В сообщающиеся сосуды налиты две разнородные жидкости плотность

В сообщающиеся сосуды налиты две разнородные жидкости плотность thumbnail

Определение

Соединенные между собой сосуды называют сообщающимися.

В таких сосудах жидкость имеет возможность перетекать из одной емкости в другую (рис.1). Форма сообщающихся сосудов может быть самая разная.

Сообщающиеся сосуды, рисунок 1

Допустим, что в сообщающиеся сосуды налита однородная жидкость, то в этих сосудах жидкость устанавливается на одном уровне, если давление над поверхностью жидкости одинаково, и не важно какую форму имеют сосуды. В неподвижной жидкости давление ($p$) на одном уровне в сообщающихся сосудах является равным, так как мы знаем, что:

[p=rho gh left(1right),]

где $rho $ – плотность жидкости; $g$ – ускорение свободного падения; $h$ – высота столба жидкости. Так как давление на одном уровне жидкости одинаково, то равными будут и высоты столбов жидкости.

Жидкости разной плотности в сообщающихся сосудах

Допустим, что в сообщающиеся сосуды налили жидкость разной плотности (рис.2(б)). В состоянии равновесия жидкостей, их уровни не будут находиться на одном уровне (высоты столбов жидкости равными не будут).

Сообщающиеся сосуды, рисунок 2

Жидкости в сосудах находятся в равновесии. Давления на уровне A (граница раздела разных жидкостей) (рис. 2 (б)) равны:

[{rho }_1gh_1={rho }_2gh_2left(2right),]

где ${rho }_1$ и ${rho }_2$ – плотности жидкостей. Найдем отношение высот столбов жидкостей в сосудах:

[frac{h_1}{h_2}=frac{{rho }_2}{{rho }_1}left(3right).]

Формула (3) говорит о том, что в сообщающихся сосудах высоты столбиков жидкости над уровнем их раздела обратно пропорциональны плотностям этих жидкостей. При одинаковом давлении над поверхностями жидкостей, высота столба жидкости с меньшей плотностью будет больше, чем высота столба более плотной жидкости.

Гидравлический пресс и другие примеры использования сообщающихся сосудов

В технике сообщающиеся сосуды используют часто. Например, существует такое устройство, как гидравлический пресс. Его изготавливают из двух цилиндров разного радиуса, в которых находятся поршни (рис.3). Сообщающиеся сосуды пресса обычно заполняют минеральным маслом.

Сообщающиеся сосуды, рисунок 3

Пусть площадь первого поршня, к которому прикладывают силу ${overline{F}}_1,$ равна $S_1$, площадь второго $S_2$, к нему приложена сила ${overline{F}}_2$. Давление, которое создает первый поршень равно:

[p_1=frac{F_1}{S_1}left(4right).]

Второй поршень давит на жидкость:

[p_2=frac{F_2}{S_2}left(5right).]

Если система находится в состоянии равновесия, то по закону Паскаля давления $p_1$ и $p_2$ равны:

[frac{F_1}{S_1}=frac{F_2}{S_2}left(6right).]

Получим:

[F_1=F_2frac{S_1}{S_2}(7)]

величина первой силы больше модуля силы $F_2$ в $frac{S_1}{S_2}$ раз. Это означает, что при помощи гидравлического пресса, прикладывая небольшую силу к поршню малого сечения, можно получить большую по величине силу, которая будет действовать на большой поршень.

По принципу сообщающихся сосудов, в особенности раньше, действовал водопровод. Такой водопровод сейчас еще можно наблюдать на дачных участках. На относительно большой высоте устанавливается бак с водой, от бака идут водопроводные трубы, закрываемые кранами. Давление у кранов соответствует давлению столба воды, который равен разности высот уровень крана – уровень воды в баке.

Принципом сообщающихся сосудов пользовались, когда проектировали фонтаны, работающие без насосов, шлюзы на реках и каналах.

Примеры задач с решением

Пример 1

Задание. Имеются два цилиндрических сосуда. Высота столба жидкости в одном равна $h_1$, в другом $h_2$. Эти сосуды соединяют трубкой. Насколько изменится высота столба жидкости в левом сосуде, если площадь поперечного сечения его $S_1>S_2$ , $S_2$ – площадь сечения правого сосуда. Объемом трубки пренебречь.

