В каком сосуде давление жидкости на дно больше веса
В каком сосуде давление жидкости на дно больше веса
Возьмем цилиндрический сосуд с горизонтальным дном и вертикальными стенками, наполненный жидкостью до высоты
(рис. 248).
Рис. 248. В сосуде с вертикальными стенками сила давления на дно равна весу всей налитой жидкости
Рис. 249. Во всех изображенных сосудах сила давления на дно одинакова. В первых двух сосудах она больше веса налитой жидкости, в двух других – меньше
Гидростатическое давление в каждой точке дна сосуда будет одно и то же:
.
Если дно сосуда имеет площадь
, то сила давления жидкости на дно сосуда , т. е. равна весу жидкости, налитой в сосуд.
Рассмотрим теперь сосуды, отличающиеся по форме, но с одинаковой площадью дна (рис. 249). Если жидкость в каждом из них налита до одной и той же высоты
, то давление на дно . во всех сосудах одно и то же. Следовательно, сила давления на дно, равная
,
также одинакова во всех сосудах. Она равна весу столба жидкости с основанием, равным площади дна сосуда, и высотой, равной высоте налитой жидкости. На рис. 249 этот столб показан около каждого сосуда штриховыми линиями. Обратите внимание на то, что сила давления на дно не зависит от формы сосуда и может быть как больше, так и меньше веса налитой жидкости.
Рис. 250. Прибор Паскаля с набором сосудов. Сечения
одинаковы у всех сосудов
Рис. 251. Опыт с бочкой Паскаля
Этот вывод можно проверить на опыте при помощи прибора, предложенного Паскалем (рис. 250). На подставке можно закреплять сосуды различной формы, не имеющие дна. Вместо дна снизу к сосуду плотно прижимается подвешенная к коромыслу весов пластинка. При наличии жидкости в сосуде на пластинку действует сила давления, которая отрывает пластинку, когда сила давления начнет превосходить вес гири, стоящей на другой чашке весов.
У сосуда с вертикальными стенками (цилиндрический сосуд) дно открывается, когда вес налитой жидкости достигает веса гири. У сосудов другой формы дно открывается при той же самой высоте столба жидкости, хотя вес налитой воды может быть и больше (расширяющийся кверху сосуд), и меньше (суживающийся сосуд) веса гири.
Этот опыт приводит к мысли, что при надлежащей форме сосуда можно с помощью небольшого количества воды получить огромные силы давления на дно. Паскаль присоединил к плотно законопаченной бочке, налитой водой, длинную тонкую вертикальную трубку (рис. 251). Когда трубку заполняют водой, сила гидростатического давления на дно становится равной весу столба воды, площадь основания которого равна площади дна бочки, а высота равна высоте трубки. Соответственно увеличиваются и силы давления на стенки и верхнее днище бочки. Когда Паскаль заполнил трубку до высоты в несколько метров, для чего потребовалось лишь несколько кружек воды, возникшие силы давления разорвали бочку.
Как объяснить, что сила давления на дно сосуда может быть, в зависимости от формы сосуда, больше или меньше веса жидкости, содержащейся в сосуде? Ведь сила, действующая со стороны сосуда на жидкость, должна уравновешивать вес жидкости. Дело в том, что на жидкость в сосуде действует не только дно, но и стенки сосуда. В расширяющемся кверху сосуде силы, с которыми стенки действуют на жидкость, имеют составляющие, направленные вверх: таким образом, часть веса жидкости уравновешивается силами давления стенок и только часть должна быть уравновешена силами давления со стороны дна. Наоборот, в суживающемся кверху сосуде дно действует на жидкость вверх, а стенки – вниз; поэтому сила давления на дно оказывается больше веса жидкости. Сумма же сил, действующих на жидкость со стороны дна сосуда и его стенок, всегда равна весу жидкости. Рис. 252 наглядно показывает распределение сил, действующих со стороны стенок на жидкость в сосудах различной формы.
Рис. 252. Силы, действующие на жидкость со стороны стенок в сосудах различной формы
Рис. 253. При наливании воды в воронку цилиндр поднимается вверх.
В суживающемся кверху сосуде со стороны жидкости на стенки действует сила, направленная вверх. Если стенки такого сосуда сделать подвижными, то жидкость поднимет их. Такой опыт можно произвести на следующем приборе: поршень неподвижно закреплен, и на него надет цилиндр, переходящий в вертикальную трубку (рис. 253). Когда пространство над поршнем заполняется водой, силы давления на участках
и стенок цилиндра поднимают цилиндр вверх.
Источник
Гидростатический парадокс или парадокс Паскаля
Гидростатический парадокс или парадокс Паскаля – явление, при котором сила весового давления налитой в сосуд жидкости на дно сосуда может отличаться от веса налитой жидкости. В сосудах с увеличивающимся кверху поперечным сечением сила давления на дно сосуда меньше веса жидкости, в сосудах с уменьшающимся кверху поперечным сечением сила давления на дно сосуда больше веса жидкости. Сила давления жидкости на дно сосуда равна весу жидкости лишь для сосуда цилиндрической формы. Математическое объяснение парадоксу было дано Симоном Стевином в 1612 году.
Причины
Причина гидростатического парадокса состоит в том, что по закону Паскаля жидкость давит не только на дно, но и на стенки сосуда.
Если стенки сосуда вертикальные, то силы давления жидкости на его стенки направлены горизонтально и не имеют вертикальной составляющей. Сила давления жидкости на дно сосуда в этом случае равна весу жидкости в сосуде. Если же сосуд имеет наклонные стенки, давление жидкости на них имеет вертикальную составляющую. В расширяющемся кверху сосуде она направлена вниз, в сужающемся кверху сосуде она направлена вверх. Вес жидкости в сосуде равен сумме вертикальных составляющих давления жидкости по всей внутренней площади сосуда, поэтому он и отличается от давления на дно.
