В сосуде было 10 литров масла часть масла отлили

- Главная
- Вопросы & Ответы
- Вопрос 2206963
более месяца назад
Просмотров : 144
Ответов : 1
Лучший ответ:
10л=100%
10л=10000 мл
1%=100мл
100мл*64%=640мл
640мл=6.4л
Ответ: 6.4 л соляной кислоты осталось в сосуде
более месяца назад
Ваш ответ:
Комментарий должен быть минимум 20 символов
Чтобы получить баллы за ответ войди на сайт
Лучшее из галереи за : неделю месяц все время
Другие вопросы:
напиши 15 позитивных качеств о подруге
более месяца назад
Смотреть ответ
Просмотров : 9
Ответов : 1
В процессе трения о шелк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шелке при условии, что обмен атомами при трении не происходил? Установите соответствие между физическими величинами и их возможными изменениями при этом: 1) Ко…
более месяца назад
Смотреть ответ
Просмотров : 99
Ответов : 1
Вопрос: почему старуха из сказки пушкина о золотой рыбке не была счастлива, ведь у нее все было?
более месяца назад
Смотреть ответ
Просмотров : 29
Ответов : 1
Составьте в тетради план ответа на вопроос “Причины революции в Англии”.
более месяца назад
Смотреть ответ
Просмотров : 11
Ответов : 1
При электролизе раствора нитрата меди на электродах выделяются:N2NO2O2H2CuCuOВ ответе перечислите варианты без разделительных знаков
более месяца назад
Смотреть ответ
Просмотров : 14
Ответов : 1
Источник
Урок 15. Текстовые задачи. Смеси
Домашнее задание из В.В. Ткачук “Математика – абитуриенту”
- От двух однородных кусков сплава с различным процентным содержанием меди, весящих соответственно m и n кг, отрезано по куску равного веса. Каждый из отрезанных кусков был сплавлен с остатком другого куска, после чего процентное содержание меди в получившихся сплавах стало одинаковым. Сколько весил каждый из отрезанных кусков?
- [3] В сосуд с чистой водой налили 6 литров 64%-ного (по объему) раствора спирта, а затем после полного перемешивания вылили равное количество (т.е. 6 литров) получившегося раствора. Сколько воды было первоначально в сосуде, если после троекратного повторения этой операции в сосуде получился 37%-ный раствор спирта?
- В баке находится 100 литров смеси кислоты с водой. Из бака отлили часть смеси и добавили равное по объему количество воды, которое на 10 литров превышает первоначальное количество кислоты в смеси. Затем снова отлили такое же количество смеси, как в первый раз, в результате чего количество кислоты в баке уменьшилось в 4 раза по сравнению с количеством ее в исходной смеси. Определить количество воды в исходной смеси.
- [3] В двух различных емкостях содержались смеси воды и песка, причем в первой емкости было 1000 кг смеси, а во второй – 1960 кг. В обе емкости добавили воды. При этом процентное содержание песка в смесях уменьшилось в k раз в первой емкости и в p раз во второй. О числах k иp известно только, что kp=9-k. Найти наименьшее количество воды, которое могло быть долито в обе емкости вместе.
- Свежие фрукты содержат 72% воды, а сухие – 20%. Сколько сухих фруктов получится из 20 кг свежих фруктов?
- Имеются два слитка золота с серебром. Процентное содержание золота в первом слитке в два с половиной раза больше, чем процентное содержание золота во втором слитке. Если сплавить оба слитка вместе, то получится слиток, в котором будет 40% золота. Найти, во сколько раз первый слиток тяжелее второго, если известно, что при сплавке равных по весу частей первого и второго слитков получается сплав, в котором 35% золота.
- Имеются два раствора серной кислоты в воде, первый – 40% -ный, второй – 60%-ный. Эти два раствора смешали, после чего добавили 5 кг чистой воды и получили 20%-ный раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-ного раствора, то получился бы 70%-ный раствор. Сколько было 40%-ного и 60%-ного растворов?
