В сосуде находится кислород под давлением
В сосуде емкостью 10 л находится кислород под давлением
МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА
В сосуде объемом V = 2 л находится масса m = 10 г кислорода при давлении p = 90,6 кПа. Найти среднюю квадратичную скорость
молекул газа, число молекул N, находящихся в сосуде, и плотность ρ газа.
Дано:
m = 10 г = 10·10 -3 кг
p = 90,6 кПа 90,6·10 3 Па
— ? N — ? ρ — ?
Решение:
С редняя квадратичная скорость
В ыразим из уравнения Менделеева-Клапейрона
Число молекул N, находящихся в сосуде
Ответ:
Источник
—>Решение задач по химии —>
Глинка Н. Л. Задачи и упражнения по общей химии. Учебное пособие для вузов / Под ред. В. А. Рабиновича и Х. М. Рубиной. – 23-е изд., исправленное – Л.: Химия, 1985. – 264 с., ил.
Задачи 28-40
28. При 17 °С некоторое количество газа занимает объем 580 мл. Какой объем займет это же количество газа при 100 °С, если давление его останется неизменным? Решение
29. Давление газа, занимающего объем 2,5 л, равно 121,6 кПа (912 мм рт. ст.). Чему будет равно давление, если, не изменяя температуры, сжать газ до объема в 1 л? Решение
30. На сколько градусов надо нагреть газ, находящийся в закрытом сосуде при 0 °С, чтобы давление его увеличилось вдвое? Решение
31. При 27 °С и давлении 720 мм рт. ст. объем газа равен 5 л. Какой объем займет это же количество газа при 39 °С и давлении 104 кПа? Решение
32. При 7 °С давление газа в закрытом сосуде равно 96,0 кПа. Каким станет давление, если охладить сосуд до -33 °С? Решение
33. При нормальных условиях 1 г воздуха занимает объем 773 мл. Какой объем займет та же масса воздуха при 0 °С и давлении, равном 93,3 кПа (700 мм рт. ст.)? Решение
34. Давление газа в закрытом сосуде при 12 °С равно 100 кПа (750 мм рт. ст.). Каким станет давление газа, если нагреть сосуд до 30 °С? Решение
35. В стальном баллоне вместимостью 12 л находится при 0 °С кислород под давлением 15,2 МПа. Какой объем кислорода, находящегося при нормальных условиях, можно получить из такого баллона? Решение
36. Температура азота, находящегося в стальном баллоне под давлением 12,5 МПа, равна 17 °С. Предельное давление для баллона 20,3 МПа. При какой температуре давление азота достигнет предельного значения? Решение
37. При давлении 98,7 кПа и температуре 91 °С некоторое количество газа занимает объем 680 мл. Найти объем газа при нормальных условиях. Решение
38. При взаимодействии 1,28 г металла с водой выделилось 380 мл водорода, измеренного при 21 °С и давлении 104,5 кПа (784 мм рт. ст.). Найти эквивалентную массу металла. Решение c ключом
39. Как следует изменить условия, чтобы увеличение массы данного газа не привело к возрастанию его объема: а) понизить температуру; б) увеличить давление; в) нельзя подобрать условий? Решение c ключом
40. Какие значения температуры и давления соответствуют нормальным условиям для газов: а) t=25 °С, P=760 мм рт. ст.; б) t=0 °С, P=1,013·10 5 Па; в) t=0 °С, P=760 мм рт. ст.? Решение
Источник
Молекулярно-кинетическая теория идеальных газов
2. Основы молекулярной физики и термодинамики
2. Определите число N атомов в 1 кг водорода и массу одного атома водорода.
3. В закрытом сосуде вместимостью 20 л находятся водород массой 6 г и гелий массой 12 г. Определите: 1) давление; 2) молярную массу газовой смеси в сосуде, если температура смеси Т = 300 К.
