В сосуд содержащий 30 кг воды опускают

При решении задач на сплавы и смеси считают, что сумма масс сплавляемых веществ равна массе получаемого сплава, что сумма масс вещества, входящего в сплавы равна массе этого вещества в полученном сплаве. Аналогичное допущение принимаем и для сумм масс (объёмов) при смешивании жидкостей.

Рассмотрим подготовительную задачу.

Задача 1. Имеется уксусный раствор массой 1,5 кг, содержащий 40 % уксуса. Сколько килограммов воды нужно добавить в раствор, чтобы новый раствор содержал 10 % уксуса?

Решение. I способ.
1) 40 : 10 = 4 (раза) — во столько раз уменьшилась концентрация уксуса в растворе и увеличилась масса раствора,
2) 1,5 * 4 = 6 (кг) — масса нового раствора,
3) 6 – 1,5 = 4,5 (кг) — воды надо добавить.

II способ. 1) 0,4 * 1,5 = 0,6 (кг) — масса уксуса в первом растворе.
2) Пусть добавили x кг воды. Составим уравнение:
0,1(1,5 + x) = 0,6.
Оно имеет единственный корень 4,5. Значит, надо добавить 4,5 кг воды.
Ответ. 4,5 кг.

Рассмотрим способы решения задач на смеси и сплавы из сборников вариантов для подготовки к ЕГЭ.

Задача 2. (2017) В сосуд, содержащий 7 литров 15-процентного водного раствора некоторого вещества, добавили 8 литров воды. Определите процентную концентрацию того же вещества в новом растворе.

Задача 3. (2018) Имеется два сплава. Первый содержит 25 % никеля, второй — 30 % никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 28 % никеля. На сколько килограммов масса первого сплава меньше массы второго?

Решение. Пусть масса первого сплава x кг, второго (150 – x) кг, третьего — 150 кг. Найдём массу никеля в каждом из трёх сплавов. Никеля было
в первом сплаве 0,25x кг,
во втором — 0,3(150 – x) кг,
в третьем — 0,28 *150 = 42 (кг).

Составим уравнение:
0,25x + 0,3(150 – x) = 42.
Решив уравнение, получим его единственный корень x = 60. Теперь ответим на вопрос задачи. Масса первого сплава 60 кг, масса второго сплава 90 кг, первая меньше второй на 30 кг.

Ответ. На 30 кг.

Задача 4. (2019) Первый сплав содержит 5 % меди, второй — 14 % меди. Масса второго сплава больше массы первого сплава на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.

Решение. Пусть масса первого сплава x кг, второго (x + 7) кг, третьего — (2x + 7) кг. Меди было в первом сплаве 0,05x кг, во втором — 0,14(x + 7) кг, в третьем — 0,1(2x + 7) кг. Составим уравнение:
0,05x + 0,14(x + 7) = 0,1(2x + 7).
Решив уравнение, получим его единственный корень x = 28. При x = 28 масса третьего сплава 2x + 7 равна 63 кг.
Ответ. 63 кг.

Задача 5. (2017) Смешав 70 %-й и 60 %-й растворы кислоты и добавив 2 кг чистой воды, получили 50 %-й раствор кислоты. Если бы вместо 2 кг воды добавили 2 кг 90 %-го раствора той же кислоты, то получили бы 70 %-й раствор кислоты. Сколько килограммов 70 %-го раствора кислоты использовали для получения смеси?

Решение. Пусть масса первого раствора x кг, второго y кг. Приравняв массы кислоты до смешивания и после смешивания, составим два уравнения:
0,7x + 0,6y = 0,5(x + y + 2),
0,7x + 0,6y + 0,9*2 = 0,7(x + y + 2).
Решив систему этих двух уравнений, получим её единственное решение:
x = 3, y = 4. Использовали 3 кг 70 %-го раствора кислоты.
Ответ. 3 кг.

Задача 6. (2017) Имеется два сосуда. Первый содержит 100 кг, а второй — 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 28 % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 36 % кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Для второго смешивания возьмём 1 кг первого раствора и 1 кг второго, получим 2 кг смеси. Составим первое уравнение:

Решив систему уравнений (1) и (2), получим её единственное решение: x = 12, y = 60. В первом сосуде содержится x * 100 / 100 = 12 (кг) кислоты. Ответ. 12 кг.

