В сосуд 5 литров 14 водного раствора некоторого вещества
При решении задач на сплавы и смеси считают, что сумма масс сплавляемых веществ равна массе получаемого сплава, что сумма масс вещества, входящего в сплавы равна массе этого вещества в полученном сплаве. Аналогичное допущение принимаем и для сумм масс (объёмов) при смешивании жидкостей.
Рассмотрим подготовительную задачу.
Задача 1. Имеется уксусный раствор массой 1,5 кг, содержащий 40 % уксуса. Сколько килограммов воды нужно добавить в раствор, чтобы новый раствор содержал 10 % уксуса?
Решение. I способ.
1) 40 : 10 = 4 (раза) — во столько раз уменьшилась концентрация уксуса в растворе и увеличилась масса раствора,
2) 1,5 * 4 = 6 (кг) — масса нового раствора,
3) 6 – 1,5 = 4,5 (кг) — воды надо добавить.
II способ. 1) 0,4 * 1,5 = 0,6 (кг) — масса уксуса в первом растворе.
2) Пусть добавили x кг воды. Составим уравнение:
0,1(1,5 + x) = 0,6.
Оно имеет единственный корень 4,5. Значит, надо добавить 4,5 кг воды.
Ответ. 4,5 кг.
Рассмотрим способы решения задач на смеси и сплавы из сборников вариантов для подготовки к ЕГЭ.
Задача 2. (2017) В сосуд, содержащий 7 литров 15-процентного водного раствора некоторого вещества, добавили 8 литров воды. Определите процентную концентрацию того же вещества в новом растворе.
Задача 3. (2018) Имеется два сплава. Первый содержит 25 % никеля, второй — 30 % никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 28 % никеля. На сколько килограммов масса первого сплава меньше массы второго?
Решение. Пусть масса первого сплава x кг, второго (150 – x) кг, третьего — 150 кг. Найдём массу никеля в каждом из трёх сплавов. Никеля было
в первом сплаве 0,25x кг,
во втором — 0,3(150 – x) кг,
в третьем — 0,28 *150 = 42 (кг).
Составим уравнение:
0,25x + 0,3(150 – x) = 42.
Решив уравнение, получим его единственный корень x = 60. Теперь ответим на вопрос задачи. Масса первого сплава 60 кг, масса второго сплава 90 кг, первая меньше второй на 30 кг.
Ответ. На 30 кг.
Задача 4. (2019) Первый сплав содержит 5 % меди, второй — 14 % меди. Масса второго сплава больше массы первого сплава на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.
Решение. Пусть масса первого сплава x кг, второго (x + 7) кг, третьего — (2x + 7) кг. Меди было в первом сплаве 0,05x кг, во втором — 0,14(x + 7) кг, в третьем — 0,1(2x + 7) кг. Составим уравнение:
0,05x + 0,14(x + 7) = 0,1(2x + 7).
Решив уравнение, получим его единственный корень x = 28. При x = 28 масса третьего сплава 2x + 7 равна 63 кг.
Ответ. 63 кг.
Задача 5. (2017) Смешав 70 %-й и 60 %-й растворы кислоты и добавив 2 кг чистой воды, получили 50 %-й раствор кислоты. Если бы вместо 2 кг воды добавили 2 кг 90 %-го раствора той же кислоты, то получили бы 70 %-й раствор кислоты. Сколько килограммов 70 %-го раствора кислоты использовали для получения смеси?
Решение. Пусть масса первого раствора x кг, второго y кг. Приравняв массы кислоты до смешивания и после смешивания, составим два уравнения:
0,7x + 0,6y = 0,5(x + y + 2),
0,7x + 0,6y + 0,9*2 = 0,7(x + y + 2).
Решив систему этих двух уравнений, получим её единственное решение:
x = 3, y = 4. Использовали 3 кг 70 %-го раствора кислоты.
Ответ. 3 кг.
Задача 6. (2017) Имеется два сосуда. Первый содержит 100 кг, а второй — 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 28 % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 36 % кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Для второго смешивания возьмём 1 кг первого раствора и 1 кг второго, получим 2 кг смеси. Составим первое уравнение:
Решив систему уравнений (1) и (2), получим её единственное решение: x = 12, y = 60. В первом сосуде содержится x * 100 / 100 = 12 (кг) кислоты. Ответ. 12 кг.
Для самостоятельного решения
7. Имеется 400 г морской воды, содержащей 4 % соли. Сколько граммов чистой воды нужно добавить в эту морскую воду, чтобы новый раствор содержал 2 % соли?
8. (2016) В сосуд, содержащий 10 литров 24-процентного водного раствора некоторого вещества, добавили 5 литров воды. Определите процентную концентрацию того же вещества в новом растворе.
9. (2009) В бидон налили 4 литра молока трёхпроцентной жирности и 6 литров молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?
10. (2017) Имеется два сплава. Первый содержит 5 % никеля, второй — 20 % никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 15 % никеля. На сколько килограммов масса первого сплава меньше массы второго?
