В каком случае давление на дно сосуда больше
Анонимный вопрос
28 мая 2018 · 3,6 K
TL;DR в узком и высоком.
Чуть подробнее:
Давление (p) на дно сосуда расчитывается по формуле
p = ρgh, где
ρ – плотность жидкости
g – ускорение свободного падения
h – высота
Т.е. на давление напрямую не влияют:
– форма сосуда
– площадь и форма дна
– площадь и форма стенок
– и т.д.
Если же мы имеем фиксированный объем жидкости, и хотим налить её в такой сосуд, чтобы давление было максимальное, то нужно налить её в узкий и высокий сосуд, тогда высота столба жидкости будет максимальная и соответственно будет оказываться максимальное давление на дно.
Какое давление оказывает столб воды высотой 10 метров?
Книги, звери и еда – это хобби навсегда.
Гидростатическое давление, создаваемое столбом жидкости, рассчитывается по формуле:
P= ρ *g*h, где ρ – плотность жидкости, h – высота столба жидкости, g – ускорение свободного падения. Для воды ρ =1000 кг/м^3, g=10 м/с^2, поэтому P=1000*10*10=10000 Па = 100 кПа.
Как уровень воды зависит от площади дна сосуда?
Радиофизик, меньше математик, радио, сетевой админ, программист. Родом из…
Блин! Тут вопрос не о давлении! А об объёме!
Если один и тот же объём наливать в сосуды с разным по площади дном, то высота столба воды/её уровень будет зависеть от размеров дна.
Если предположить, что сосуд имеет форму параллепипеда, то уровень объёма жидкости V будет связан с дном формулой:
V = Sд * h, где Sд – площать дна, а h – уровень. Отсюда h = V/Sд, где площадь дна рассчитыаем по формуле: Sд = a * b, где а – длина сосуда, b – ширина сосуда. h в данном случае – минимальная высота сосуда, что бы влезла вся жидкость объёма V.
Для цилиндра, формула та же: V = Sд * h. Только площадь дна считается по формуле:
Sд = Пи * D в квадрате. Пи – число Пи.
Это всё случаи если сосуд или цилиндр или параллелепипед. В случае сосуда в виде шара так не посчитать, так как в данном случае в точке соприкосновения шара и поверхности площадь дан равна нулю. Тогда чтобы вычислить высоту, которую в шаре занял объём жидкости, нужно уже будет прибегать к вычислению объёма через интеграл. Тем не менее, минимальный объём шара и, следовательно, его диаметр посчитать легко – формула объёма шара известна.
V = 4/3 Пи * R в кубе, где Пи – число Пи, R – радиус шара. Если выразить R через D – диаметр шара, получим:
V = 4/3 Пи * (D/2)в кубе = 4/3 Пи * D в кубе / 8 = Пи * D в кубе / 6
Диаметр шара, полученный из этой формулы, будет минимальным, чтобы вместился весь объём:
D = Корень кубический из (6 * V / Пи).
Этот диаметр и будет высотой h для данного объёма.
Для других случаев нужно будет уже выводить всё через интеграл от объёма.
Прочитать ещё 1 ответ
Если поместить жидкость в вакуум, в космос, то она мгновенно испарится. А есть такая жидкость, которая в вакууме не начнет кипеть?
Да вроде все логично, у жидкостей нет кристаллической решетки, потому при низком давлении атомы начинают разлетаться, то есть идет процесс кипения. А примеси на что влияют? На создании пузыриков во время кипения? Так они будут формироваться на любой неравномерности, если нет примесей, на границе изменения температур или на волне внутренней. Слышали наверное про способ избавить газировку от пузыриков – постучать со всех сторон по банке. Волны освободят все потенциальные очаги зарождения пузырей и баночка откроется с легким пшиком, а не взорвется, забрызгав все в округе.
Прочитать ещё 1 ответ
Источник
Возьмем
цилиндрический сосуд с горизонтальным дном и вертикальными стенками,
наполненный жидкостью до высоты (рис. 248).