Для самостоятельного решения

7. Имеется 400 г морской воды, содержащей 4 % соли. Сколько граммов чистой воды нужно добавить в эту морскую воду, чтобы новый раствор содержал 2 % соли?

8. (2016) В сосуд, содержащий 10 литров 24-процентного водного раствора некоторого вещества, добавили 5 литров воды. Определите процентную концентрацию того же вещества в новом растворе.

Читайте также:  Очищение кровеносных сосудов от холестерина

9. (2009) В бидон налили 4 литра молока трёхпроцентной жирности и 6 литров молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?

10. (2017) Имеется два сплава. Первый содержит 5 % никеля, второй — 20 % никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 15 % никеля. На сколько килограммов масса первого сплава меньше массы второго?

11. (2017) Первый сплав содержит 5 % меди, второй — 11 % меди. Масса второго сплава больше массы первого сплава на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.

12. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?

13. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?

Ответы. 7. 400 г. 8. 16 %. 9. 4,8 %. 10. На 75 кг. 11. 6 кг. 12. 5 : 2. 13. 5 : 2.

Для работы с задачами в классе можно использовать вариант заметки в виде презентации: Сплавы и смеси. Задачи 11 из ЕГЭ.

Источник

1. На рисунке представлен график зависимости температуры t от времени τ для куска льда массой 480 г, помещённого при температуре −20 °С в калориметр. В тот же калориметр помещён нагреватель. Найдите, какую мощность развивал нагреватель при плавлении льда, считая эту мощность в течение всего процесса постоянной. Теплоёмкостью калориметра и нагревателя можно пренебречь. (Удельная теплота плавления льда — 330 кДж/кг.)

Решение.

Чтобы расплавить весь имеющийся лёд необходимо затратить энергию:

 

Здесь m — масса льда, λ — удельная теплота плавления льда.

Мощность нагревателя W — есть расход энергии в единицу времени. Время плавления определяем по графику:

 

Тогда, используя табличные данные и данные задачи, получаем:

 

Ответ: 330 Вт.

2. Сколько грам­мов воды можно на­греть на спир­тов­ке на 30 °С, если сжечь в ней 21 грамм спирта? КПД спир­тов­ки (с учётом по­терь теплоты) равен 30 %. (Удельная теп­ло­та сго­ра­ния спир­та 2,9·107Дж/кг, удель­ная теплоёмкость воды 4200 Дж/(кг·°С)).

Решение.

При на­гре­ва­нии тела на тем­пе­ра­ту­ру  тело по­лу­ча­ет ко­ли­че­ство теп­ло­ты  При сго­ра­нии тела вы­де­ля­ет­ся энер­гия  Учитывая, что КПД спир­тов­ки равен 30 %, получаем:

 

 

Ответ: 1450 г.

3. Теплоизолированный сосуд содержит смесь льда и воды, находящуюся при температуре 0 °С. Масса льда 40 г, а масса воды 600 г. В сосуд впускают водяной пар при температуре +100 °С. Найдите массу впущенного пара, если известно, что окончательная температура, установившаяся в сосуде, равна +20 °С.

Решение.

Окончательная температура положительна, значит, весь лед расплавился, и вся получившаяся вода нагрелась.

При этом пар конденсировался и полученная вода остыла. С учетом этого запишем уравнение теплового баланса:

 

и выразим отсюда массу пара:
 

 

Здесь Qпол и Qотд — полученная и отданная теплота соответственно, m1, m2, m3 — массы льда, воды, пара соответственно, λ — удельная теплота плавления льда, c — удельная теплоемкость воды, τ — удельная теплота парообразования, t2 — конечная температура, t1 — исходная температура смеси лед-вода, t3 — температура пара.

Переведя граммы в килограммы и подставляя данные задачи и табличные данные, получаем:

 

Ответ: 25,4 г.