- Сплавляя два одинаковых по весу куска чугуна с разным содержанием хрома, получили сплав, в котором 12 кг хрома. Если бы первый кусок был в два раза тяжелее, то в сплаве содержалось бы 16 кг хрома. Известно, что содержание хрома в первом куске на 5% меньше, чем во втором. Найти процентное содержание хрома в каждом из кусков.
- Для приготовления смеси из двух жидкостей А и В было взято 16 литров жидкости А и разлито в два сосуда объемом по 16 литров каждый. Затем первый сосуд был долит жидкостью В и произведено перемешивание. Полученной смесью был дополнен сверху второй сосуд. Если отлить из второго сосуда в первый 8 литров получившийся смеси, то в первом сосуде будет жидкости А на три литра больше, чем во втором. Сколько всего использовано жидкости В для приготовления смеси?
- Имеются два бака. Первый наполнен чистым глицерином, второй – водой. Взяли два трехлитровых ковша, зачерпнули первым полным ковшом глицерин из первого бака, а вторым полным ковшом зачерпнули воду из второго бака. После этого содержимое первого ковша влили во второй бак, а содержимое второго ковша – в первый. После перемешивания эту процедуру повторили. В результате половину объема первого бака занял чистый глицерин. Найти объемы баков, если известно, что их суммарный объем в 10 раз больше объема первого бака.
- Имеются два сплава, состоящих из цинка, меди и олова. Первый сплав содержит 40% олова, второй – 26% меди. Процентное содержание цинка в первом и втором сплавах одинаково. Сплавив 150 кг первого сплава и 250 кг второго, получили новый сплав, в котором оказалось 30% цинка. Сколько кг олова в новом сплаве?
- [2] Имеются три сплава. Первый сплав содержит 60% алюминия, 15% меди и 25% магния; второй – 30% меди и 70% магния; третий – 45% алюминия и 55% магния. Из них необходимо приготовить новый сплав, содержащий 20% меди. Какое наименьшее и какое наибольшее процентное содержание алюминия может быть в этом новом сплаве?
- Имеются два раствора одной и той же соли в воде. Для получения смеси, содержащей 10 г соли и 90 г воды, берут первого раствора по весу вдвое больше, чем второго. Через неделю из каждого килограмма первого и второго растворов испарилось по 200 г воды, и для получения такой же смеси, как и раньше, требуется первого раствора уже вчетверо больше по весу, чем второго. Сколько г соли содержалось первоначально в 100 г каждого раствора?
- Имеются два слитка сплавов меди и олова. Первый весит 3 кг и содержит 40% меди, второй весит 7 кг и содержит 30% меди. Какого веса нужно взять куски этих слитков, чтобы после их переплавки получить 8 кг сплава, содержащего r% меди? При каких r задача имеет решение?
- Имеются три слитка золота с серебром. Известно, что количество золота в 2 г сплава из третьего слитка то же самое, что во взятых вместе 1 г сплава из первого слитка и 1 г сплава из второго слитка. Вес третьего слитка равен суммарному весу части первого слитка, содержащей 10 г золота и части второго слитка, содержащей 80 г золота. Третий слиток в четыре раза тяжелее первого и содержит 75 г золота. Сколько золота содержит первый слиток?
- [2] Даны две смеси, состоящие из одних и тех же веществ А, Б, В, но взятых в различных весовых соотношениях. В первой смеси вещества А в два раза меньше, чем вещества Б, и в три раза меньше, чем вещества В. Во второй смеси вещества Б в три раза меньше, чем вещества А, и в два раза меньше, чем вещества В. Сколько следует взять каждой смеси и сколько добавить вещества Б, чтобы получить 7 кг новой смеси, в которой вещества А в три раза меньше, чем вещества Б и в два раза меньше, чем вещества В?