Рис. 248. В
сосуде с вертикальными стенками сила давления на дно равна весу всей налитой
жидкости
Рис. 249. Во
всех изображенных сосудах сила давления на дно одинакова. В первых двух сосудах
она больше веса налитой жидкости, в двух других — меньше
Гидростатическое
давление в каждой точке дна сосуда будет одно и то же:
.
Если
дно сосуда имеет площадь , то сила давления жидкости на дно
сосуда ,
т. е. равна весу жидкости, налитой в сосуд.
Рассмотрим
теперь сосуды, отличающиеся по форме, но с одинаковой площадью дна (рис. 249).
Если жидкость в каждом из них налита до одной и той же высоты , то давление на
дно . во
всех сосудах одно и то же. Следовательно, сила давления на дно, равная
,
также
одинакова во всех сосудах. Она равна весу столба жидкости с основанием, равным
площади дна сосуда, и высотой, равной высоте налитой жидкости. На рис. 249 этот
столб показан около каждого сосуда штриховыми линиями. Обратите внимание на то,
что сила давления на дно не зависит от формы сосуда и может быть как больше,
так и меньше веса налитой жидкости.
Рис. 250.
Прибор Паскаля с набором сосудов. Сечения одинаковы у всех сосудов
Рис. 251.
Опыт с бочкой Паскаля
Этот
вывод можно проверить на опыте при помощи прибора, предложенного Паскалем (рис.
250). На подставке можно закреплять сосуды различной формы, не имеющие дна.
Вместо дна снизу к сосуду плотно прижимается подвешенная к коромыслу весов
пластинка. При наличии жидкости в сосуде на пластинку действует сила давления,
которая отрывает пластинку, когда сила давления начнет превосходить вес гири,
стоящей на другой чашке весов.
У
сосуда с вертикальными стенками (цилиндрический сосуд) дно открывается, когда
вес налитой жидкости достигает веса гири. У сосудов другой формы дно
открывается при той же самой высоте столба жидкости, хотя вес налитой воды
может быть и больше (расширяющийся кверху сосуд), и меньше (суживающийся сосуд)
веса гири.
Этот
опыт приводит к мысли, что при надлежащей форме сосуда можно с помощью
небольшого количества воды получить огромные силы давления на дно. Паскаль
присоединил к плотно законопаченной бочке, налитой водой, длинную тонкую
вертикальную трубку (рис. 251). Когда трубку заполняют водой, сила
гидростатического давления на дно становится равной весу столба воды, площадь
основания которого равна площади дна бочки, а высота равна высоте трубки.
Соответственно увеличиваются и силы давления на стенки и верхнее днище бочки.
Когда Паскаль заполнил трубку до высоты в несколько метров, для чего потребовалось
лишь несколько кружек воды, возникшие силы давления разорвали бочку.
Как
объяснить, что сила давления на дно сосуда может быть, в зависимости от формы
сосуда, больше или меньше веса жидкости, содержащейся в сосуде? Ведь сила,
действующая со стороны сосуда на жидкость, должна уравновешивать вес жидкости.
Дело в том, что на жидкость в сосуде действует не только дно, но и стенки
сосуда. В расширяющемся кверху сосуде силы, с которыми стенки действуют на
жидкость, имеют составляющие, направленные вверх: таким образом, часть веса
жидкости уравновешивается силами давления стенок и только часть должна быть
уравновешена силами давления со стороны дна. Наоборот, в суживающемся кверху
сосуде дно действует на жидкость вверх, а стенки — вниз; поэтому сила давления
на дно оказывается больше веса жидкости. Сумма же сил, действующих на жидкость
со стороны дна сосуда и его стенок, всегда равна весу жидкости. Рис. 252
наглядно показывает распределение сил, действующих со стороны стенок на
жидкость в сосудах различной формы.
Рис. 252.
Силы, действующие на жидкость со стороны стенок в сосудах различной формы
Рис. 253. При
наливании воды в воронку цилиндр поднимается вверх.