4. Литровую кастрюлю, пол­но­стью за­пол­нен­ную водой, из ком­на­ты вы­нес­ли на мороз. За­ви­си­мость тем­пе­ра­ту­ры воды от вре­ме­ни пред­став­ле­на на рисунке. Какое ко­ли­че­ство теп­ло­ты вы­де­ли­лось при кри­стал­ли­за­ции и охла­жде­нии льда?

 
Примечание.
Удельную теп­ло­ту плавления льда счи­тать равной 

Решение.

Поскольку объём воды равен од­но­му литру, масса воды равна од­но­му килограмму. Таким образом, кри­стал­ли­зо­вал­ся 1 кг льда, вы­де­лив при этом

 

Также тепло вы­де­ля­лось при охла­жде­нии льда:

 

Следовательно, при кристаллизации и охлаждении льда выделилось 372 кДж энергии.

 
Ответ: 372 кДж.

5. Сколько грам­мов спир­та нужно сжечь в спиртовке, чтобы на­греть на ней воду мас­сой 580 г на 80 °С? КПД спир­тов­ки (с учётом по­терь теплоты) равен 20%. (Удельная теп­ло­та сго­ра­ния спир­та 2,9·107Дж/кг, удель­ная теплоёмкость воды 4200 Дж/(кг·°С)).

6. Какое ко­ли­че­ство теп­ло­ты вы­де­лит­ся при кри­стал­ли­за­ции 2 кг рас­плав­лен­но­го олова, взя­то­го при тем­пе­ра­ту­ре кристаллизации, и по­сле­ду­ю­щем его охла­жде­нии до 32 °С? (Удель­ная теплоёмкость олова — 230 Дж/(кг · °С).)

7. Тонкостенный сосуд содержит смесь льда и воды, находящуюся при температуре 0 °С. Масса льда 350 г, а масса воды 550 г. Сосуд начинают нагревать на горелке мощностью 1,5 кВт. Сколько времени понадобится, чтобы довести содержимое сосуда до кипения? Потерями теплоты и удельной теплоёмкостью сосуда, а также испарением воды можно пренебречь.

Решение.

Чтобы довести содержимое сосуда до кипения за время τ, необходимо расплавить лёд, а затем нагреть всю получившуюся воду до температуры кипения, следовательно, затратить энергию, равную

 

Здесь m1, m2, — массы льда и воды соответственно, λ — удельная теплота плавления льда, c — удельная теплоёмкость воды, t2 — температура кипения воды, t1 — исходная температура смеси лед-вода.

Мощность горелки W есть расход энергии в единицу времени, откуда находим τ:

 

Подставляя табличные данные и данные задачи, находим:

 

Ответ: 5,5 мин.

8. На ри­сун­ке представлен гра­фик зависимости тем­пе­ра­ту­ры от по­лу­чен­но­го количества теп­ло­ты для ве­ще­ства массой 1 кг. Пер­во­на­чаль­но вещество на­хо­ди­лось в твёрдом состоянии. Опре­де­ли­те удельную теплоёмкость ве­ще­ства в твёрдом состоянии.

Решение.

Удельная теплоёмкость — это ко­ли­че­ство теплоты, не­об­хо­ди­мое для того, чтобы на­греть вещество на 1 °C. Из гра­фи­ка видно, что для на­гре­ва­ния 1 кг ве­ще­ства на 200 °C по­тре­бо­ва­лось 50 кДж. Таким образом, удель­ная теплоёмкость равна:

 

Ответ: 

9. В тон­ко­стен­ный сосуд на­ли­ли воду, по­ста­ви­ли его на элек­три­че­скую плит­ку мощ­но­стью 800 Вт и на­ча­ли нагревать. На ри­сун­ке пред­став­лен гра­фик за­ви­си­мо­сти тем­пе­ра­ту­ры воды t от вре­ме­ни τ. Най­ди­те массу на­ли­той в сосуд воды. По­те­ря­ми теп­ло­ты и теплоёмкостью со­су­да пренебречь.