4. Определите плотность смеси газов водорода массой m1 = 8 г и кислорода m2 = 64 г при температуре Т = 290 К и при давлении 0,1 МПа. Газы считать идеальными.
5. В баллоне вместимостью 15 л находится азот под давлением 100 кПа при температуре t1= 27 °С. После того как из баллона выпустили азот массой 14 г, температура газа стала равной t2 = 17 °С. Определите давление азота, оставшегося в баллоне.
6. Баллон вместимостью V = 20 л содержит смесь водорода и азота при температуре 290 К и давлении 1 МПа. Определите массу водорода, если масса смеси равна 150 г.
7. Азот массой 7 г находится под давлением p = 0,1 Мпа и температуре Т1 = 290 К. Вследствие изобарного нагревания азот занял объем V2 = 10 л. Определите: 1) объем газа до расширения, 2) температуру газа после расширения, 2) плотность газа до и после расширения.
8. В сосуде вместимостью 1 л находится кислород массой 1 г. Определите концентрацию молекул кислорода в сосуде.
9. В сосуде вместимостью 5 л при нормальных условиях находится азот. Определите: 1) количество вещества v; 2) массу азота; 3) концентрацию n его молекул в сосуде.
10. Средняя квадратичная скорость некоторого газа при нормальных условиях равна 480 м/с. Сколько молекул содержит 1 г этого газа?
11. В сосуде вместимостью V = 0.3 л при температуре Т = 290 К находится некоторый газ. Насколько понизится давление газа в сосуде, если из него из-за утечки выйдет N = 10 19 молекул.
12. Определите давление, оказываемое газом на стенки сосуда, если его плотность ρ = 0,01 кг/м 3 и средняя квадратичная скорость молекул газа составляет 480 м/с.
13. Определите наиболее вероятную скорость молекул газа, плотность которого при давлении 40 кПа составляет 0,35 кг/м 3 .
14. Определите среднюю кинетическую энергию (ε) поступательного движения молекул газа, заходящегося под давлением 0,1 Па и имеющим концентрацию молекул 10 13 см -3 .
15. Определите: 1) наиболее вероятную vв; 2) среднюю арифметическую v; 3) среднюю квадратичную vкв скорость молекул азота (N2) при 27 °С.
16. При какой температуре средняя квадратичная скорость молекул кислорода больше их наиболее вероятной скорости на 100 м/с?
17. Используя закон распределения молекул идеального газа по скоростям, найдите формулу наиболее вероятной скорости Vв.
18. Используя закон распределения молекул идеального газа по скоростям, найдите закон, выражающий распределение молекул по относительным скоростям u (u = v/vв).
19. Используя закон распределения молекул идеального газа по скоростям, найдите среднюю арифметическую скорость v молекул.
Указание: средняя арифметическая скорость определяется по формуле
20. Используя закон распределения молекул идеального газа по скоростям, найдите среднюю квадратичную скорость (vкв).
Ошибка в тексте? Выдели её мышкой и нажми
Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!
Источник
Источник
10 г кислорода находится в сосуде под давлением 300 кпа
МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА
В сосуде объемом V = 2 л находится масса m = 10 г кислорода при давлении p = 90,6 кПа. Найти среднюю квадратичную скорость
молекул газа, число молекул N, находящихся в сосуде, и плотность ρ газа.
Дано:
m = 10 г = 10·10 -3 кг
p = 90,6 кПа 90,6·10 3 Па
— ? N — ? ρ — ?
Решение:
С редняя квадратичная скорость
В ыразим из уравнения Менделеева-Клапейрона
Число молекул N, находящихся в сосуде
Ответ:
Источник
—>Решение задач по химии —>
Глинка Н. Л. Задачи и упражнения по общей химии. Учебное пособие для вузов / Под ред. В. А. Рабиновича и Х. М. Рубиной. – 23-е изд., исправленное – Л.: Химия, 1985. – 264 с., ил.
