В конический сосуд вмещающий 40 литров налили 5 литров
При решении задач на сплавы и смеси считают, что сумма масс сплавляемых веществ равна массе получаемого сплава, что сумма масс вещества, входящего в сплавы равна массе этого вещества в полученном сплаве. Аналогичное допущение принимаем и для сумм масс (объёмов) при смешивании жидкостей.
Рассмотрим подготовительную задачу.
Задача 1. Имеется уксусный раствор массой 1,5 кг, содержащий 40 % уксуса. Сколько килограммов воды нужно добавить в раствор, чтобы новый раствор содержал 10 % уксуса?
Решение. I способ.
1) 40 : 10 = 4 (раза) — во столько раз уменьшилась концентрация уксуса в растворе и увеличилась масса раствора,
2) 1,5 * 4 = 6 (кг) — масса нового раствора,
3) 6 – 1,5 = 4,5 (кг) — воды надо добавить.
II способ. 1) 0,4 * 1,5 = 0,6 (кг) — масса уксуса в первом растворе.
2) Пусть добавили x кг воды. Составим уравнение:
0,1(1,5 + x) = 0,6.
Оно имеет единственный корень 4,5. Значит, надо добавить 4,5 кг воды.
Ответ. 4,5 кг.
Рассмотрим способы решения задач на смеси и сплавы из сборников вариантов для подготовки к ЕГЭ.
Задача 2. (2017) В сосуд, содержащий 7 литров 15-процентного водного раствора некоторого вещества, добавили 8 литров воды. Определите процентную концентрацию того же вещества в новом растворе.
Задача 3. (2018) Имеется два сплава. Первый содержит 25 % никеля, второй — 30 % никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 28 % никеля. На сколько килограммов масса первого сплава меньше массы второго?
Решение. Пусть масса первого сплава x кг, второго (150 – x) кг, третьего — 150 кг. Найдём массу никеля в каждом из трёх сплавов. Никеля было
в первом сплаве 0,25x кг,
во втором — 0,3(150 – x) кг,
в третьем — 0,28 *150 = 42 (кг).
Составим уравнение:
0,25x + 0,3(150 – x) = 42.
Решив уравнение, получим его единственный корень x = 60. Теперь ответим на вопрос задачи. Масса первого сплава 60 кг, масса второго сплава 90 кг, первая меньше второй на 30 кг.
Ответ. На 30 кг.
Задача 4. (2019) Первый сплав содержит 5 % меди, второй — 14 % меди. Масса второго сплава больше массы первого сплава на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.
Решение. Пусть масса первого сплава x кг, второго (x + 7) кг, третьего — (2x + 7) кг. Меди было в первом сплаве 0,05x кг, во втором — 0,14(x + 7) кг, в третьем — 0,1(2x + 7) кг. Составим уравнение:
0,05x + 0,14(x + 7) = 0,1(2x + 7).
Решив уравнение, получим его единственный корень x = 28. При x = 28 масса третьего сплава 2x + 7 равна 63 кг.
Ответ. 63 кг.
Задача 5. (2017) Смешав 70 %-й и 60 %-й растворы кислоты и добавив 2 кг чистой воды, получили 50 %-й раствор кислоты. Если бы вместо 2 кг воды добавили 2 кг 90 %-го раствора той же кислоты, то получили бы 70 %-й раствор кислоты. Сколько килограммов 70 %-го раствора кислоты использовали для получения смеси?
Решение. Пусть масса первого раствора x кг, второго y кг. Приравняв массы кислоты до смешивания и после смешивания, составим два уравнения:
0,7x + 0,6y = 0,5(x + y + 2),
0,7x + 0,6y + 0,9*2 = 0,7(x + y + 2).
Решив систему этих двух уравнений, получим её единственное решение:
x = 3, y = 4. Использовали 3 кг 70 %-го раствора кислоты.
Ответ. 3 кг.
Задача 6. (2017) Имеется два сосуда. Первый содержит 100 кг, а второй — 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 28 % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 36 % кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Для второго смешивания возьмём 1 кг первого раствора и 1 кг второго, получим 2 кг смеси. Составим первое уравнение:
Решив систему уравнений (1) и (2), получим её единственное решение: x = 12, y = 60. В первом сосуде содержится x * 100 / 100 = 12 (кг) кислоты. Ответ. 12 кг.
Для самостоятельного решения
7. Имеется 400 г морской воды, содержащей 4 % соли. Сколько граммов чистой воды нужно добавить в эту морскую воду, чтобы новый раствор содержал 2 % соли?
8. (2016) В сосуд, содержащий 10 литров 24-процентного водного раствора некоторого вещества, добавили 5 литров воды. Определите процентную концентрацию того же вещества в новом растворе.
9. (2009) В бидон налили 4 литра молока трёхпроцентной жирности и 6 литров молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?
10. (2017) Имеется два сплава. Первый содержит 5 % никеля, второй — 20 % никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 15 % никеля. На сколько килограммов масса первого сплава меньше массы второго?
11. (2017) Первый сплав содержит 5 % меди, второй — 11 % меди. Масса второго сплава больше массы первого сплава на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.
12. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?
13. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?
Ответы. 7. 400 г. 8. 16 %. 9. 4,8 %. 10. На 75 кг. 11. 6 кг. 12. 5 : 2. 13. 5 : 2.
Для работы с задачами в классе можно использовать вариант заметки в виде презентации: Сплавы и смеси. Задачи 11 из ЕГЭ.
Источник
Анонимный вопрос
2 декабря 2018 · 4,1 K
Родилась в Нижнем Новгороде, волей судьбы оказалась в Москве. Мама двоих детей…
Условимся, что 1 сосуд – 8 литров, 2 сосуд – 5 литров.