10. Какое ко­ли­че­ство теплоты потребуется, чтобы в алю­ми­ни­е­вом чайнике мас­сой 700 г вски­пя­тить 2 кг воды? Пер­во­на­чаль­но чайник с водой имели тем­пе­ра­ту­ру 20 °С.

 
Примечание.
Удельную теплоёмкость алюминия считать равной 

Решение.

Для на­гре­ва­ния чайника необходимо

 

Для на­гре­ва­ния воды:

 

Всего потребуется

 

Ответ: 723,52 кДж.

11. Какое количество теплоты выделится при конденсации 2 кг пара, взятого при температуре кипения, и последующего охлаждения воды до 40 °С при нормальном атмосферном давлении?

Решение.

В данном случае тепло отдавали пар и получившаяся из него вода. Пар отдал:

 

вода отдала:
 

 

Таким образом:

 

Ответ: 5104 кДж.

12. Какое ми­ни­маль­ное ко­ли­че­ство теп­ло­ты не­об­хо­ди­мо для пре­вра­ще­ния в воду 500 г льда, взя­то­го при тем­пе­ра­ту­ре −10 °С? По­те­ря­ми энер­гии на на­гре­ва­ние окру­жа­ю­ще­го воз­ду­ха пренебречь.

Решение.

Для на­гре­ва­ния льда до тем­пе­ра­ту­ры плав­ле­ния необходимо:

 

Для пре­вра­ще­ния льда в воду:

 

Таким образом:

 

Ответ: 175 500 Дж.

13. В сосуд с водой по­ло­жи­ли кусок льда. Ка­ко­во от­но­ше­ние массы льда к массе воды, если весь лёд рас­та­ял и в со­су­де уста­но­ви­лась тем­пе­ра­ту­ра 0 °С? Теп­ло­об­ме­ном с окру­жа­ю­щим воз­ду­хом пренебречь. На­чаль­ные тем­пе­ра­ту­ры воды и льда опре­де­ли­те из гра­фи­ка за­ви­си­мо­сти тем­пе­ра­ту­ры t от вре­ме­ни τ для воды и льда в про­цес­се теплообмена.

Решение.

Лёд рас­та­ет за счёт того, что вода будет осты­вать и тем самым от­да­вать своё тепло. За­пи­шем это в фор­муль­ном виде:  где  — теп­ло­ём­кость воды,  — удель­ная теплота плав­ле­ния льда,  — масса воды и льда соответственно.

Таким образом, 

 
Ответ: 0,42.

14. Как из­ме­нит­ся внут­рен­няя энер­гия 500 г воды, взя­той при 20°С, при её пре­вра­ще­нии в лёд при тем­пе­ра­ту­ре 0 °С?

Решение.

При охлаждении воды до 0 °С выделится количество теплоты, равное:

 

Затем при кристаллизации воды выделится количество теплоты, равное:

 

Таким образом, всего вода отдаст  теплоты.

 
Ответ: 207 кДж.

15. В ста­кан мас­сой 100 г, долго сто­яв­ший на улице, на­ли­ли 200 г воды из лужи при тем­пе­ра­ту­ре +10 °С и опу­сти­ли в неё кипятильник. Через 5 минут ра­бо­ты ки­пя­тиль­ни­ка вода в ста­ка­не закипела. Пре­не­бре­гая по­те­ря­ми теп­ло­ты в окру­жа­ю­щую среду, най­ди­те мощ­ность кипятильника. Удель­ная теплоёмкость ма­те­ри­а­ла ста­ка­на равна 600 Дж/(кг · °С).

16. Два од­но­род­ных ку­би­ка при­ве­ли в теп­ло­вой кон­такт друг с дру­гом (см. рисунок). Пер­вый кубик из­го­тов­лен из цинка, длина его ребра 2 см, а на­чаль­ная тем­пе­ра­ту­ра t1 = 1 °C. Вто­рой кубик из­го­тов­лен из меди, длина его ребра 3 см, а на­чаль­ная тем­пе­ра­ту­ра t2 = 74,2 °C. Пре­не­бре­гая теп­ло­об­ме­ном ку­би­ков с окру­жа­ю­щей средой, най­ди­те тем­пе­ра­ту­ру ку­би­ков после уста­нов­ле­ния теп­ло­во­го равновесия.