В
суживающемся кверху сосуде со стороны жидкости на стенки действует сила,
направленная вверх. Если стенки такого сосуда сделать подвижными, то жидкость
поднимет их. Такой опыт можно произвести на следующем приборе: поршень
неподвижно закреплен, и на него надет цилиндр, переходящий в вертикальную
трубку (рис. 253). Когда пространство над поршнем заполняется водой, силы
давления на участках и стенок цилиндра поднимают цилиндр
вверх.
Источник
Что это такое?
В сосуде, заполненном водой, на дно давит сила, равная весу столба жидкости. Это вызванное силой тяжести давление называется гидростатическим.
Оно определяется отношением силы к площади, то есть его физический смысл – это сила, действующая на единицу площади (см2).
Законы гидростатики описал Блез Паскаль. В 1648 г. он удивил горожан опытом, демонстрирующим свойства воды.
Вставив в бочку, заполненную водой, длинную узкую трубку, он налил в нее несколько кружек воды, и бочку разорвало.
Согласно закону Паскаля, приложенное к H2O усилие распространяется равномерно во всем объеме. Это объясняется тем, что вода почти не сжимается. В гидравлических прессах используют это свойство.
Плотность воды все же растет при высоком давлении. Это учитывается при расчетах конструкций глубоководных аппаратов.
Факторы, влияющие на показатель
При отсутствии внешнего воздействия, играют роль два фактора:
- высота столба;
- плотность.
Выше уровень воды, налитой в сосуд, — выше напор на дно. Если в одной емкости ртуть, а в другой вода и при этом уровни жидкостей одинаковы, то в первом случае давление на дно больше, так как ртуть имеет большую плотность.
Сверху на содержимое сосуда давит также атмосферный воздух. Поэтому в сообщающихся сосудах уровень одинаков, ведь в каждом из них над поверхностью атмосфера одна и та же.
Если же к поверхности приложить поршень и давить на него, то напор будет складываться из:
- внешней силы;
- веса воды.
При этом форма сосуда не определяет размер усилия, создаваемого столбом. Оно будет одним и тем же при равной высоте столба, хотя стенки емкости могут расширяться кверху или сужаться.
На дно и стенку сосуда – в чем разница?
Вода, заполняющая емкость, оказывает давление по направлению всегда перпендикулярно поверхности твердого тела, по всей площади соприкосновения с дном и стенками.
Усилие на дно распределено равномерно, то есть оно одинаково в любой точке. Заполнив водой сито, можно увидеть, что струи, текущие через отверстия, равны по напору.
Наполнив сосуд, имеющий отверстия одного диаметра в стенках на разной высоте, можно наблюдать различный напор вытекающей струи. Чем выше отверстие – тем слабее струя. То есть, давление на стенки емкости тем больше, чем ближе ко дну.
Единицы измерения
Давление воды измеряют в:
- паскалях – Па;
- метрах водяного столба – м. в. ст.
- атмосферах – атм.
Практически достаточно знать, что 1 атмосфера равна 10 метрам водяного столба или 100000 Па (100кПа).
Формулы расчета
Давление на дно сосуда рассчитывается делением силы на площадь, то есть оно равно произведению плотности воды, высоты столба и ускорения свободного падения g (величина постоянная, равна 9,8 м/с2).
Пример расчета: бак наполнен водой (плотность 1000 кг/м3) до высоты 1,2 м. Нужно найти, какое давление испытывает дно бака. Решение: P = 1000*1, 2*9, 8 = 11760 Па, или 11, 76 кПа.
Для расчета давления на стенки сосуда применяют все ту же формулу напора, приведенную выше. При расчете берется глубина от точки, в которой нужно рассчитать напор, до поверхности воды.
Пример расчета: на глубине 5 м на стенку резервуара с водой будет оказываться давление P=1000 *5 * 9, 8=49000 кПа, что составляет 0,5 атмосферы.