11. (2017) Первый сплав содержит 5 % меди, второй — 11 % меди. Масса второго сплава больше массы первого сплава на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.
12. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?
13. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?
Ответы. 7. 400 г. 8. 16 %. 9. 4,8 %. 10. На 75 кг. 11. 6 кг. 12. 5 : 2. 13. 5 : 2.
Для работы с задачами в классе можно использовать вариант заметки в виде презентации: Сплавы и смеси. Задачи 11 из ЕГЭ.
Источник
Формат ответа: цифра или несколько цифр, слово или несколько слов. Вопросы на соответствие “буква” – “цифра” должны записываться как несколько цифр. Между словами и цифрами не должно быть пробелов или других знаков.
Примеры ответов: 7 или здесьисейчас или 3514
Раскрыть
Скрыть
В сосуд, содержащий 5 литров 26 — процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора?
В сосуд, содержащий 6 литров 30 — процентного водного раствора некоторого вещества, добавили 6 литров воды. Сколько процентов составляет концентрация получившегося раствора?
Смешали 8 литров 40 — процентного водного раствора некоторого вещества с 12 литрами 25 — процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Смешали 4 литра 10 — процентного водного раствора некоторого вещества с 11 литрами 40 — процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Первый сплав содержит 5% меди, второй — 11% меди. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Смешали некоторое количество 21 — процентного раствора некоторого вещества с таким же количеством 13 — процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Смешали некоторое количество 16 — процентного раствора некоторого вещества с таким же количеством 18 — процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Имеется два сплава. Первый сплав содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Имеется два сплава. Первый сплав содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 125 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Имеются два сосуда. Первый содержит 40 кг, а второй — 25 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 20% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 23% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Имеются два сосуда. Первый содержит 100 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 64% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 72% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Имеются два сосуда. Первый содержит 30 кг, а второй – 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Смешав 14 — процентный и 82 — процентный растворы кислоты и добавив 10 кг чистой воды, получили 22 — процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50 — процентного раствора той же кислоты, то получили бы 42 — процентный раствор кислоты. Сколько килограммов 14 — процентного раствора использовали для получения смеси?
Смешав 24 — процентный и 70 — процентный растворы кислоты и добавив 10 кг чистой воды, получили 40 — процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50 — процентного раствора той же кислоты, то получили бы 45 — процентный раствор кислоты. Сколько килограммов 24 — процентного раствора использовали для получения смеси?
Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили раствор 36-процентный кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?
Смешав 6-процентный и 74-процентный растворы кислоты и добавив 10 кг чистой воды, получили 19-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 24-процентный раствор кислоты. Сколько килограммов 6-процентного раствора использовали для получения смеси?
Смешав 76-процентный и 78-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 76-процентного раствора использовали для получения смеси?
Источник
Формат ответа: цифра или несколько цифр, слово или несколько слов. Вопросы на соответствие “буква” – “цифра” должны записываться как несколько цифр. Между словами и цифрами не должно быть пробелов или других знаков.
Примеры ответов: 7 или здесьисейчас или 3514
Раскрыть
Скрыть
Смешав 76-процентный и 78-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 76-процентного раствора использовали для получения смеси?
Смешав 6-процентный и 74-процентный растворы кислоты и добавив 10 кг чистой воды, получили 19-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 24-процентный раствор кислоты. Сколько килограммов 6-процентного раствора использовали для получения смеси?
Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили раствор 36-процентный кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?
Смешав 24 — процентный и 70 — процентный растворы кислоты и добавив 10 кг чистой воды, получили 40 — процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50 — процентного раствора той же кислоты, то получили бы 45 — процентный раствор кислоты. Сколько килограммов 24 — процентного раствора использовали для получения смеси?
Смешав 14 — процентный и 82 — процентный растворы кислоты и добавив 10 кг чистой воды, получили 22 — процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50 — процентного раствора той же кислоты, то получили бы 42 — процентный раствор кислоты. Сколько килограммов 14 — процентного раствора использовали для получения смеси?
Имеются два сосуда. Первый содержит 30 кг, а второй – 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Имеются два сосуда. Первый содержит 40 кг, а второй — 25 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 20% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 23% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Имеется два сплава. Первый сплав содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 125 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Имеется два сплава. Первый сплав содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Смешали некоторое количество 16 — процентного раствора некоторого вещества с таким же количеством 18 — процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Имеются два сосуда. Первый содержит 100 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 64% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 72% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Смешали некоторое количество 21 — процентного раствора некоторого вещества с таким же количеством 13 — процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Первый сплав содержит 5% меди, второй — 11% меди. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Смешали 4 литра 10 — процентного водного раствора некоторого вещества с 11 литрами 40 — процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Смешали 8 литров 40 — процентного водного раствора некоторого вещества с 12 литрами 25 — процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
В сосуд, содержащий 6 литров 30 — процентного водного раствора некоторого вещества, добавили 6 литров воды. Сколько процентов составляет концентрация получившегося раствора?
В сосуд, содержащий 5 литров 26 — процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора?
Источник