В сосуд с водой масса которой равна 600 а температура 10

В сосуд с водой масса которой равна 600 а температура 10 thumbnail

1. На рисунке представлен график зависимости температуры t от времени τ для куска льда массой 480 г, помещённого при температуре −20 °С в калориметр. В тот же калориметр помещён нагреватель. Найдите, какую мощность развивал нагреватель при плавлении льда, считая эту мощность в течение всего процесса постоянной. Теплоёмкостью калориметра и нагревателя можно пренебречь. (Удельная теплота плавления льда — 330 кДж/кг.)

Решение.

Чтобы расплавить весь имеющийся лёд необходимо затратить энергию:

 

Здесь m — масса льда, λ — удельная теплота плавления льда.

Мощность нагревателя W — есть расход энергии в единицу времени. Время плавления определяем по графику:

 

Тогда, используя табличные данные и данные задачи, получаем:

 

Ответ: 330 Вт.

2. Сколько грам­мов воды можно на­греть на спир­тов­ке на 30 °С, если сжечь в ней 21 грамм спирта? КПД спир­тов­ки (с учётом по­терь теплоты) равен 30 %. (Удельная теп­ло­та сго­ра­ния спир­та 2,9·107Дж/кг, удель­ная теплоёмкость воды 4200 Дж/(кг·°С)).

Решение.

При на­гре­ва­нии тела на тем­пе­ра­ту­ру  тело по­лу­ча­ет ко­ли­че­ство теп­ло­ты  При сго­ра­нии тела вы­де­ля­ет­ся энер­гия  Учитывая, что КПД спир­тов­ки равен 30 %, получаем:

 

 

Ответ: 1450 г.

3. Теплоизолированный сосуд содержит смесь льда и воды, находящуюся при температуре 0 °С. Масса льда 40 г, а масса воды 600 г. В сосуд впускают водяной пар при температуре +100 °С. Найдите массу впущенного пара, если известно, что окончательная температура, установившаяся в сосуде, равна +20 °С.

Решение.

Окончательная температура положительна, значит, весь лед расплавился, и вся получившаяся вода нагрелась.

При этом пар конденсировался и полученная вода остыла. С учетом этого запишем уравнение теплового баланса:

 

и выразим отсюда массу пара:
 

 

Здесь Qпол и Qотд — полученная и отданная теплота соответственно, m1, m2, m3 — массы льда, воды, пара соответственно, λ — удельная теплота плавления льда, c — удельная теплоемкость воды, τ — удельная теплота парообразования, t2 — конечная температура, t1 — исходная температура смеси лед-вода, t3 — температура пара.

Переведя граммы в килограммы и подставляя данные задачи и табличные данные, получаем:

 

Ответ: 25,4 г.

4. Литровую кастрюлю, пол­но­стью за­пол­нен­ную водой, из ком­на­ты вы­нес­ли на мороз. За­ви­си­мость тем­пе­ра­ту­ры воды от вре­ме­ни пред­став­ле­на на рисунке. Какое ко­ли­че­ство теп­ло­ты вы­де­ли­лось при кри­стал­ли­за­ции и охла­жде­нии льда?

 
Примечание.
Удельную теп­ло­ту плавления льда счи­тать равной 

Решение.

Поскольку объём воды равен од­но­му литру, масса воды равна од­но­му килограмму. Таким образом, кри­стал­ли­зо­вал­ся 1 кг льда, вы­де­лив при этом

 

Также тепло вы­де­ля­лось при охла­жде­нии льда:

 

Следовательно, при кристаллизации и охлаждении льда выделилось 372 кДж энергии.

 
Ответ: 372 кДж.

5. Сколько грам­мов спир­та нужно сжечь в спиртовке, чтобы на­греть на ней воду мас­сой 580 г на 80 °С? КПД спир­тов­ки (с учётом по­терь теплоты) равен 20%. (Удельная теп­ло­та сго­ра­ния спир­та 2,9·107Дж/кг, удель­ная теплоёмкость воды 4200 Дж/(кг·°С)).

Решение.

При на­гре­ва­нии тела на тем­пе­ра­ту­ру  тело по­лу­ча­ет ко­ли­че­ство теп­ло­ты  При сго­ра­нии тела вы­де­ля­ет­ся энер­гия  Учитывая, что КПД спир­тов­ки равен 20%, получаем:

 

 

Ответ: 33,6 г.