Примечание.

Плотности цинка и меди соответственно: 

Удельные теплоёмкости цинка и меди соответственно: 

Читайте также:  Почему лопаются сосуды в глазах лечение народными средствами

Решение.

При на­гре­ва­нии(охлаждении) тела на тем­пе­ра­ту­ру  тело по­лу­ча­ет(отдаёт) ко­ли­че­ство теп­ло­ты  Более го­ря­чее тело передаёт тепло более холодному, за­пи­шем урав­не­ние теп­ло­во­го баланса:  Заметим, что теплоёмкости цинка и меди равны, по­это­му их можно сократить. Рас­кро­ем скобки:

 

Найдём массы кубиков:

 

Подставим эти зна­че­ния в фор­му­лу для ко­неч­ной температуры:

 

Ответ: 

17. Сколько лит­ров воды при 83 °С нужно до­ба­вить к 4 л воды при 20 °С, чтобы по­лу­чить воду тем­пе­ра­ту­рой 65 °С? Теп­ло­об­ме­ном с окру­жа­ю­щей средой пренебречь.

Решение.

Плотность воды равна 1 кг/л, теп­ло­ем­кость равна 4 200 Дж/кг. Таким образом, из­на­чаль­но мы имеем m0 = 4 кг воды при тем­пе­ра­ту­ре t0 = 20 °C. До­бав­ля­ет­ся некоторое ко­ли­че­ство воды мас­сой m1 при тем­пе­ра­ту­ре t1 = 83 °C. Ко­неч­ная температура смеси равна tкон, а её масса m+ m1.

Составим урав­не­ние теплового ба­лан­са для процесса:

 — от­дан­ное в про­цес­се тепло;
 — по­лу­чен­ное в про­цес­се тепло;

.
 

Таким образом,

 

следовательно, не­об­хо­ди­мо 10 л воды.
 
Ответ: 10.

18. В тон­ко­стен­ный сосуд на­ли­ли воду мас­сой 1 кг, по­ста­ви­ли его на элек­три­че­скую плит­ку и на­ча­ли нагревать. На ри­сун­ке пред­став­лен гра­фик за­ви­си­мо­сти тем­пе­ра­ту­ры воды t от вре­ме­ни τ. Най­ди­те мощ­ность плитки. По­те­ря­ми теп­ло­ты и теплоёмкостью со­су­да пренебречь.

Решение.

Мощность, это от­но­ше­ние теп­ло­ты ко времени, за ко­то­рую эта теп­ло­та по­лу­че­на  Теплота, по­лу­чен­ная телом при на­гре­ва­нии на тем­пе­ра­ту­ру  рас­счи­ты­ва­ет­ся по фор­му­ле  Ис­поль­зуя график, найдём мощ­ность плитки:

 

Ответ: 700 Вт.

19. 3 л воды, взя­той при тем­пе­ра­ту­ре 20 °С, сме­ша­ли с водой при тем­пе­ра­ту­ре 100 °С. Тем­пе­ра­ту­ра смеси ока­за­лась рав­ной 40 °С. Чему равна масса го­ря­чей воды? Теп­ло­об­ме­ном с окру­жа­ю­щей сре­дой пренебречь.

Решение.

Более хо­лод­ная вода на­гре­лась за счет осты­ва­ния го­ря­чей воды: . Масса воды вы­чис­ля­ет­ся по формуле: 

Выражаем массу го­ря­чей воды: 

 
Ответ: 1.

20. Килограммовый кусок льда внесли с мороза в тёплое помещение. Зависимость температуры льда от времени представлена на рисунке. Какое количество теплоты было получено в интервале времени от 50 мин до 60 мин?

Решение.

Исходя из графика, в интервале от 50 до 60 минут происходил нагрев воды от 0 °C до 20 °C. Вычислим количество теплоты:

 

Ответ: 84 кДж.