Задачи 28-40
28. При 17 °С некоторое количество газа занимает объем 580 мл. Какой объем займет это же количество газа при 100 °С, если давление его останется неизменным? Решение
29. Давление газа, занимающего объем 2,5 л, равно 121,6 кПа (912 мм рт. ст.). Чему будет равно давление, если, не изменяя температуры, сжать газ до объема в 1 л? Решение
30. На сколько градусов надо нагреть газ, находящийся в закрытом сосуде при 0 °С, чтобы давление его увеличилось вдвое? Решение
31. При 27 °С и давлении 720 мм рт. ст. объем газа равен 5 л. Какой объем займет это же количество газа при 39 °С и давлении 104 кПа? Решение
32. При 7 °С давление газа в закрытом сосуде равно 96,0 кПа. Каким станет давление, если охладить сосуд до -33 °С? Решение
33. При нормальных условиях 1 г воздуха занимает объем 773 мл. Какой объем займет та же масса воздуха при 0 °С и давлении, равном 93,3 кПа (700 мм рт. ст.)? Решение
34. Давление газа в закрытом сосуде при 12 °С равно 100 кПа (750 мм рт. ст.). Каким станет давление газа, если нагреть сосуд до 30 °С? Решение
35. В стальном баллоне вместимостью 12 л находится при 0 °С кислород под давлением 15,2 МПа. Какой объем кислорода, находящегося при нормальных условиях, можно получить из такого баллона? Решение
36. Температура азота, находящегося в стальном баллоне под давлением 12,5 МПа, равна 17 °С. Предельное давление для баллона 20,3 МПа. При какой температуре давление азота достигнет предельного значения? Решение
37. При давлении 98,7 кПа и температуре 91 °С некоторое количество газа занимает объем 680 мл. Найти объем газа при нормальных условиях. Решение
38. При взаимодействии 1,28 г металла с водой выделилось 380 мл водорода, измеренного при 21 °С и давлении 104,5 кПа (784 мм рт. ст.). Найти эквивалентную массу металла. Решение c ключом
39. Как следует изменить условия, чтобы увеличение массы данного газа не привело к возрастанию его объема: а) понизить температуру; б) увеличить давление; в) нельзя подобрать условий? Решение c ключом
40. Какие значения температуры и давления соответствуют нормальным условиям для газов: а) t=25 °С, P=760 мм рт. ст.; б) t=0 °С, P=1,013·10 5 Па; в) t=0 °С, P=760 мм рт. ст.? Решение
Источник
ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ
В данной работе предлагается определенный подход к классификации и способам решения задач на газовые законы. Такой подход позволит быстро сориентироваться в большом количестве задач на свойства газов и применить к ним те или иные приемы решения.
Основные теоретические сведения
Состояние газа характеризуется совокупностью трех физических величин или термодинамических параметров:объемом газа V, давлением Р и температурой Т. Состояние газа, при котором эти параметры остаются постоянными считают равновесным состоянием.В этом состоянии параметры газа связаны между собой уравнением состояния. Самый простой вид уравнение состояния имеет для идеального газа. Идеальным газом называют газ, молекулы которого не имеют размеров (материальные точки) и взаимодействуют друг с другом лишь при абсолютно упругих соударениях (отсутствует межмолекулярное притяжение и отталкивание). Реальные газы тем точнее подчиняются законам идеальных газов, чем меньше размеры их молекул (т.е. газ одноатомный), и чем больше он разряжен.
Уравнение состояния идеального газа или уравнение Менделеева-Клапейрона имеет вид:
— универсальная газовая постоянная
Из этого закона вытекает, что для двух произвольных состояний газа справедливо равенство, называемое уравнением Клапейрона:
Так же для идеальных газов имеют место следующие экспериментальные законы:
Закон Бойля — Мариотта:
Закон Гей-Люссака:
Закон Шарля:
Если в сосуде находится смесь нескольких газов, не вступающих друг с другом в химические реакции, то результирующее давление определяется по закону Дальтона: давление смеси равно сумме давлений, производимых каждым газом в отдельности, как если бы он один занимал весь сосуд.