6. Какое ко­ли­че­ство теп­ло­ты вы­де­лит­ся при кри­стал­ли­за­ции 2 кг рас­плав­лен­но­го олова, взя­то­го при тем­пе­ра­ту­ре кристаллизации, и по­сле­ду­ю­щем его охла­жде­нии до 32 °С? (Удель­ная теплоёмкость олова — 230 Дж/(кг · °С).)

7. Тонкостенный сосуд содержит смесь льда и воды, находящуюся при температуре 0 °С. Масса льда 350 г, а масса воды 550 г. Сосуд начинают нагревать на горелке мощностью 1,5 кВт. Сколько времени понадобится, чтобы довести содержимое сосуда до кипения? Потерями теплоты и удельной теплоёмкостью сосуда, а также испарением воды можно пренебречь.

Решение.

Чтобы довести содержимое сосуда до кипения за время τ, необходимо расплавить лёд, а затем нагреть всю получившуюся воду до температуры кипения, следовательно, затратить энергию, равную

 

Здесь m1, m2, — массы льда и воды соответственно, λ — удельная теплота плавления льда, c — удельная теплоёмкость воды, t2 — температура кипения воды, t1 — исходная температура смеси лед-вода.

Мощность горелки W есть расход энергии в единицу времени, откуда находим τ:

 

Подставляя табличные данные и данные задачи, находим:

 

Ответ: 5,5 мин.

8. На ри­сун­ке представлен гра­фик зависимости тем­пе­ра­ту­ры от по­лу­чен­но­го количества теп­ло­ты для ве­ще­ства массой 1 кг. Пер­во­на­чаль­но вещество на­хо­ди­лось в твёрдом состоянии. Опре­де­ли­те удельную теплоёмкость ве­ще­ства в твёрдом состоянии.

Решение.

Удельная теплоёмкость — это ко­ли­че­ство теплоты, не­об­хо­ди­мое для того, чтобы на­греть вещество на 1 °C. Из гра­фи­ка видно, что для на­гре­ва­ния 1 кг ве­ще­ства на 200 °C по­тре­бо­ва­лось 50 кДж. Таким образом, удель­ная теплоёмкость равна:

 

Ответ: 

9. В тон­ко­стен­ный сосуд на­ли­ли воду, по­ста­ви­ли его на элек­три­че­скую плит­ку мощ­но­стью 800 Вт и на­ча­ли нагревать. На ри­сун­ке пред­став­лен гра­фик за­ви­си­мо­сти тем­пе­ра­ту­ры воды t от вре­ме­ни τ. Най­ди­те массу на­ли­той в сосуд воды. По­те­ря­ми теп­ло­ты и теплоёмкостью со­су­да пренебречь.

10. Какое ко­ли­че­ство теплоты потребуется, чтобы в алю­ми­ни­е­вом чайнике мас­сой 700 г вски­пя­тить 2 кг воды? Пер­во­на­чаль­но чайник с водой имели тем­пе­ра­ту­ру 20 °С.

 
Примечание.
Удельную теплоёмкость алюминия считать равной 

Решение.

Для на­гре­ва­ния чайника необходимо

 

Для на­гре­ва­ния воды:

 

Всего потребуется

 

Ответ: 723,52 кДж.

11. Какое количество теплоты выделится при конденсации 2 кг пара, взятого при температуре кипения, и последующего охлаждения воды до 40 °С при нормальном атмосферном давлении?

Решение.

В данном случае тепло отдавали пар и получившаяся из него вода. Пар отдал:

 

вода отдала:
 

 

Таким образом:

 

Ответ: 5104 кДж.

12. Какое ми­ни­маль­ное ко­ли­че­ство теп­ло­ты не­об­хо­ди­мо для пре­вра­ще­ния в воду 500 г льда, взя­то­го при тем­пе­ра­ту­ре −10 °С? По­те­ря­ми энер­гии на на­гре­ва­ние окру­жа­ю­ще­го воз­ду­ха пренебречь.

Решение.

Для на­гре­ва­ния льда до тем­пе­ра­ту­ры плав­ле­ния необходимо:

 

Для пре­вра­ще­ния льда в воду:

 

Таким образом:

 

Ответ: 175 500 Дж.

13. В сосуд с водой по­ло­жи­ли кусок льда. Ка­ко­во от­но­ше­ние массы льда к массе воды, если весь лёд рас­та­ял и в со­су­де уста­но­ви­лась тем­пе­ра­ту­ра 0 °С? Теп­ло­об­ме­ном с окру­жа­ю­щим воз­ду­хом пренебречь. На­чаль­ные тем­пе­ра­ту­ры воды и льда опре­де­ли­те из гра­фи­ка за­ви­си­мо­сти тем­пе­ра­ту­ры t от вре­ме­ни τ для воды и льда в про­цес­се теплообмена.