Сообщающиеся сосуды, пример 1

Решение. После того как сосуды соединили, они стали сообщающимися. Часть жидкости из левого сосуда перетечет в правый. Так как жидкость в правом и левом сосудах одна и та же, то уровни жидкости в обоих сосудах будут находиться на одном уровне, то есть высота столбиков жидкости станет равна $H$ в обоих коленах емкости. Определим, какой объем воды перетечет из левого колена в правое:

[Delta V_1=left(h_1-Hright)S_{1 }left(1.1right),]

где $S_{1 }$ – площадь поперечного сечения левого сосуда (сосуда из которого вытекает жидкость). В правом сосуде эта жидкость займет объем равный:

[Delta V_2=left(H-h_2right)S_{2 }left(1.2right),]

где $S_{2 }$ – площадь поперечного сечения правого сосуда. Так как мы считаем, что жидкость не сжимаема, то имеем:

[Delta V_1=Delta V_2left(1.3right).]

Приравниваем правые части выражений (1.2) и (1.1), выражаем высоту столбиков жидкости в правой и левой части сообщающихся сосудов:

[left(h_1-Hright)S_{1 }=left(H-h_2right)S_{2 }to H=frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }} left(1.4right).]

Используя выражение (1.4), изменение высоты жидкости в левом колене, получим равным:

[Delta h=h_1-H=h_1-frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }}=frac{h_1S_1+h_1S_2-h_1S_{1 }-S_{2 }h_2}{S_1+S_{2 }}=]

Читайте также:  На руке под кожей лопнули сосуды

[=frac{h_1S_2-S_{2 }h_2}{S_1+S_{2 }}=frac{h_1-h_2}{S_1+S_{2 }}S_2.]

Ответ. $Delta h=frac{h_1-h_2}{S_1+S_{2 }}S_2$

Пример 2

Задание. Какой будет сила давления на большой поршень (площадью $S_1$) гидравлического пресса, если площадь его малого поршня равна $S_2$, при этом на него действует сила равная $F_2$?

Решение. В теоретическом разделе сказано, что гидравлический пресс представляет собой систему из сообщающихся сосудов (рис.3). Из закона Паскаля следует, что, прикладывая небольшую силу ($F_2$) к поршню малого сечения ($S_2$) пресса, можно получить большую по величине силу, которая будет действовать на большой поршень ($S_1$):

[F_1=F_2frac{S_1}{S_2}(2.1)]

Ответ. $F_1=F_2frac{S_1}{S_2}$

Читать дальше: условия плавания тел.

Источник

сообщающиеся сосуды

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.

Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.

Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.

Основное уравнение гидростатики

сообщающиеся сосуды и уровень

P = P1 + ρgh

где P1 – это среднее давление на верхний торец призмы,

P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.

ρgh – сила тяжести (вес призмы).

Звучит уравнение так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости

Доказательство закона сообщающихся сосудов

Возвращаемся к разговору про сообщающиеся сосуды.

сообщающиеся сосуды

Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.

Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.

Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики

P = P1 + ρgh1

если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.

Это давление можно определить следующим образом

P = P2 + ρgh2

где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2

P1 + ρ1gh1 = P2 + ρ2gh2

В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем

ρ1h1 = ρ2h2

или

ρ1 / ρ2 = h2 / h1

т.е. закон сообщающихся сосудов состоит в следующем.

В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Свойства сообщающихся сосудов

водонапорная башня

Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.

Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.

Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.

В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.

Приборы основанные на законе сообщающихся сосудов

сообщающиеся сосуды

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.

Читайте также:  Болит нога лопнул сосуд

Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.

сообщающиеся сосуды

В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.

Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.

Применение сообщающихся сосудов

сообщающиеся сосуды

Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.

Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.

Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.

Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.

В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.

сообщающиеся сосуды

Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.

В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.

Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.

сообщающиеся сосуды

Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.

Видео по теме

Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.

Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:

Источник

Статьи

Основное общее образование

Линия УМК А. В. Перышкина. Физика (7-9)

Физика

Все мы ежедневно пользуемся сообщающимися сосудами – это чайник, лейка, в общем, это любая система ёмкостей, в которых жидкость, к примеру, вода, может свободно перетекать из одной ёмкости в другую. В чайнике, например, такими ёмкостями являются корпус и носик или корпус чайника и специальная ёмкость для определения уровня воды в нём. Что особенного в сообщающихся сосудах? Каким свойством или свойствами они обладают? Чем заслуживают наше внимание?

26 апреля 2019

Закон сообщающихся сосудов 

Сосуды соединенные между собой, жидкость в которых может свободно перетекать, имеющие общее дно, называются сообщающимися. В соответствии с законом Паскаля, жидкость передаёт оказываемое на неё давление во всех направлениях одинаково. В открытых сосудах, атмосферное давление над каждым из них одинаково, значит, и давление жидкости на стенки сосудов будет одинаковым на любом уровне. Так как давление жидкости прямо пропорционально её плотности и глубине, в случае одинаковой жидкости в сообщающихся сосудах на одинаковой глубине будет одинаковое давление, что и объясняет выравнивание уровней жидкости в них. В случае разных жидкостей, чтобы на одинаковой глубине было одинаковое давление, жидкость с меньшей плотностью должна иметь больший уровень в сравнении с жидкостью большей плотности. Т.е.