Задачи, решение которых основывается на данных уравнениях, можно разделить на две группы:
§ задачи на применение уравнения Менделеева-Клапейрона.
- задачи на газовые законы.
ЗАДАЧИ НА ПРИМЕНЕНИЕ УРАВНЕНИЯ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА.
Уравнение Менделеева-Клапейрона применяют тогда, когда
I. дано только одно состояние газа изадана масса газа (или вместо массы используют количество вещества или плотность газа).
II. масса газа не задана, но она меняется, то есть утечка газа или накачка.
При решении задач на применение равнения состояния идеального газа надо помнить:
1.если дана смесь газов, то уравнение Менделеева-Клапейрона записывают для каждого компонента в отдельности.Связь между парциальными давлениями газов, входящих в смесь и результирующим давлением смеси, устанавливается законом Дальтона.
2.если газ меняет свои термодинамические параметры или массу, уравнение Менделеева-Клапейрона записывают для каждого состояния газа в отдельности и полученную систему уравнений решают относительно искомой величины.
§ Необходимо пользоваться только абсолютной температурой и сразу же переводить значения температуры по шкале Цельсия в значения по шкале Кельвина.
§ В задачах, где рассматривается движение сосуда с газом (пузырька воздуха, воздушного шара) к уравнению газового состояния добавляют уравнения механики.
§ если между газами происходит реакция, то надо составить уравнение реакции и определить продукты реакции
ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ
Определить давление кислорода в баллоне объемом V = 1 м 3 при температуре t=27 °С. Масса кислорода m = 0,2 кг.
V = 1 м 3 μ = 0,032кг/моль m = 0,2 кг t=27 °С |
V = 12 л μ =0,044кг/моль Т=300К Р =1 МПа |
V = 12 л Т=309К Р =0,7 МПа ρ = 12 кг/м 3 |
V = 12 л t=20°C Р =10 5 Па μ =0,002кг/моль |
Т2=200К ρ1 = ρ2 μ1 =0,032кг/моль μ2 =0,002кг/моль |
V=4·10 -3 м 3 m=0,012 кг t1=177°C ρ2=6·10 -6 кг /см 3 | Т1=450К 6 кг/м 3 | |||||||||||||||
Т2 -? |
V = 25 л μ1 = 0,028кг/моль m1 = 20 г μ2 = 0,004кг/моль m2 = 2 г Т=301К | 0,025м 3 0,02кг 0,002кг | Записываем уравнение Менделеева для каждого газа и находим из него давление газов По закону Дальтона результирующее давление в сосуде равно сумме парциальных давлений газов: | ||||||||||
Р-? |
μ1 = 0,002кг/моль m1 = 4 г μ2 = 0,032кг/моль m2 = 32 г t=7°С Р =93кПа | 0,004кг 0,032кг T=280K 93000Па | По закону Дальтона: | ||||||
ρ-? |
μа m1 = m2 = m3 = m μв μк Т |
μа m1 = m2 = m3 = m μв μк Р |
μа μв Т1 =Т Т2 =2Т Р1=Р Р2=3Р | ||||
ν1=1 моль ν2=2 моль Т1 =300К Т2 =3000К Р1=10 5 Па Р2=1,5∙10 5 Па | |||
V = 25 л μ1 = 2г/моль m1 = 0,5 г μ2 = 32г/моль m2 = 8 г | В сосуде будет происходить реакция водорода с кислородом с образованием воды: |
Р-? | Из уравнения реакции видно, что если в реакцию вступит весь водород, то кислорода только половина |
Источник
Разбор 30 задач по физике. Механика, Термодинамика и МКТ.