- Есть два слитка – сплавы цинка с медью. Вес первого – 2 кг, второго – 3 кг. Эти два слитка сплавили вместе с 5 кг сплава цинка с медью, в котором цинка было 45%, и получили сплав, в котором цинка стало 50%. Если бы процентное содержание цинка в первом слитке было равно процентному содержанию цинка во втором, а процентное содержание цинка во втором было такое же, как в первом (то есть их процентные содержания поменялись), то сплавив эти два слитка с 5 кг сплава, в котором содержится 60% цинка, получили бы сплав, в котором цинка содержится 55%. Найти процентное содержание цинка в первом и во втором слитках.
- В пустой резервуар по двум трубам одновременно начинают поступать чистая вода и раствор кислоты постоянной концентрации. После наполнения резервуара в нем получился 5% раствор кислоты. Если бы в тот момент, когда резервуар был наполнен наполовину, подачу воды прекратили, то после наполнения резервуара получили бы 10%-ный раствор кислоты. Определить, какая труба и во сколько раз подаёт раствор быстрее.
- Две трубы, работая вместе, подают в бак 100 литров жидкости в минуту. Имеются два раствора кислоты – сильный и слабый. Если смешать по 10 литров каждого раствора и 20 л воды, то получится 40 литров 20%-ного раствора. Известно также, что если в течение часа подавать в первоначально пустой бак по первой трубе слабый раствор, а по второй – сильный, то получится 30%-ный раствор кислоты. Какой концентрации ( в процентах) получится кислота, если в течение часа первоначально подавать в пустой бак по первой трубе сильный, а по второй трубе – слабый растворы? (Считать, что при смешивании воды и кислоты объем не меняется)
Ответы к домашнему заданию урока 15 из В.В. Ткачук “Математика – абитуриенту”
- mn/(m+n) кг
- 18 л
- 60 л
- 3480 кг
- 7 кг
- первый в 2 раза тяжелее второго слитка
- 40% – 1 кг и 60% – 2 кг
- 5%, 10%
- 4 л
- 10 л и 90 л
- 170 кг
- 15% и 40%
- 5 г и 20 г
- 0,8r-24; 32-0,8r,
- 12,5 г
- 4 кг 1-й смеси, 1 кг 2-й смеси и 2 кг вещества Б
- 40% и 65%
- первая труба в два раза быстрее
- 50%
Источник
Занятие математического кружка «Задачи на разбавление»
Примеры решения задач
Задача 1.
Из бака, наполненного спиртом, отлили часть спирта и долили до прежнего объема водой, затем из бака отлили столько же литров смеси, сколько в первый раз отлили спирта, после чего в баке осталось 49 л чистого спирта. Сколько литров спирта отлили из бака в первый и во второй раз, если в баке содержалось 64 л ?
Решение:
Пусть х литров спирта отлили в первый раз, тогда (64 – х) литров спирта осталось в баке.
После того, как в бак долили воды, в нем стало 64 литра смеси.
литров спирта содержится в 1 л смеси;
( )∙х литров спирта отлили во второй раз.
Следовательно, всего отлили х + ( )∙х литров спирта, или 64 – 49 = 15 литров спирта.
Составим и решим уравнение:
х + ( )∙х = 15,
64х + 64х – = 64 ∙ 15
Решив квадратное уравнение, получим корни 8 и 120.
Т.к. 120>64, то 120 не удовлетворяет условию задачи, следовательно, 8 л спирта отлили в первый раз.
∙ 8 = 7 л спирта отлили во второй раз.
Ответ: 8 л, 7 л.
Задача 2.
В сосуде было 12 л соляной кислоты. Часть кислоты отлили и долили сосуд водой, затем снова отлили столько же и опять долили водой. Сколько жидкости отливали каждый раз, если в сосуде оказался 25 %-ный раствор соляной кислоты?
Решение:
Пусть х литров 100 %-ной соляной кислоты отлили в первый раз, тогда (12 – х) литров кислоты осталось в сосуде.