Читайте также:  Сколько стоит убрать сосуды на лице

 ρ1 / ρ2 = h2 / h1

Физика. 7 класс. Учебник

Учебник соответствует Федеральному государственному образовательному стандарту основного общего образования. Большое количество красочных иллюстраций, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.

Купить

Свойство сообщающихся сосудов

Возьмем несколько различных по размеру и форме открытых сосудов, проделаем в каждом из них отверстие и соединим отверстия в сосудах трубками, чтобы жидкость, которую мы будем наливать в один из них, могла свободно перетекать из одного сосуда в другой. Для большего эффекта, пожмем трубки, которые их соединяют и наполним один из сообщающихся сосудов водой. Теперь откроем трубки и увидим, что когда жидкость перестанет перетекать, то, вне зависимости от формы и размера сосудов, уровни жидкости в каждом будут совершенно одинаковыми. Или проведём иной опыт – возьмём пластиковую бутыль и срежем донышко, а крышку плотно прикрутим, проделаем в ней небольшое отверстие и вставим в него небольшой шланг, место соединения шланга и крышки бутыли сделаем герметичным с помощью пластилина. Теперь закрепим бутыль вверх дном, а шланг расположим параллельно бутыли открытым концом чуть выше её срезанного дна. Заполним бутыль жидкостью, например, подкрашенной водой. И вновь мы увидим, что вне зависимости от высоты сообщающихся сосудов, уровень воды в бутыли будет точно таким же, как и уровень воды в шланге. В этом и заключается первое и основное свойство сообщающихся сосудов: в открытых сообщающихся сосудах уровни одинаковой жидкости будут одинаковыми. Это замечательное свойство нашло широкое применение в практике, но об этом поговорим чуть позже. А теперь возьмём U-образную стеклянную трубку. Это тоже сообщающиеся сосуды, их, в данном случае, называют коленами трубки. В правое колено нальём воду и она, конечно же, перетечёт в левое колено так, что уровни воды в обоих коленах будут одинаковыми – мы уже знаем, что так и должно быть, хоть пока что и не знаем, почему. А теперь в левое колено, очень аккуратно, чтобы жидкости не смешивались, нальём керосин или подкрашенный спирт. И мы увидим, что теперь верхние уровни каждой жидкости в коленах будут отличаться. Уровень спирта или керосина будет выше уровня воды. Заглянем заодно в таблицу плотности жидкостей и увидим, что плотность керосина или спирта меньше плотности воды, а уровень, наоборот, выше. Из этого эксперимента можно сделать вывод – если в открытых сообщающихся сосудах налиты две разные жидкости, то уровень будет выше у той, чья плотность меньше. Иными словами, плотности жидкостей и их уровни будут обратно пропорциональными. Настала пора объяснить, почему так получается.
Читайте также:

Проекты на уроках физики: плюсы и минусы

Что такое радуга?

Почему море соленое?

Почему небо голубого цвета? 

Применение на практике

Благодаря своим свойствам, сообщающиеся сосуды нашли широкое применение в различных технических и бытовых устройствах. Перечислим некоторые из них:

  • измерители плотности,
  • жидкостные манометры,
  • определители уровня жидкости (водомерное стекло, к примеру),
  • домкраты,
  • гидравлические прессы,
  • шлюзы,
  • фонтаны,
  • водопроводные башни и т.д.

Свойство сообщающихся сосудов реализуется не только в физике. Такая известная поговорка «Если где-то прибыло, значит где-то убыло» фактически напрямую связана со свойством сообщающихся сосудов и означает, что в окружающем нас мире всё взаимосвязано, а значит – стремится к равновесию. Когда человек смещает это равновесие в одну сторону, это немедленно сказывается в чём-то другом. Над этим стоит задуматься, не так ли?

Материал по физике на тему «Сообщающиеся сосуды» для 7 класса.

Методические советы учителям

  • При изучении этой темы обязательно необходима демонстрация. Описанные в статье эксперименты обязательно нужно показать детям в живом исполнении.
  • Желательно продемонстрировать принцип действия фонтана (это также довольно не сложно сделать своими руками).
  • Обратите внимание учащихся на формулу для двух жидкостей – это обратная пропорция. На нескольких примерах поясните смысл обратной пропорциональности.
  • Рассмотрите ситуацию с тремя жидкостями (решите соответствующую задачу).
  • А вот действие шлюзов лучше всего продемонстрировать с помощью видео.

#ADVERTISING_INSERT#

Источник