Решение.

Лёд рас­та­ет за счёт того, что вода будет осты­вать и тем самым от­да­вать своё тепло. За­пи­шем это в фор­муль­ном виде:  где  — теп­ло­ём­кость воды,  — удель­ная теплота плав­ле­ния льда,  — масса воды и льда соответственно.

Таким образом, 

 
Ответ: 0,42.

14. Как из­ме­нит­ся внут­рен­няя энер­гия 500 г воды, взя­той при 20°С, при её пре­вра­ще­нии в лёд при тем­пе­ра­ту­ре 0 °С?

Решение.

При охлаждении воды до 0 °С выделится количество теплоты, равное:

 

Затем при кристаллизации воды выделится количество теплоты, равное:

 

Таким образом, всего вода отдаст  теплоты.

 
Ответ: 207 кДж.

15. В ста­кан мас­сой 100 г, долго сто­яв­ший на улице, на­ли­ли 200 г воды из лужи при тем­пе­ра­ту­ре +10 °С и опу­сти­ли в неё кипятильник. Через 5 минут ра­бо­ты ки­пя­тиль­ни­ка вода в ста­ка­не закипела. Пре­не­бре­гая по­те­ря­ми теп­ло­ты в окру­жа­ю­щую среду, най­ди­те мощ­ность кипятильника. Удель­ная теплоёмкость ма­те­ри­а­ла ста­ка­на равна 600 Дж/(кг · °С).

Читайте также:  Древние узоры на сосудах

16. Два од­но­род­ных ку­би­ка при­ве­ли в теп­ло­вой кон­такт друг с дру­гом (см. рисунок). Пер­вый кубик из­го­тов­лен из цинка, длина его ребра 2 см, а на­чаль­ная тем­пе­ра­ту­ра t1 = 1 °C. Вто­рой кубик из­го­тов­лен из меди, длина его ребра 3 см, а на­чаль­ная тем­пе­ра­ту­ра t2 = 74,2 °C. Пре­не­бре­гая теп­ло­об­ме­ном ку­би­ков с окру­жа­ю­щей средой, най­ди­те тем­пе­ра­ту­ру ку­би­ков после уста­нов­ле­ния теп­ло­во­го равновесия.

Примечание.

Плотности цинка и меди соответственно: 

Удельные теплоёмкости цинка и меди соответственно: 

Решение.

При на­гре­ва­нии(охлаждении) тела на тем­пе­ра­ту­ру  тело по­лу­ча­ет(отдаёт) ко­ли­че­ство теп­ло­ты  Более го­ря­чее тело передаёт тепло более холодному, за­пи­шем урав­не­ние теп­ло­во­го баланса:  Заметим, что теплоёмкости цинка и меди равны, по­это­му их можно сократить. Рас­кро­ем скобки:

 

Найдём массы кубиков:

 

Подставим эти зна­че­ния в фор­му­лу для ко­неч­ной температуры:

 

Ответ: 

17. Сколько лит­ров воды при 83 °С нужно до­ба­вить к 4 л воды при 20 °С, чтобы по­лу­чить воду тем­пе­ра­ту­рой 65 °С? Теп­ло­об­ме­ном с окру­жа­ю­щей средой пренебречь.

Решение.

Плотность воды равна 1 кг/л, теп­ло­ем­кость равна 4 200 Дж/кг. Таким образом, из­на­чаль­но мы имеем m0 = 4 кг воды при тем­пе­ра­ту­ре t0 = 20 °C. До­бав­ля­ет­ся некоторое ко­ли­че­ство воды мас­сой m1 при тем­пе­ра­ту­ре t1 = 83 °C. Ко­неч­ная температура смеси равна tкон, а её масса m+ m1.

Составим урав­не­ние теплового ба­лан­са для процесса:

 — от­дан­ное в про­цес­се тепло;
 — по­лу­чен­ное в про­цес­се тепло;

.
 

Таким образом,

 

следовательно, не­об­хо­ди­мо 10 л воды.
 
Ответ: 10.

18. В тон­ко­стен­ный сосуд на­ли­ли воду мас­сой 1 кг, по­ста­ви­ли его на элек­три­че­скую плит­ку и на­ча­ли нагревать. На ри­сун­ке пред­став­лен гра­фик за­ви­си­мо­сти тем­пе­ра­ту­ры воды t от вре­ме­ни τ. Най­ди­те мощ­ность плитки. По­те­ря­ми теп­ло­ты и теплоёмкостью со­су­да пренебречь.