При работе со своими учениками, у меня накапливается много задач. Поэтому я публикую разборы задач в свободный доступ, стараюсь делать это максимально подробно и понятно, чтобы начинающие могли прочитать и разобраться в нужной для них теме. Ну а за подробными индивидуальными консультациями и репетиторством вы можете написать в мою группу в вк или в личные сообщения . Также большое количество разборов задач вы сможете найти в моей группе Репетитор IT mentor
Задача 1 . На тело массой 100 кг, лежащее на наклонной плоскости, которая образует с горизонтом угол 40°, действует горизонтальная сила 1500 Н. Определить:
1) силу, прижимающую тело к плоскости;
2) силу трения тела о плоскость;
3) ускорение, с которым поднимается тело. Коэффициент трения k = 0.10; g = 10м/с².
Задача 2 . Тело движется по горизонтальной плоскости под действием силы F, направленной под углом α к горизонту. Найти ускорение тела, если на него действует сила тяжести P, а коэффициент трения между телом и плоскостью равен k . При какой величине силы F движение будет равномерным.
Задача 3 . Два шара массами m1 = 2.5 кг и m2 = 1.5 кг движутся навстречу друг другу со скоростями v1 = 6 м/c и v2 = 2 м/c . Определить: 1) скорости шаров после удара; 2) кинетические энергии шаров до и после удара; 3)энергию, затраченную на деформацию шаров при ударе. Удар считать прямым, неупругим.
Прикрепляю очередной разбор задачи по физике по теме закона сохранения импульса. Неупругие шары после удара не восстанавливают свою первоначальную форму. Таким образом, сил, которые отталкивали бы шары друг от друга, не возникает. Это значит, что после удара шары будут двигаться вместе (слипшись) с одной и той же скоростью . Эту скорость определим по закону сохранения импульса. Так как шары двигаются по одной прямой, то можно записать импульс системы до удара и после удара. Считаем, что в задаче не действует диссипативных сил (сил трения, сопротивления воздуха и т.д.), поэтому импульс вдоль оси Ox сохраняется, тогда (смотри решение на картинке). Расписал довольно подробно, но если что-то не будет понятно, то задавайте вопросы в комментариях.
Задача 4 . Диск массой m, радиус которого R , вращается с угловой скоростью ω0 вокруг оси, перпендикулярной плоскости диска и проходящей через его центр. После прекращения действия на него силы диск останавливается в течение времени t. Определить угловое ускорение диска и тормозящий момент, действующий на него.
Задача 5 . Два тела массами m1 и m2 связаны нитью, перекинутой через блок массой M . Найти ускорение тел, считая блок сплошным диском.
Задача 6 . Шар катится по горизонтальной поверхности со скоростью v . На какую высоту h относительно своего первоначального положения поднимется шар, если он начнет вкатываться на наклонную плоскость без проскальзывания?
Задача 7 . На краю вращающейся с угловой скоростью ω0 платформе стоит человек массой m. После того, как человек перешёл в другую точку платформы, угловая скорость её вращения стала равной ω. Найти расстояние от оси вращения до человека, считая платформу диском массой M и радиусом R.
Задача 8 . Тело массой m брошено со скоростью v0 под углом α к горизонту. Найти кинетическую и потенциальную энергию тела в высшей точке траектории.
Задача 9 . На горизонтальной поверхности находятся два тела массами m1 = 10 кг и m2 =15 кг, связанные нитью. К телу массой m2 прикладывают силу F = 100 Н, направленную под углом α = 60° к горизонту. Определить ускорение грузов и силу натяжения нити, соединяющей грузы. Трением пренебречь. (обязательно указать все силы на чертеже!)
Задача 10 . На поверхности стола лежит груз массой m2 = 2 кг. На нити, прикрепленной к грузу m2 и перекинутой через невесомый блок, подвешен груз m1 = 1 кг. Коэффициент трения груза о поверхность стола 0,2. Найти ускорение грузов и силу натяжения нити.
Задача 11 . Лодка массой 200 кг и длиной 3 м стоит неподвижно в стоячей воде. Мальчик массой 40 кг в лодке переходит с носа на корму. Определите, на какое расстояние при этом сдвинется лодка.