Расчет давления воды на дно и стенки сосуда в видео:
Применение на практике
Примеры использования знаний свойств воды:
- Подбирая насос для водоснабжения дома высотой 10 м, понимают, что напор должен быть минимум 1 атм.
- Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
- Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
- Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.
Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:
- выжимка масла из семян растений;
- спуск на воду со стапелей построенного судна;
- ковка и штамповка деталей;
- домкраты для подъема грузов.
Заключение
Такие свойства воды, как текучесть и несжимаемость, дают возможность использовать силу ее давления для самых различных целей.
Опасность этого явления учитывают при расчетах на прочность корпусов подводных лодок, стенок и днищ резервуаров, в которых хранят воду. Сила давления воды совершает полезную работу, она же способна и разрушать.
А какова Ваша оценка данной статье?
Источник
1. Твёрдые тела оказывают давление на опору. На тело, стоящее на опоре, действуют сила тяжести ( vec{F}_т=mvec{g} ) и сила реакции опоры ( vec{N} ) (рис. 55).
Если опора неподвижна, то это тело действует на неё с силой ( vec{F} ), называемой силой давления и равной в этом случае по модулю силе тяжести: ( F=mg ).
Физическая величина, равная отношению силы давления ( F ) к площади поверхности ( S ) называется давлением и обозначается буквой ( p ):
[ p=F/S ]
Единицей давления является 1 паскаль (1 Па):
[ [,p,]=1Н/1м^2=1,Н/м^2=1,Па ]
Более крупная единица давления — килопаскаль.
[ 1, кПа = 1000, Па ]
Как видно из формулы, давление на поверхность зависит от площади поверхности. Так, человек проваливается в снег при ходьбе по нему и спокойно перемещается на лыжах. В том случае, когда нужно увеличить давление на твёрдое тело, используют заострённые предметы, например, булавки, гвозди, ножи и т.п.
2. Жидкости и газы тоже оказывают давление на сосуд, в котором они находятся. Так, молекулы газа, находящегося в воздушном шаре, непрерывно движутся и при этом соударяются со стенками шара. Эти удары и вызывают давление газа на стенки шара и любого другого сосуда, в котором газ находится. Удар одной молекулы слаб, но внутри шара находится огромное число молекул, поэтому
их суммарное давление на стенки шара ощутимо.
Чем выше температура газа, чем с большей скоростью движутся молекулы и чем чаще и сильнее ударяются они о стенки сосуда, тем, следовательно, давление газа на стенки сосуда больше.
Если уменьшить объём газа в сосуде, не меняя его массу, то число молекул в единице объёма увеличится, увеличится и плотность газа. Число ударов молекул о стенки сосуда при этом возрастёт, следовательно, увеличится давление газа. При увеличении объёма газа при той же массе уменьшится его плотность и число ударов молекул о стенки сосуда. Давление уменьшится.
Таким образом, давление газа тем больше, чем выше его температура и меньше объём при неизменной массе. При повышении температуры и уменьшении объёма молекулы с большей силой и чаще ударяются о стенки сосуда.
3. Опыт показывает, что давление, производимое на жидкость или газ, передаётся по всем направлениям. Если шар с отверстиями, соединённый с трубкой, внутри которой находится поршень, наполнить водой, а затем нажать на поршень, то можно заметить, что вода брызнет из всех отверстий. При этом струйки вытекающей воды будут примерно одинаковыми. Это говорит о том, что давление, которое мы создаём, действуя на воду, передаётся водой по всем направлениям одинаково. Тот же эффект можно наблюдать, если шар заполнить дымом. Дым тоже будет передавать производимое на него давление по всем направлениям одинаково.
То, что газы и жидкости передают давление по всем направлениям, объясняется подвижностью их молекул. Она проявляется в том, что слои и частицы жидкостей и газов могут свободно перемещаться друг относительно друга но разным направлениям. Благодаря подвижности молекул давление, которое оказывает поршень на ближайший к нему слой, передаётся последующим слоям. Молекулы газа и жидкости движутся хаотически, поэтому и их действие распределяется равномерно по всему объёму шара. Таким образом, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения в каждую точку жидкости или газа. Это утверждение называется законом Паскаля.