В пустой 8 литровый сосуд налить при помощи 5литрового 5 литров.Таким образом в 1 сосуде 5 литров
Еще раз наполняем 2 сосуд и переливаем из него воду в сосуд 1 до наполнения. Таким образом у нас 1 сосуд наполнился, а во 2 сосуде осталось 2 литра.
Опустошаем сосуд 1. Переливаем в него 2 литра из 2 сосуда.
Наполняем сосуд 2 и полностью переливаем из него с одержимое в сосуд 1.
Задача решена. в сосуде 1 7 литров воды.
Чему равно число Пи?
Никто не знает точно, чему равно пи. Если разделить длину окружности на ее диаметр, то результат всегда будет одинаковый, какую окружность ни возьми. Этот результат и обозначили греческой буквой пи. Буква понадобилась потому, что привычными цифрами это число точно записать невозможно. Но мы знаем, чему оно равно приблизительно.
Самое знаменитое приближение – 3,14. Чтобы запомнить больше цифр, можно выучить стишок:
Надо очень постараться
И запомнить всё как есть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть
Прочитать ещё 17 ответов
Объясните чайнику: если до Большого взрыва Вселенная была бесконечно мала, то как называлось то пространство, которое ее окружало?
PhD, senior scientist AI, неандерталец
Разум цепляется за привычное. Например, мы привыкли, что все тела падают вниз. Привыкли настолько, что в Англии, на родине Ньютона, еще в девятнадцатом веке огромной общественной популярностью пользовалась книга, в которой «доказывалось», что Земля — плоская, ведь иначе мы бы с нее упали. Раз она плоская, у нее должен быть край. Однако, путешествие Магеллана показало — если плыть все время на запад, то снова приплывешь в Европу, только уже с востока. Итак, Земля — шар, а с тем, что люди на другой стороне ходят «вверх ногами», придется смириться, хоть это и противоречит «здравому смыслу».
Ну, «здравый смысл» с тех пор кое-как примирился с законом всемирного тяготения, но теперь есть новая задача — понять, как Вселенная может быть ограниченной в объеме и при этом не иметь «краев» и чего-то «вне». Что ж, лучшая аналогия — это старые игры, где, выходя за конец экрана, какой-нибудь пэкмен, или диггер, или змейка, или Марио оказывались с противоположного. Для них, таким образом, края экрана не существовало.
Ограниченная по объему трехмерная вселенная — это нечто подобное. Представьте себе: вы находитесь в комнате, у которой как будто две двери в противоположных стенах. Вы открываете дверь и видите такую же комнату и себя со спины, открывающего дверь в следующей стене, за которой видна еще одна комната и еще один вы, и так далее. И за спиной у вас скрипнула дверь — на самом деле та же самая, потому что дверь — одна. И происходит это не потому, что существует бесконечное число вас, а потому что вселенная зациклена сама на себя — просто свет делает несколько кругов по этой вселенной прежде чем достичь ваших глаз. Если в этой нашей вселенной сделать скорость света, к примеру, один метр в секунду, то вы будете видеть себя в другой комнате уже с задержкой в несколько секунд. Теперь добавим еще двери, точнее, одну дверь двум другим стенам комнаты. А теперь — люк в полу и потолке с теми же эффектами.
А теперь — уберем стены, пол и потолок! И увидим многократные копии себя же через равные промежутки пространства. Хотя на самом деле эти копии настолько же реальны, насколько ваше отражение в зеркале — то, что мы видим в зеркале отраженную комнату, отнюдь не значит, что есть еще одна комната.
Поздравляю! Вот вы и очутились во вселенной с ограниченным объемом, но без краев и чего-то «вне». Это лишь один из вариантов, тороидальный. В сферической вселенной вы бы видели размытый образ себя во всем поле зрения — причем, считая, что угол обзора у нас 180°, вы бы видели в упор свой затылок, а в нижнем краю зрения — макушку, в верхнем — подошвы обуви, а по бокам — уши. Но это уже мелочи.
Почему так не происходит в нашей Вселенной? Дело в том, что она расширяется, и достаточно удаленные ее участки улетают от нас быстрее скорости света. В общем, даже если вселенная конечна, свет, испущенный нами или отраженный от нас, просто не имеет возможности к нам возвратиться. Это — большой вариант комнаты.
А теперь рассмотрим противоположный сценарий. Будем сжимать нашу комнату без стен. Вот нам уже в ней неуютно. Вот вы в нее уже не помещаетесь, вас прижимает носом к своему собственному затылку, который вы видите перед собой, и вы чувствуете затылком, как к нему прижало ваш же нос. Вот комната становится размером с атомное ядро… И вот мы приходим в состояние «сразу» после Большого Взрыва. «Сразу» заключено в кавычки, потому что время — это тоже лишь измерение пространства. Так что нет не только «вне» вселенной, но и «до» Большого Взрыва. Ну, то есть, в одной из моделей.
Вот, как-то так.
Прочитать ещё 65 ответов
Как определить число молекул, содержащихся в 4.9 граммах серной кислоты при нормальных условиях?
Книги, звери и еда – это хобби навсегда.
Молекулярная масса серной кислоты H2SO4 составляет M(H2SO4)=2+32+4*16=98, поэтому 1 моль серной кислоты весит 98 г. Тогда количество вещества в 4.9 г серной кислоты n=4.9/98=0.05 моль. Так как 1 моль вещества содержит количество молекул Na=6*10^23 молекул, то в 4.9 г серной кислоты содержится количество молекул N=Na*n=6*10^23*0.05=3*10^22 молекул.
Источник