Решение.

Мощность, это от­но­ше­ние теп­ло­ты ко времени, за ко­то­рую эта теп­ло­та по­лу­че­на  Теплота, по­лу­чен­ная телом при на­гре­ва­нии на тем­пе­ра­ту­ру  рас­счи­ты­ва­ет­ся по фор­му­ле  Ис­поль­зуя график, найдём мощ­ность плитки:

 

Ответ: 700 Вт.

19. 3 л воды, взя­той при тем­пе­ра­ту­ре 20 °С, сме­ша­ли с водой при тем­пе­ра­ту­ре 100 °С. Тем­пе­ра­ту­ра смеси ока­за­лась рав­ной 40 °С. Чему равна масса го­ря­чей воды? Теп­ло­об­ме­ном с окру­жа­ю­щей сре­дой пренебречь.

Решение.

Более хо­лод­ная вода на­гре­лась за счет осты­ва­ния го­ря­чей воды: . Масса воды вы­чис­ля­ет­ся по формуле: 

Выражаем массу го­ря­чей воды: 

 
Ответ: 1.

20. Килограммовый кусок льда внесли с мороза в тёплое помещение. Зависимость температуры льда от времени представлена на рисунке. Какое количество теплоты было получено в интервале времени от 50 мин до 60 мин?

Решение.

Исходя из графика, в интервале от 50 до 60 минут происходил нагрев воды от 0 °C до 20 °C. Вычислим количество теплоты:

 

Ответ: 84 кДж.

21. В ста­кан мас­сой 100 г, долго сто­яв­ший на столе в комнате, на­ли­ли 200 г воды при ком­нат­ной тем­пе­ра­ту­ре +20 °С и опу­сти­ли в неё ки­пя­тиль­ник мощ­но­стью 300 Вт. Через 4 ми­ну­ты ра­бо­ты ки­пя­тиль­ни­ка вода в ста­ка­не закипела. Пре­не­бре­гая по­те­ря­ми теп­ло­ты в окру­жа­ю­щую среду, най­ди­те удель­ную теплоёмкость ма­те­ри­а­ла стакана.

22. Два од­но­род­ных ку­би­ка при­ве­ли в теп­ло­вой кон­такт друг с дру­гом. Пер­вый кубик из­го­тов­лен из меди, длина его ребра 3 см, а на­чаль­ная тем­пе­ра­ту­ра t1 = 2 °C. Вто­рой кубик из­го­тов­лен из алюминия, длина его ребра 4 см, а на­чаль­ная тем­пе­ра­ту­ра t2 = 74 °C. Пре­не­бре­гая теп­ло­об­ме­ном ку­би­ков с окру­жа­ю­щей средой, най­ди­те тем­пе­ра­ту­ру ку­би­ков после уста­нов­ле­ния теп­ло­во­го равновесия.

Примечание.

Плотности алю­ми­ния и меди соответственно: 

Удельные теплоёмкости алю­ми­ния и меди соответственно: 

Решение.

При на­гре­ва­нии(охлаждении) тела на тем­пе­ра­ту­ру  тело по­лу­ча­ет(отдаёт) ко­ли­че­ство теп­ло­ты  Более го­ря­чее тело передаёт тепло более холодному, за­пи­шем урав­не­ние теп­ло­во­го баланса:  Рас­кро­ем скобки:

 

Найдём массы кубиков:

 

Подставим эти зна­че­ния в фор­му­лу для ко­неч­ной температуры:

 

Ответ: 

23. Двигатель трак­то­ра со­вер­шил по­лез­ную ра­бо­ту 23 МДж, из­рас­хо­до­вав при этом 2 кг бензина. Най­ди­те КПД дви­га­те­ля трактора.

Решение.

При сго­ра­нии 2 кг бен­зи­на вы­де­ля­ет­ся  теплоты, где  — удель­ная теп­ло­та сго­ра­ния бензина. КПД рас­счи­ты­ва­ет­ся по формуле: 

 
Ответ: 25 %.

24. Автомобиль УАЗ из­рас­хо­до­вал 30 кг бен­зи­на за 2 ч. езды. Чему равна мощ­ность дви­га­те­ля автомобиля, если его КПД со­став­ля­ет 30%? (Удельная теп­ло­та сго­ра­ния бен­зи­на 4,6·107Дж/кг).

Решение.