4. Закон Паскаля находит применение в гидравлических машинах.
Основной частью любой гидравлической машины являются два соединенных между собой цилиндра разного диаметра. Цилиндры заполнены жидкостью, чаще всего маслом, и в них помещены поршни.
Пусть на большой поршень площадью ( S_1 ) действует сила ( F_1 ) (рис. 56). Эта сила будет оказывать на поршень давление ( p_1 ): ( p_1=F_1/S_1 ).
Это давление ( p_1 ) будет передаваться жидкости, находящейся под большим поршнем. Согласно закону Паскаля, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения. Следовательно, давление будет передаваться жидкости, находящейся под меньшим поршнем, и на меньший поршень со стороны жидкости будет действовать давление ( p_2=p_1 ). Соответственно, на меньший поршень со стороны жидкости будет действовать сила ( F_2=p_2S_2 ), направленная вверх. Откуда ( p_2=F_2/S_2 ).
Чтобы жидкость и поршни находились в равновесии, на меньший поршень следует подействовать силой, равной по модулю силе ( F_2 ), направленной вертикально вниз. Для этого можно, например, положить на поршень груз.
Так как ( p_1=p_2 ), то ( F_1/S_1=F_2/S_2 ) или ( F_1/F_2=S_1/S_2 ).
Таким образом, гидравлическая машина даёт выигрыш в силе во столько раз, во сколько раз площадь большего поршня больше площади меньшего поршня.
Это означает, что с помощью некоторой силы, приложенной к малому поршню гидравлической машины, можно уравновесить существенно большую силу, приложенную к большему поршню.
Гидравлическая машина, так же как и любой простой механизм, даёт выигрыш в силе, но не даёт выигрыша в работе.
5. Твёрдые тела производят давление на опору вследствие действия на них силы тяжести. Поскольку на жидкости тоже действует сила тяжести, то и жидкости оказывают давление на дно сосуда. Это можно доказать экспериментально.
Если в трубку, дно которой затянуто плёнкой, налить воду, то плёнка заметно прогнётся. Это происходит потому, что на воду действует сила тяжести, и каждый слой воды давит на слои воды, лежащие ниже, и соответственно на дно сосуда.
Давление производится жидкостью не только на дно сосуда, оно существует внутри жидкости на любой её глубине. При этом производимое давление передаётся по закону Паскаля по всем направлениям одинаково.
Если в трубку с дном, затянутым плёнкой, добавить воды, то плёнка прогнётся сильнее. Это происходит потому, что увеличивается вес воды и соответственно давление воды на дно трубки. Таким образом, давление жидкости на дно сосуда тем больше, чем больше высота столба жидкости.
Если теперь в трубку до той же высоты налить масло, плотность которого меньше плотности воды, то плёнка прогнётся меньше, чем в том случае, когда в ней была вода (рис. 57 а). Это означает, что давление на дно сосуда тем больше, чем больше плотность жидкости.
Сила ( F ), с которой жидкость давит на дно, равна её весу ( P ). Вес жидкости ( P ) равен произведению её массы ( m ) и ускорения свободного падения ( g ): ( F=P=mg ).
Масса жидкости ( m ) равна произведению её плотности ( rho ) и объёма ( V ): ( m=rho V ), где ( V=Sh ) (рис. 57 б). Тогда ( F=mg=rho V!g=rho Shg ).
Разделив вес жидкости (силу, с которой она давит на дно сосуда) на площадь дна, получим давление жидкости ( p ): ( p=F/S ) или ( p=rho gSh/S ), т.е. ( p=rho gh )
Давление жидкости на дно и стенки сосуда равно произведению плотности жидкости, ускорения свободного падения и высоты столба жидкости.