После того, как в сосуд долили воды, в нем стало 12 литров смеси.
литров кислоты содержится в 1 л смеси;
( )∙х литров кислоты отлили во второй раз.
Следовательно, всего отлили х + ( )∙х литров кислоты.
Значит, осталось 12 – х – ( )∙х или 25 % от 12 л т.е. 0,25 ∙ 12 = 3 литра кислоты.
Составим и решим уравнение:
12 – х – ( )∙х = 3,
144 – 12х – 12х + = 36,
– 24х + 108 = 0,
Решив квадратное уравнение, получим корни 6 и 18.
Т.к. 18>12, то 18 не удовлетворяет условию задачи (из сосуда, вмещающего 12 л жидкости невозможно вылить 18 л жидкости).
Значит, 6 л жидкости отливали каждый раз.
Ответ: 6 л.
Решите самостоятельно
Условия задач:
Из сосуда, наполненного кислотой, вылили несколько литров и долили водой. После этого из сосуда опять вылили столько же литров смеси, при этом в сосуде осталось 24 литра чистой кислоты. Емкость сосуда 54 литра. Сколько кислоты вылили в первый и во второй раз?
В сосуде было 18 литров кислоты. Часть кислоты отлили и долили сосуд водой, затем снова отлили столько же и опять долили водой. Сколько жидкости отливали каждый раз, если в сосуде оказался 25 %-ный раствор кислоты?
Ответы и решение задач:
Из сосуда, наполненного кислотой, вылили несколько литров и долили водой. После этого из сосуда опять вылили столько же литров смеси, при этом в сосуде осталось 24 литра чистой кислоты. Емкость сосуда 54 литра. Сколько кислоты вылили в первый и во второй раз?
Решение:
Пусть х литров кислоты отлили в первый раз, тогда (54 – х) литров кислоты осталось в сосуде.
После того, как в сосуд долили воды, в нем стало 18 литров смеси.
литров кислоты содержится в 1 л смеси;
( )∙х литров кислоты отлили во второй раз.
Следовательно, всего отлили х + ( )∙х литров кислоты или 54 – 24 = 30 литров кислоты.
Составим и решим уравнение:
х + ( )∙х = 30,
54х + 54х – = 30 ∙ 54,
– 108х + 1620 = 0,
Решив квадратное уравнение, получим корни 18 и 90.
Т.к. 90>54, то 27 не удовлетворяет условию задачи (из сосуда, вмещающего 54 л жидкости невозможно вылить 90 л жидкости).
Значит, 18 л кислоты отлили в первый раз.
( )∙18 = 12 литров кислоты отлили во второй раз.
Ответ: 18л, 12л.
В сосуде было 18 литров кислоты. Часть кислоты отлили и долили сосуд водой, затем снова отлили столько же и опять долили водой. Сколько жидкости отливали каждый раз, если в сосуде оказался 25 %-ный раствор кислоты?
Решение:
Пусть х литров кислоты отлили в первый раз, тогда (18 – х) литров кислоты осталось в сосуде.
После того, как в сосуд долили воды, в нем стало 18 литров смеси.
литров кислоты содержится в 1 л смеси;
( )∙х литров кислоты отлили во второй раз.
Следовательно, всего отлили х + ( )∙х литров кислоты.
Значит, осталось 18 – х – ( )∙х или 25 % от 18 л т.е. 0,25 ∙ 18 = 4,5 литров кислоты.
Составим и решим уравнение:
18 – х – ( )∙х = 4,5,
324 – 18х – 18х + = 81,
– 36х + 243 = 0,
Решив квадратное уравнение, получим корни 9 и 27.
Т.к. 27>9, то 27 не удовлетворяет условию задачи (из сосуда, вмещающего 18 л жидкости невозможно вылить 27 л жидкости).
Значит, 9 л жидкости отливали каждый раз.
Ответ: 9 л.
Источник