Энергия, по­лу­чен­ная дви­га­те­лем от 30 кг бен­зи­на  КПД опре­де­ля­ет­ся как от­но­ше­ние по­лез­ной ра­бо­ты к энергии, по­треб­ля­е­мой дви­га­те­лем  Мощ­ность дви­га­те­ля — это от­но­ше­ние по­лез­ной ра­бо­ты со­вер­ша­е­мой дви­га­те­лем ко времени:

 

Ответ: 57,5 кВт.

25. В сосуд с водой по­ло­жи­ли кусок льда. Ка­ко­во от­но­ше­ние массы воды к массе льда, если весь лёд рас­та­ял и в со­су­де уста­но­ви­лась тем­пе­ра­ту­ра 0 °С? Теп­ло­об­ме­ном с окру­жа­ю­щим воз­ду­хом пренебречь. На­чаль­ную тем­пе­ра­ту­ру воды и льда опре­де­ли­те из гра­фи­ка за­ви­си­мо­сти  от вре­ме­ни  для воды и льда в про­цес­се теплообмена.

Решение.

Лед рас­та­ет за счёт того, что вода будет осты­вать и тем самым от­да­вать своё тепло. За­пи­шем это в фор­муль­ном виде:  где  — удель­ная теп­лоём­кость воды,  — удель­ная теплота плав­ле­ния льда,  — масса воды и льда соответственно.

Таким образом, 

 
Ответ: 2,38.

Источник

Задачи на количество теплоты с решениями

Формулы, используемые на уроках «Задачи на количество теплоты,
удельную теплоемкость».

1 г = 0,001 кг;     1 т = 1000 кг;    1 кДж = 1000 Дж;    1 МДж = 1000000 Дж

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100 °С?

При решении задачи нужно учесть, что оба тела — и котёл, и вода — будут нагреваться вместе. Между ними происходит теплообмен. Их температуры можно считать одинаковыми, т. е. температура котла и воды изменяется на 100 °С — 10 °С = 90 °С. Но количества теплоты, полученные котлом и водой, не будут одинаковыми. Ведь их массы и удельные теплоёмкости различны.

В сосуд с водой масса которой равна 600 а температура 10

Задача № 2.
 Смешали воду массой 0,8 кг, имеющую температуру 25 °С, и воду при температуре 100 °С массой 0,2 кг. Температуру полученной смеси измерили, и она оказалась равной 40 °С. Вычислите, какое количество теплоты отдала горячая вода при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

В сосуд с водой масса которой равна 600 а температура 10

Задача № 3.
 Стальная деталь массой 3 кг нагрелась от 25 до 45 °С. Какое количество теплоты было израсходовано?

В сосуд с водой масса которой равна 600 а температура 10

Задача № 4.
 В сосуде содержится 3 л воды при температуре 20 °С. Сколько воды при температуре 45 °С надо добавить в сосуд, чтобы в нём установилась температура 30 °С? Необходимый свободный объём в сосуде имеется. Теплообменом с окружающей средой пренебречь

Читайте также:  Лопнувшие сосуды на теле у ребенка

В сосуд с водой масса которой равна 600 а температура 10

Задача № 5.
 На сколько градусов изменилась температура чугунной детали массой 12 кг, если при остывании она отдала 648000 Дж теплоты?

В сосуд с водой масса которой равна 600 а температура 10

Задача № 6.
 По графику определите удельную теплоёмкость образца, если его масса 50 г.

В сосуд с водой масса которой равна 600 а температура 10

В сосуд с водой масса которой равна 600 а температура 10

Задача № 7.
 Для нагревания медного бруска массой 3 кг от 20 до 30 °С потребовалось 12000 Дж теплоты. Какова удельная теплоемкость меди?

В сосуд с водой масса которой равна 600 а температура 10

Задача № 8.
 Нагретый камень массой 5 кг, охлаждаясь в воде на 1 °С, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня?

В сосуд с водой масса которой равна 600 а температура 10

Задача № 9.
 Какое количество теплоты потребуется для нагревания на 1 °С воды объемом 0,5 л; олова массой 500 г; серебра объемом 2 см3; стали объемом 0,5 м3; латуни массой 0,2 т?

В сосуд с водой масса которой равна 600 а температура 10

Задача № 10.
 Какое количество теплоты получили алюминиевая кастрюля массой 200 г и находящаяся в ней вода объемом 1,5 л при нагревании от 20 °С до кипения при температуре 100 °С?