Опыт Паскаля
В 1648 году парадокс продемонстрировал Блез Паскаль . Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.
Гидростатический парадокс и закон Архимеда
Похожий кажущийся парадокс возникает при рассмотрении закона Архимеда . Согласно распространённой формулировке закона Архимеда , на погружённое в воду тело действует выталкивающая сила, равная весу воды, вытесненной этим телом. Из такой формулировки можно сделать неверное умозаключение, что тело не сможет плавать в сосуде, не содержащем достаточное количество воды для вытеснения.
Однако на практике тело может плавать в резервуаре с таким количеством воды, масса которой меньше массы плавающего тела. Это возможно в ситуации, когда резервуар лишь ненамного превышает размеры тела. Например, когда корабль стоит в тесном доке, он остаётся на плаву точно так же, как в открытом океане, хотя масса воды между кораблём и стенками дока может быть меньше, чем масса корабля.
Объяснение парадокса заключается в том, что архимедова сила создаётся гидростатическим давлением, которое зависит не от веса воды, а только от высоты её столба. Как в гидростатическом парадоксе на дно сосуда действует сила весового давления воды, которая может быть больше веса самой воды в сосуде, так и в вышеописанной ситуации давление воды на днище корабля может создавать выталкивающую силу, превышающую вес этой воды.
Более корректной формулировкой закона Архимеда является следующая: на погружённое в воду тело действует выталкивающая сила, эквивалентная весу воды в погружённом объёме тела.
Источник
Все, что необходимо знать о силе давления воды
Пловец, нырнувший глубоко, ощущает боль в ушах. На барабанные перепонки воздействует сила давления воды.
Корабль в воде не тонет благодаря выталкивающей силе. Вода способна легко изменять свою форму, она воздействует на поверхности тел при соприкосновении с ними.
Чему равна сила давления воды и что это такое, расскажем в статье.
Что это такое?
В сосуде, заполненном водой, на дно давит сила, равная весу столба жидкости. Это вызванное силой тяжести давление называется гидростатическим.
Законы гидростатики описал Блез Паскаль. В 1648 г. он удивил горожан опытом, демонстрирующим свойства воды.
Вставив в бочку, заполненную водой, длинную узкую трубку, он налил в нее несколько кружек воды, и бочку разорвало.
Согласно закону Паскаля, приложенное к H2O усилие распространяется равномерно во всем объеме. Это объясняется тем, что вода почти не сжимается. В гидравлических прессах используют это свойство.
Плотность воды все же растет при высоком давлении. Это учитывается при расчетах конструкций глубоководных аппаратов.
Факторы, влияющие на показатель
При отсутствии внешнего воздействия, играют роль два фактора:
Выше уровень воды, налитой в сосуд, – выше напор на дно. Если в одной емкости ртуть, а в другой вода и при этом уровни жидкостей одинаковы, то в первом случае давление на дно больше, так как ртуть имеет большую плотность.
Если же к поверхности приложить поршень и давить на него, то напор будет складываться из:
При этом форма сосуда не определяет размер усилия, создаваемого столбом. Оно будет одним и тем же при равной высоте столба, хотя стенки емкости могут расширяться кверху или сужаться.
На дно и стенку сосуда – в чем разница?
Вода, заполняющая емкость, оказывает давление по направлению всегда перпендикулярно поверхности твердого тела, по всей площади соприкосновения с дном и стенками.
Усилие на дно распределено равномерно, то есть оно одинаково в любой точке. Заполнив водой сито, можно увидеть, что струи, текущие через отверстия, равны по напору.
Единицы измерения
Давление воды измеряют в:
- паскалях – Па;
- метрах водяного столба – м. в. ст.
- атмосферах – атм.
Практически достаточно знать, что 1 атмосфера равна 10 метрам водяного столба или 100000 Па (100кПа).
Формулы расчета
Давление на дно сосуда рассчитывается делением силы на площадь, то есть оно равно произведению плотности воды, высоты столба и ускорения свободного падения g (величина постоянная, равна 9,8 м/с2).
Пример расчета: бак наполнен водой (плотность 1000 кг/м3) до высоты 1,2 м. Нужно найти, какое давление испытывает дно бака. Решение: P = 1000*1, 2*9, 8 = 11760 Па, или 11, 76 кПа.
Для расчета давления на стенки сосуда применяют все ту же формулу напора, приведенную выше. При расчете берется глубина от точки, в которой нужно рассчитать напор, до поверхности воды.
Пример расчета: на глубине 5 м на стенку резервуара с водой будет оказываться давление P=1000 *5 * 9, 8=49000 кПа, что составляет 0,5 атмосферы.
Расчет давления воды на дно и стенки сосуда в видео:
Применение на практике
Примеры использования знаний свойств воды:
- Подбирая насос для водоснабжения дома высотой 10 м, понимают, что напор должен быть минимум 1 атм.
- Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
- Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
- Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.
Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:
- выжимка масла из семян растений;
- спуск на воду со стапелей построенного судна;
- ковка и штамповка деталей;
- домкраты для подъема грузов.
Заключение
Такие свойства воды, как текучесть и несжимаемость, дают возможность использовать силу ее давления для самых различных целей.
Опасность этого явления учитывают при расчетах на прочность корпусов подводных лодок, стенок и днищ резервуаров, в которых хранят воду. Сила давления воды совершает полезную работу, она же способна и разрушать.
Источник
Источник