:
найдем скорость данной химической реакции:
р-ции
= (3 – 1)/(7•(10 – 0)) = 0,0286 моль/(см2•с).
Ответ. р-ции
= 0,0286 моль/(см2•с).
8. Ответ. р-ции
= 0,0233 моль/(см2•с).
9.
Дано:
1(Мg) = 6
моль,
О2 – избыток,
t2 = 7 c,
t1 = 0 с,
2(Mg) = 2 моль,
S(куб. Мg) = 15 см2.
Найти:
р-ции.
Решение
2Мg + О2 = 2МgО.
Используя формулу:
найдем скорость данной химической реакции:
р-ции
= (6 – 2)/(15•(7 – 0)) = 0,0381 моль/(см2•с).
Ответ. р-ции
= 0,0381 моль/(см2•с).
10. Ответ. р-ции
= 0,0292 моль/(см2•с).
Литература
Глинка Н.Л. Общая химия, 27-е изд. Под ред.
В.А.Рабиновича. Л.: Химия, 1988; Ахметов Н.С. Общая
и неорганическая химия. М.: Высш. шк., 1981; Зайцев
О.С. Общая химия. М.: Высш. шк,, 1983; Карапетьянц
М.Х., Дракин С.И. Общая и неорганическая химия.
М.: Высш. шк., 1981; Корольков Д.В. Основы
неорганической химии. М.: Просвещение, 1982; Некрасов
Б.В. Основы общей химии. 3-е изд., М.: Химия, 1973; Новиков
Г.И. Введение в неорганическую химию. Ч. 1, 2.
Минск: Вышэйш. шк., 1973–1974; Щукарев С.А.
Неорганическая химия. Т. 1, 2. М.: Высш. шк., 1970–1974; Шретер
В., Лаутеншлегер К.-Х., Бибрак Х. и др. Химия.
Справочное изд. Пер. с нем. М.: Химия, 1989; Фельдман
Ф.Г., Рудзитис Г.Е. Химия-9. Учебник для 9 класса
средней школы. М.: Просвещение, 1990; Фельдман Ф.Г.,
Рудзитис Г.Е. Химия-9. Учебник для 9 класса
средней школы. М.: Просвещение, 1992.
В.А.Демидов,
учитель химии Синегорской средней школы
(с. Синегорье, Нагорский р-н, Кировская обл.)
Источник