В сосуд с водой масса которой равна 600 а температура 10

Задача № 11.
 а) Воздух, заполняющий объем 0,5 л в цилиндре с легким поршнем, нагрели от 0 до 30 °С при постоянном атмосферном давлении. Какое количество теплоты получил воздух? 
б) В порожнем закрытом металлическом баке вместимостью 60 м3 под действием солнечного излучения воздух нагрелся от 0 до 20 °С. Как и на сколько изменилась внутренняя энергия воздуха в баке? (Удельная теплоемкость воздуха при постоянном объеме равна 720 Дж/кг-°С.)

В сосуд с водой масса которой равна 600 а температура 10

Задача № 12.
  ОГЭ
 Металлический цилиндр массой m = 60 г нагрели в кипятке до температуры t = 100 °С и опустили в воду, масса которой mв = 300 г, а температура tв = 24 °С. Температура воды и цилиндра стала равной Θ = 27 °С. Найти удельную теплоёмкость металла, из которого изготовлен цилиндр. Удельная теплоёмкость воды св = 4200 Дж/(кг К).

В сосуд с водой масса которой равна 600 а температура 10

Задача № 13.
 В теплоизолированном сосуде сначала смешивают три порции воды 100 г, 200 г и 300 г с начальными температурами 20 °C, 70 °C и 50 °C соответственно. После установления теплового равновесия в сосуд добавляют новую порцию воды массой 400 г при температуре 20 °C. Определите конечную температуру в сосуде. Ответ дайте в °C, округлив до целого числа. Теплоёмкостью калориметра пренебрегите.

Решение.

В сосуд с водой масса которой равна 600 а температура 10

Ответ: 39 °С.

Задача № 14. (повышенной сложности)
 Стальной шарик радиусом 5 см, нагретый до температуры 500 ˚С, положили на лед, температура которого 0 ˚С. На какую глубину погрузится шарик в лед? (Считать, что шарик погрузился в лед полностью. Теплопроводностью шарика и нагреванием воды пренебречь.)

Дано: R = 0,05 м;   t1 = 500 ˚С;   t2 = 0 ˚С;
ρ1 (плотность стали) = 7800 кг/м3.;
ρ2 (плотность льда) = 900 кг/м3.
c (удельная теплоемкость стали) = 460 Дж/кг •˚С,
λ (удельная теплота плавления льда) = 3,3 • 105 Дж/кг,

Найти: h – ?

В сосуд с водой масса которой равна 600 а температура 10

Краткая теория для решения Задачи на количество теплоты.

Задачи на количество теплоты

Конспект урока «Задачи на количество теплоты».

Посмотреть конспект урока по теме «Количество теплоты. Удельная теплоемкость»

Следующая тема: «ЗАДАЧИ на сгорание топлива с решениями».

Источник

Сохраните:

Задания и ответы для Московской олимпиады школьников (МОШ) по физике 7,8,9,10,11 класс первого тура отборочного этапа 2020-2021 ученый год, официальная дата проведения олимпиады: 16.10.2020-18.10.2020 (с 16 по 18 октября 2020 года).

Ссылка для скачивания заданий для 7 класса: скачать в PDF

Ссылка для скачивания заданий для 8 класса: скачать в PDF

Ссылка для скачивания заданий для 9 класса: скачать в PDF

Ссылка для скачивания заданий для 10 класса: скачать в PDF

Ссылка для скачивания заданий для 11 класса: скачать в PDF

P.S свои ответы предлагайте ниже в комментариях, помогите друг другу.

Московская олимпиада школьников по физике 7 класс первый тур отборочного этапа 2020-2021 задания и ответы:

1)Для определения скорости игрушечного поезда, который работает на батарейках, достаточно иметь… 1) Весы; 2) мензурку; 3) линейку; 4) часы; 5) микрометр; 6) ареометр.

2)Переведите в СИ: 150 000 мг (миллиграмм).

3)Цена деления мензурки, изображённой на рисунке, равна.

4)В мензурках находится вода. Какой объём воды будет в первой мензурке, если в неё перелить пятую часть воды из второй мензурки и половину воды из третьей мензурки?

5)Три шестёренки зацеплены зубьями между собой, как показано на рисунке, и могут вращаться вокруг закрепленных осей. Куда вращается нижняя («образование») шестеренка, если верхняя («успех») вращается по часовой стрелке?

Сколько оборотов в день делает нижняя шестерня («образование»), если известно, что верхняя («успех») делает 28 оборотов в неделю?