21. В ста­кан мас­сой 100 г, долго сто­яв­ший на столе в комнате, на­ли­ли 200 г воды при ком­нат­ной тем­пе­ра­ту­ре +20 °С и опу­сти­ли в неё ки­пя­тиль­ник мощ­но­стью 300 Вт. Через 4 ми­ну­ты ра­бо­ты ки­пя­тиль­ни­ка вода в ста­ка­не закипела. Пре­не­бре­гая по­те­ря­ми теп­ло­ты в окру­жа­ю­щую среду, най­ди­те удель­ную теплоёмкость ма­те­ри­а­ла стакана.

22. Два од­но­род­ных ку­би­ка при­ве­ли в теп­ло­вой кон­такт друг с дру­гом. Пер­вый кубик из­го­тов­лен из меди, длина его ребра 3 см, а на­чаль­ная тем­пе­ра­ту­ра t1 = 2 °C. Вто­рой кубик из­го­тов­лен из алюминия, длина его ребра 4 см, а на­чаль­ная тем­пе­ра­ту­ра t2 = 74 °C. Пре­не­бре­гая теп­ло­об­ме­ном ку­би­ков с окру­жа­ю­щей средой, най­ди­те тем­пе­ра­ту­ру ку­би­ков после уста­нов­ле­ния теп­ло­во­го равновесия.

Примечание.

Плотности алю­ми­ния и меди соответственно: 

Удельные теплоёмкости алю­ми­ния и меди соответственно: 

Решение.

При на­гре­ва­нии(охлаждении) тела на тем­пе­ра­ту­ру  тело по­лу­ча­ет(отдаёт) ко­ли­че­ство теп­ло­ты  Более го­ря­чее тело передаёт тепло более холодному, за­пи­шем урав­не­ние теп­ло­во­го баланса:  Рас­кро­ем скобки:

 

Найдём массы кубиков:

 

Подставим эти зна­че­ния в фор­му­лу для ко­неч­ной температуры:

 

Ответ: 

23. Двигатель трак­то­ра со­вер­шил по­лез­ную ра­бо­ту 23 МДж, из­рас­хо­до­вав при этом 2 кг бензина. Най­ди­те КПД дви­га­те­ля трактора.

Решение.

При сго­ра­нии 2 кг бен­зи­на вы­де­ля­ет­ся  теплоты, где  — удель­ная теп­ло­та сго­ра­ния бензина. КПД рас­счи­ты­ва­ет­ся по формуле: 

 
Ответ: 25 %.

24. Автомобиль УАЗ из­рас­хо­до­вал 30 кг бен­зи­на за 2 ч. езды. Чему равна мощ­ность дви­га­те­ля автомобиля, если его КПД со­став­ля­ет 30%? (Удельная теп­ло­та сго­ра­ния бен­зи­на 4,6·107Дж/кг).

Решение.

Энергия, по­лу­чен­ная дви­га­те­лем от 30 кг бен­зи­на  КПД опре­де­ля­ет­ся как от­но­ше­ние по­лез­ной ра­бо­ты к энергии, по­треб­ля­е­мой дви­га­те­лем  Мощ­ность дви­га­те­ля — это от­но­ше­ние по­лез­ной ра­бо­ты со­вер­ша­е­мой дви­га­те­лем ко времени:

 

Ответ: 57,5 кВт.

25. В сосуд с водой по­ло­жи­ли кусок льда. Ка­ко­во от­но­ше­ние массы воды к массе льда, если весь лёд рас­та­ял и в со­су­де уста­но­ви­лась тем­пе­ра­ту­ра 0 °С? Теп­ло­об­ме­ном с окру­жа­ю­щим воз­ду­хом пренебречь. На­чаль­ную тем­пе­ра­ту­ру воды и льда опре­де­ли­те из гра­фи­ка за­ви­си­мо­сти  от вре­ме­ни  для воды и льда в про­цес­се теплообмена.

Решение.

Лед рас­та­ет за счёт того, что вода будет осты­вать и тем самым от­да­вать своё тепло. За­пи­шем это в фор­муль­ном виде:  где  — удель­ная теп­лоём­кость воды,  — удель­ная теплота плав­ле­ния льда,  — масса воды и льда соответственно.

Таким образом, 

 
Ответ: 2,38.

Источник