В сосуде мне поршнем находится идеальный газ
5.4. Практическое применение уравнения состояния идеального газа
5.4.3. Уравнение состояния для газа, находящегося в сосуде под поршнем
Для идеального газа, находящегося в сосуде под поршнем, необходимо учитывать следующее:
- масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:
m = const;
- постоянным остается также количество вещества (газа):
ν = const;
- плотность газа и концентрация его молекул (атомов) изменяются:
ρ ≠ const, n ≠ const.
Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).
Рис. 5.9
Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:
p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , }
где p 1, V 1, T 1 – давление, объем и температура газа в начальном состоянии; p 2, V 2, T 2 – давление, объем и температура газа в конечном состоянии; ν – количество вещества (газа); R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).
Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:
M g + F A = F 1 , M g + F A + F = F 2 , }
где M – масса поршня; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; S – площадь сечения поршня; F 1 – модуль силы давления газа на поршень в начале процесса, F 1 = p 1S; p 1 – давление газа в сосуде в начальном состоянии; F – модуль силы, вызывающей сжатие газа; F 2 – модуль силы давления газа на поршень в конце процесса, F 2 = p 2S; p 2 – давление газа в сосуде в конечном состоянии.
Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:
- если процесс движения поршня происходит достаточно быстро, то температура газа изменяется –
T ≠ const;
- если процесс происходит медленно, то температура газа остается постоянной –
T = const.
Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:
- если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем – неизменно (в том случае, когда из условия задачи не следует обратное) – p = const;
- в остальных случаях давление газа под поршнем изменяется – p ≠ const.
Масса поршня, закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:
- если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю –
M = 0;
- в остальных случаях поршень обладает определенной ненулевой массой –
M ≠ const.
Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм2 и массой 1,80 кг находится 360 см3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см3. Температура газа при его сжатии не изменяется. Определить массу гирь.
Решение. На рисунке показаны силы, действующие на поршень:
- сила тяжести поршня M g → ;
- сила атмосферного давления F → A ;
- сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
- сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
- m g → – вес гирь.
Условие равновесия поршня запишем в следующем виде:
- до сжатия газа –
F 1 = Mg + F A,
где F 1 – модуль силы давления газа, F 1 = p 1S; p 1 – давление газа до сжатия; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; g – модуль ускорения свободного падения;
- после сжатия газа –
F 2 = Mg + F A + mg,
где F 2 – модуль силы давления газа, F 2 = p 2S; p 2 – давление газа после сжатия; mg – вес гирь; m – масса гирь.
Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева – Клапейрона для газа под поршнем следующим образом:
- до его сжатия –
p 1V 1 = νRT,
где V 1 – первоначальный объем газа под поршнем; ν – количество газа под поршнем; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);
- после его сжатия –
p 2V 2 = νRT,
где V 2 – объем сжатого поршнем газа.
Равенство
p 1V 1 = p 2V 2
и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:
p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , }
которую требуется решить относительно массы гирь m.
Для этого выразим отношение давлений p 2/p 1 из первой пары уравнений:
p 2 p 1 = M g + p A S + m g M g + p A S
и из третьего уравнения:
p 2 p 1 = V 1 V 2 ,
запишем равенство правых частей полученных отношений:
M g + p A S + m g M g + p A S = V 1 V 2 .
Отсюда следует, что искомая масса определяется формулой
m = ( M + p A S g ) ( V 1 V 2 − 1 ) .
Вычисление дает результат:
m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.
Указанное сжатие газа вызвано гирями массой 2,15 кг.
Пример 20. Открытый цилиндрический сосуд сечением 10 см2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?
Решение. На рисунке показаны силы, действующие на пластину после нагревания газа:
- сила тяжести пластины M g → ;
- сила атмосферного давления F → A ;
- сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.
Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:
F 2 = Mg + F A,
где F 2 – модуль силы давления нагретого газа, F 2 = p 2S; p 2 – давление нагретого газа; S – площадь сечения сосуда; Mg – модуль силы тяжести пластины; M – масса пластины; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление.
Запишем уравнение Менделеева – Клапейрона следующим образом:
- для газа в сосуде до его нагревания
p 1V = νRT 1,
где p 1 – давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A; V – объем газа в сосуде; ν – количество вещества (газа) в сосуде; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);
- для газа в сосуде после его нагревания
p 2V = νRT 2,
где p 2 – давление нагретого газа; T 2 – температура нагретого газа.
Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:
p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; }
систему необходимо решить относительно температуры T 2, до которой следует нагреть газ.
Для этого делением первой пары уравнений
p A V p 2 V = ν R T 1 ν R T 2
получим выражение для давления нагретого газа:
p 2 = p A T 2 T 1
и подставим его в третье уравнение системы:
p A T 2 S T 1 = M g + p A S .
Преобразуем полученное выражение к виду
T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,
а затем найдем разность
Δ T = T 2 − T 1 = M g T 1 p A S .
Произведем вычисление:
Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.
Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.
Решение. На рисунке показаны силы, действующие на поршень:
- сила тяжести поршня M g → ;
- сила атмосферного давления F → A ;
- сила давления газа F → , действующая на поршень со стороны нагретого газа.
Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :
F → + F → A + M g → = m a → ,
или в проекции на вертикальную ось –
F − F A − Mg = Ma,
где F – модуль силы давления газа под поршнем, F = pS; p – давление газа; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; g – модуль ускорения свободного падения; a – модуль ускорения поршня.
Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:
a = F − F A − M g M = ( p − p A ) S M − g .
Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением
l = v 2 2 a ,
где l – пройденный путь; v – модуль скорости поршня.
Выразим отсюда модуль скорости поршня:
v = 2 a l
и подставим в записанную формулу выражение для модуля ускорения:
v = 2 l ( ( p − p A ) S M − g ) .
Выполним расчет:
v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.
После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.
Источник