6. Два или более сосудов, соединённых между собой у дна, называются сообщающимися сосудами. Примерами сообщающихся сосудов могут служить гидравлические машины и жидкостный манометр. Самым простым сообщающимся сосудом, которым вы пользуетесь каждый день, является чайник.
Если две стеклянные трубки соединить резиновой трубкой (рис. 57 в), то получатся сообщающиеся сосуды. Наливая в одну трубку воду, можно заметить, что она будет перетекать и в другую трубку. При этом уровни воды в трубках будут все время одинаковы.
Можно поднять одну из трубок или наклонить ее, в любом случае друг относительно друга уровни воды или любой другой жидкости останутся одинаковыми, т.е. будут лежать в одной и той же горизонтальной плоскости.
Можно сделать вывод: в сообщающихся сосудах поверхности однородной жидкости всегда устанавливаются на одном уровне.
Это верно при условии, что давление на поверхность жидкости одинаково. При использовании сообщающихся сосудов в качестве жидкостного манометра именно по разности уровней жидкости в трубках можно судить о значении давления.
Объяснить то, что в сообщающихся сосудах однородная жидкость устанавливается на одном уровне, можно следующим образом. Жидкость в сосудах не перемещается, следовательно, её давления в сосудах на одном уровне, в том числе и на дно, одинаковы. Она имеет одинаковую плотность, т.к. она однородная. Следовательно, в соответствии с формулой ( p=rho gh ) высоты жидкости тоже одинаковы.
Если в одну трубку налить воду, а в другую масло, плотность которого меньше плотности воды, то уровень воды будет ниже, чем уровень масла в другой трубке (рис. 58).
Это объясняется тем, что давление жидкости на дно сосуда зависит от высоты столба жидкости и от её плотности. При одинаковом давлении, чем больше плотность жидкости, тем меньше высота её столба. Поскольку плотность масла меньше плотности воды, то столб масла выше столба воды. Жидкости, имеющие разную плотность, устанавливаются в сообщающихся сосудах на разных уровнях; во сколько раз плотность одной жидкости больше плотности другой, во столько раз меньше высота её столба.
7. Земля окружена воздушной оболочкой — атмосферой. Воздух, как и газы, входящие в состав атмосферы, имеет массу. Соответственно, на него действует сила тяжести, и он оказывает давление на поверхность Земли.
Давление воздушной оболочки на поверхность Земли и находящиеся на ней тела называется атмосферным давлением.
В существовании атмосферного давления легко убедиться на опытах. Если опустить в воду трубку с плотно прилегающим к её стенкам поршнем и поднимать поршень вверх, то вода будет подниматься по трубке вслед за поршнем.
Это происходит потому, что при подъёме поршня между ним и поверхностью воды образуется разреженное пространство. На поверхность воды в сосуде действует атмосферное давление, которое в соответствии с законом Паскаля передаётся по всем направлениям, в том числе и в направлении трубки. Оно и заставляет воду подниматься за поршнем.
Для расчёта атмосферного давления нельзя использовать формулу, по которой рассчитывается давление столба жидкости, так как для этого нужно знать высоту атмосферы и плотность воздуха. Но атмосфера не имеет определённой границы, а плотность воздуха изменяется с высотой. Однако атмосферное давление можно измерить.
Опыт по измерению атмосферного давления был предложен итальянским ученым Торричелли в XVII в. Стеклянную трубку длиной 1 м, запаянную с одного конца, заполнили ртутью. Закрыв другой конец трубки, её перевернули и опустили в сосуд с ртутью. Затем этот конец трубки открыли, и часть ртути вылилась из неё в сосуд, а часть осталась в трубке. Высота столба ртути, оставшейся в трубке, оказалась равной примерно 760 мм.
Объясняется это следующим образом: атмосферное давление действует на ртуть в сосуде, это давление передаётся по всем направлениям и действует на ртуть в основании трубки снизу вверх. Это давление уравновешивает давление столба ртути в трубке. Таким образом, атмосферное давление равно давлению, которое оказывает у основании трубки столб ртути высотой 760 мм. Это давление называют нормальным атмосферным давлением.