6)Из пункта А почтальон Печкин выехал на велосипеде в 12:00, направляясь в пункт Б. Одновременно с ним из пункта Б выехал на самокате дядя Фёдор, направляясь в пункт А. Впоследствии почтальон Печкин рассказывал, что в 12:30 встретил дядю Фёдора. Дядя Фёдор же вспоминал, что прибыл в пункт А в 13:15. Что показывали часы почтальона Печкина, когда он добрался до пункта Б? Считайте, что почтальон Печкин и дядя Фёдор двигались с постоянными скоростями. В качестве ответа запишите  отдельно два числа – число часов (от 0 до 23) и целое число минут (от 0 до 59).

7)Дядя Вася хочет полностью наполнить две стоящие рядом бочки водой, не пролив её на землю. Он кладёт шланг в меньшую бочку, идёт к крану, открывает его и возвращается назад. После возвращения он ждёт 15 секунд, пока бочка заполнится, и перекладывает шланг в другую бочку. Подождав еще 2 минуты, дядя Вася возвращается к крану и закрывает его. Чему равно расстояние от бочек до крана, если дядя Вася ходит со скоростью 1 м/с, а вторая бочка по объёму вчетверо больше первой? Ответ выразите в м, округлите до целого числа.

8)Левая шкала измеряет объём жидкости в миллилитрах (ml), правая в – «чашках» (cup).

Чему равна цена деления левой шкалы? Ответ выразите в мл, округлите до целого числа.

Чему равна цена деления правой шкалы? Ответ выразите в «чашках», округлите до тысячных.

Найдите, чему равно расстояние между двумя ближайшими рисками на правой шкале, если на левой оно равно 1 см. Ответ выразите в мм, округлите до десятых.

Московская олимпиада школьников по физике 8 класс первый тур отборочного этапа 2020-2021 задания и ответы:

1)Переведите в СИ: 321 л, 1 день

2)Таракан ползёт по прямой. Первые 10 с его скорость постоянна и равна 20 см/с, следующие 20 с его скорость составляет 16 см/с, затем он 10 с стоит на месте. Остаток пути он ползёт с постоянной скоростью 13 см/с. Найти среднюю скорость таракана на всем пути.

Читайте также:  Сосуд дьюара что это фото

3)В каком случае перевозить камень на тачке удобнее?

4)К пружине, жёсткость которой k=100 Н/м, прикрепили грузик. Пружина удлинилась на Δx1=5 см. Если грузик погрузить в жидкость, удлинение пружины станет равным Δx2=2 см. Какая сила Архимеда действует на грузик в жидкости?

5)Однородные шарики покоятся на рычажных весах, как показано на рисунке. Плотность какого из шаров наименьшая? V2>V1=V3.

6)Кеша и Тучка, находясь в своих домиках, получили одновременно СМС-ки от Лисички с информацией, что яблочный пирог уже готов, и тут же бросились бежать к дому Лисички. Кеша половину времени бежал со скоростью 5 м/с, а оставшуюся половину времени со скоростью 4 м/с (устал). Тучка первую половину пути пробежал со скоростью 4 м/с, а вторую половину пути со скоростью 5 м/с. В результате оба прибежали к Лисичке одновременно. Каково расстояние от дома Кеши до дома Лисички в шагах Цыпы, если расстояние от дома Тучки до дома Лисички равно 800 шагов Цыпы?

7)Атос и Портос начинают одновременно идти навстречу друг другу со скоростями v1=3 м/с и v2=1 м/c соответственно. Арамис сначала находится посередине между ними. Портос встретился с Арамисом через t1=250 с после начала своего движения, а с Атосом через t2=12 мин.

На каком расстоянии друг от друга первоначально находились Атос и Портос? Ответ выразите в м, округлите до целого числа.

Насколько позже стартовал Арамис, если скорость сближения Портоса с Арамисом в 2 раза больше скорости удаления Арамиса от Атоса? Ответ выразите в с, округлите до целого числа.

8)На тарелке лежит торт, состоящий из трёх слоёв. Эти слои имеют высоту h1=15 мм, h2=25 мм и h3=20 мм, а их плотности соответственно равны ρ1=600 кг/м3, ρ2=460 кг/м3 и ρ3=400 кг/м3. Чему равна средняя плотность всего торта? Ответ выразите в кг/м3, округлите до целого числа.

9)В двух сообщающихся сосудах, имеющих форму цилиндров c площадью дна S1=100 см2 и S2=200 см2, находится вода. Сосуды закрыты сверху массивными поршнями (см. рисунок).

К правому поршню прикреплена легкая вертикальная пружина жёсткостью k=4 Н/см , верхний конец которой неподвижен. Система находится в равновесии, причём пружина изначально сжата. На левый поршень положили груз массой m=1 кг. Плотность воды ρ=1000 кг/м3, ускорение свободного падения g=10 Н/кг. Начальная высота края правого сосуда над поверхностью воды h=10 см.