Если атмосферное давление выше нормального, то высота столба ртути больше, если — меньше нормального, то столб ртути опустится ниже.
Нормальное атмосферное давление равно 101 300 Па.
Атмосферное давление чаще выражают не в паскалях, а в миллиметрах ртутного столба (мм рт.ст.). 1 мм рт.ст. = 133,3 Па.
Если к трубке в опыте Торричелли прикрепить шкалу и проградуировать её в миллиметрах, то получим прибор — ртутный барометр, с помощью которого можно измерять атмосферное давление.
В быту и технике для измерения атмосферного давления применяют более удобный в обращении металлический барометр, называемый анероидом.
Атмосферное давление зависит от высоты. Это объясняется тем, что воздух хорошо сжимаем, так же как и все газы. Верхние слои воздуха давят на лежащие ниже и сжимают их, соответственно плотность слоёв воздуха, а следовательно и давление, у поверхности Земли больше, чем на некоторой высоте от неё.
Так, в местности, лежащей на уровне моря, давление равно примерно 760 мм рт. ст., т.е. нормальному атмосферному. В горах оно выше. Измерения показывают, что на каждые 12 м подъёма атмосферное давление уменьшается примерно на 1 мм рт.ст.
8. Если подвешенный к пружине динамометра шарик опустить в сосуд с водой, то можно заметить, что показание динамометра уменьшится.
Точно так же можно изменить показания динамометра, если подействовать на шарик рукой снизу вверх. Следовательно, когда шарик опустили в воду, на него, помимо силы тяжести и силы упругости пружины динамометра, стала действовать сила, направленная вверх. Эту силу называют выталкивающей или архимедовой силой.
Выталкивающая сила возникает за счёт разности давления воды на нижнюю поверхность шарика и давления на его верхнюю поверхность, поскольку давление жидкости зависит от высоты её столба.
Сила давления ( F_1 ), действующая на верхнюю поверхность шарика, направлена вниз, сила давления ( F_2 ), действующая на нижнюю поверхность шарика, направлена вверх. Так как ( F_2 ) больше ( F_1 ), то результирующая этих двух сил, являющаяся выталкивающей силой, будет направлена вверх.
Выталкивающая сила тем больше, чем больше плотность жидкости, в которую погружено тело, и чем больше объём тела, погружённого в жидкость.
Опыт показывает, что выталкивающая сила ( F ) может быть вычислена по формуле: ( F=rho gV ), где ( rho ) — плотность жидкости, в которую погружено тело, ( V ) — объём погружённой части тела.
Выталкивающая сила равна произведению плотности жидкости, ускорения свободного падения и объёма погружённой части тела.
Этот закон называют законом Архимеда.
В воздухе, так же как и в любом другом газе, на тело действует выталкивающая сила. Она имеет ту же природу, что и выталкивающая сила, действующая на тело в жидкости. Её происхождение обусловлено разностью давлений на нижнюю и верхнюю грани тела. Однако, поскольку плотность газа намного меньше плотности жидкости, выталкивающая сила, действующая на тело, в газе меньше, чем в жидкости. Часто при решении задач пренебрегают выталкивающей силой, действующей на тело в воздухе, и считают, что вес покоящегося тела в воздухе равен по модулю действующей на него силе тяжести.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Ребёнка везут на санках по свежевыпавшему снегу. Какие санки — с широкими или узкими полозьями — следует выбрать, чтобы не проваливаться в снег?
1) с широкими
2) с узкими
3) безразлично
4) ответ зависит от веса санок
2. Брусок в форме прямоугольного параллелепипеда положили на стол сначала узкой гранью (1), а затем — широкой (2). Сравните силы давления (( F_1 ) и ( F_2 )) и давления (( p_1 ) и ( p_2 )), производимые бруском на стол в этих случаях.
1) ( F_1=F_2; p_1>p_2 )
2) ( F_1=F_2; p_1<p_2 )
3) ( F_1<F_2; p_1<p_2 )
4) ( F_1=F_2; p_1=p_2 )
3. Сила ( F_1 ), действующая со стороны жидкости на один поршень гидравлической машины, в 16 раз меньше силы ( F_2 ), действующей на другой поршень. Как соотносятся модули работы ( (A_1) ) и ( (A_2) ) этих сил, совершаемой при перемещении поршней? Трением пренебречь.
1) ( A_1=A_2 )
2) ( A_1=16A_2 )
3) ( A_2=16A_1 )
4) ( A_1=4A_2 )
4. В сосуды различной формы налита одна и та же жидкость. Высота уровня жидкости во всех сосудах одинакова. В каком из сосудов давление на дно наименьшее?
1) в сосуде А
2) в сосуде Б
3) в сосуде В
4) во всех сосудах одинаковое
5. Стеклянный сосуд, правое колено которого запаяно, заполнен жидкостью плотностью с (см. рисунок). Давление, оказываемое жидкостью на дно сосуда в точке Б, равно
1) ( rho gh_3 )
2) ( rho gh_1 )
3) ( rho g(h_1-h_2) )
4) ( rho gh_2 )
6. Атмосферное давление на вершине горы Казбек
1) меньше, чем у её подножия
2) больше, чем у её подножия
3) равно давлению у её подножия
4) может быть больше или меньше, чем у её подножия, в зависимости от погоды
7. В открытых сосудах 1 и 2 находятся соответственно ртуть и вода. Если открыть кран К, то
1) ни вода, ни ртуть перетекать не будут
2) вода начнёт перетекать из сосуда 2 в сосуд 1
3) перемещение жидкостей будет зависеть от атмосферного давления
4) ртуть начнёт перетекать из сосуда 1 в сосуд 2
8. Два однородных шара, один из которых изготовлен из стали, а другой — из олова, уравновешены на рычажных весах (см. рисунок). Нарушится ли равновесие весов,
если шары опустить в воду?
1) Равновесие весов не нарушится, так как шары одинаковой массы.
2) Равновесие весов нарушится — перевесит шар из стали.
3) Равновесие весов нарушится — перевесит шар из олова.
4) Равновесие весов не нарушится, так как шары опускают в одну и ту же жидкость.
9. Алюминиевый шар, подвешенный на нити, опущен в крепкий раствор поваренной соли. Затем шар перенесли из раствора поваренной соли в дистиллированную воду. При этом сила натяжения нити
1) может остаться неизменной или измениться в зависимости от объёма шара
2) не изменится
3) увеличится
4) уменьшится
10. Теплоход переходит из устья реки в солёное море. При этом архимедова сила, действующая на теплоход,
1) увеличится
2) уменьшится или увеличится в зависимости от размера теплохода
3) не изменится
4) уменьшится
11. Шарик, опущенный в жидкость, начинает опускаться на дно. Как по мере движения шарика в жидкости изменяются выталкивающая сила, действующая на него, вес шарика, давление жидкости? Установите соответствие между физическими величинами и характером их изменения. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) выталкивающая сила
Б) вес
B) давление жидкости
ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИН
1) увеличивается
2) уменьшается
3) не изменяется
12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.
1) атмосферное давление можно рассчитать так же, как давление жидкости на дно сосуда.
2) в опыте Торричелли можно ртуть заменить водой при той же длине трубки.
3) для того, чтобы столб воды производил на дно сосуда такое же давление, что и столб керосина, его высота должна составлять 0,8 от высоты столба керосина.
4) на вершине горы атмосферное давление меньше, чем у её подножия.
5) закон Паскаля справедлив для газов, жидкостей и твёрдых тел.
Часть 2
13. Камень весит в воздухе 6 Н, а в воде 4 Н. Чему равен объём этого камня?
Ответы
Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда
2.8 (55%) 4 votes
Источник