Найдите, на сколько после этого опустится левый поршень. Ответ выразите в см, округлите до целого числа.

Груз какой минимальной массы нужно добавить к грузу массой m (на левый поршень) для того, чтобы вода начала выливаться из правого сосуда? Ответ выразите в кг, округлите до целого числа.

10)Система состоит из невесомых блоков, трёх грузов массой m=1 кг каждый, двух грузов массой mx каждый и невесомых нитей. Ускорение свободного падения g=10 Н/кг.

Чему равна величина mx, если система находится в равновесии? Ответ выразите в кг, округлите до десятых.

C какой силой действует система на потолок? Ответ выразите в Н, округлите до целого числа.

Московская олимпиада школьников по физике 9 класс первый тур отборочного этапа 2020-2021 задания и ответы:

1)Улитка ползёт по прямой. Первый час её скорость постоянна и равна 1,2 см/с, еще два часа её скорость составляет 0,8 см/с, затем она ровно час отдыхала неподвижно. Остаток пути она ползла с постоянной скоростью 0,7 см/с. Найти среднюю скорость улитки на всем пути.

2)В сосуде с водой плавают два шара с радиусами 2R и R, как показано на рисунке. Чему равна плотность первого шара?

3)Система из двух блоков, двух грузов и обезьянки, находится в равновесии. Определите массу тела m1, если масса второго груза равна 2m, а масса обезьяны – m. Нити и блоки невесомые, трения нет.

4)В трёх кастрюлях находится вода. В первой кастрюле вода только закипела, во второй кипит 3 минуты, в третьей кипит 10 минут. В какой из кастрюль температура воды наибольшая?

5)Сто резисторов с сопротивлениями 1 Ом, 3 Ом, 5 Ом, … , 197 Ом, 199 Ом соединили параллельно. Эквивалентное сопротивление…

6)Рассмотрим объединение двух однополосных дорог A и B в однополосную дорогу C. В часы пик все три дороги заполнены автомобилями. Среднее расстояние между двумя соседними автомобилями можно считать одинаковым на всех трёх дорогах. Длина дороги A равна LA=1 км, дороги B: LB=3 км, а дороги C: LC=2 км. Средняя скорость автомобилей на дороге A составляет vA=3 км/ч, а среднее время, за которое машины проезжают дорогу B, равно tB=36 мин. За какое время в среднем автомобиль добирается от начала дороги A до конца дороги C? Ответ выразите в минутах, округлите до целого числа.

7)К невесомой системе, состоящей из нерастяжимых ниток, двух блоков и трёх пружин с коэффициентами жёсткости k и 2k, прикрепляют груз массой m=600 г, как показано на рисунке. k=50 Н/м, ускорение свободного падения равно 10 м/c2.

На какое расстояние опустится груз, когда система придёт в равновесие? Ответ выразите в см, округлите до десятых.

С какой силой система действует на потолок в положении равновесия? Ответ выразите в Н, округлите до целого числа.

8)Г-образный сосуд, наполненный ртутью и керосином, стоит на столе, как показано на рисунке. Силы давления жидкостей (без учета атмосферного давления) на горизонтальные стенки сосуда AB и CD, перпендикулярные плоскости рисунка, равны 40 Н и 8 Н соответственно. Известно, что при малейшем добавлении керосина в сосуд, он опрокидывается. Найдите отношение высоты столба ртути к высоте столба керосина. Ответ округлите до десятых. Плотность керосина 800 кг/м3, плотность ртути 13600 кг/м3.

9)Электрическая схема изменяет мощность W электрического нагревателя по линейному закону от времени t, прошедшего после включения нагревателя: W(t)=W0∙t/τ. W0=100 Вт, τ=10 секунд. Этот нагреватель помещён на дно банки с 1 литром воды в ней. Начальная температура воды 20°С. Пренебрегая теплоёмкостью банки и потерями теплоты в окружающую среду, найдите, какой стала температура воды в банке через 3 минуты после включения нагревателя? Удельная теплоёмкость воды 4,2 Дж/(г∙℃). Ответ выразите в градусах по шкале Цельсия, округлите до десятых.

10)Электрическая цепь состоит из идеальной батарейки с напряжением 3,2 В, резистора, идеального амперметра и двух вольтметров. Первый вольтметр показывает 1 В, а второй 2 В. Показание амперметра 1 мкА.

Чему равно сопротивление первого вольтметра? ?