Считаем, что в нашей задаче не действует внешних сил, поэтому по теореме о центре массы системы грузов, можно считать, что координаты центра масс сохраняются в проекциях на ось OX (по оси OY движения не происходит). Проведем ось Y(ноль оси X) через центр лодки, тогда можно записать координаты человека и лодки до перехода человека с носа на корму.
Задача 12 . Шарик массой 5 кг подвешен на нити. Нить может выдержать максимальное натяжение 100 Н. На какой минимальный угол от положения равновесия нужно отклонить нить с шариком, чтобы он оборвал нить, проходя через положение равновесия? (обязательно сделать рисунок, указать действующие силы!)
Задача 13 . Два неупругих шара массами m1=2 кг и m2=3 кг движутся со скоростями соответственно v1=8 м/c и v2=4м/с. Определить количество теплоты, выделившееся при их столкновении. Рассмотреть 2 случая: 1) шары движутся навстречу друг другу; 2) меньший шар догоняет больший.
Задача 14 . Тело совершает гармонические колебания по закону x(t) = 50⋅sin(π/3⋅t) (см). Определить полную энергию тела, если его масса 0,2 кг. Какая сила действует на тело в момент времени t = 0,5 с?
Задача 15 . Два математических маятника, длины которых отличаются на Δℓ =16 см, совершают за одно и то же время: один − 10 колебаний, другой − 6 колебаний. Определить длины маятников.
Задача 16 . Определить, сколько молей и молекул водорода содержится в объёме V = 5 м³ под давлением Р = 767 мм.рт.ст. при температуре t = 18 ° С. Какова плотность газа?
Задача 17 . Сколько кислорода выпустили из баллона ёмкостью 1 дм3, если давление его изменилось от 14 атм до 7 атм, а температура от 27°С до 7 °С ?
Задача 18 . В сосуде объёмом V = 2 м³ находится смесь m1 = 4 кг гелия и m2 = 2 кг водорода при температуре 27°С. Определить давление и молярную массу смеси газов.
Задача 19 . В сосуде содержится смесь газов: гелия массой 12 г и водорода массой 2 г, температура в сосуде 77°С, давление 20 кПа. Определить молярную массу и плотность смеси газов.
Задача 20 . Гелий массой 20 г нагрели от 100°С до 400°С, причем газу была передана теплота 30 кДж. Найти изменение внутренней энергии гелия и совершенную им работу.
Задача 21 . При изотермическом расширении от 0,1 м3 трех молей газа его давление меняется от 4,48 атм до 1 атм. Найти совершаемую при этом работу и температуру, при которой протекает процесс.
Задача 22 . Моль идеального газа, имевший первоначально температуру 300ºК, расширяется изобарически до тех пор, пока его объем не возрастет в 3 раза. Затем газ охлаждается изохорически до первоначальной температуры. Определить суммарное получаемое газом количество теплоты. Обязательно нарисовать графики процессов.
Задача 23 . Азот массой m = 1 кг занимает при температуре Т1 = 300 К объём V = 0,5 м³. В результате адиабатного сжатия давление газа увеличилось в 3 раза. Определить конечный объём газа и конечную температуру.
Задача 24 . Газ расширяется адиабатически, причём объём его увеличивается вдвое, а термодинамическая температура падает в 1,32 раза. Какое число степеней свободы i имеют молекулы этого газа?
Задача 25 . Баллон ёмкостью V = 20 л с кислородом при давлении Р = 107 Па и температуре t1 = 70 ºС нагревается до температуры t2 = 270 ºС. Какое количество теплоты при этом поглощает газ?
Задача 26 . Азот, занимающий при давлении, равном Р1 = 10⁵ Па объём V1 = 10 л, расширяется вдвое. Найти конечное давление и работу, совершённую газом в процессах: а) изобарном; б) изотермическом; в) адиабатном.
Задача 27 . Кислород, масса которого 200 г, нагревают от температуры Т1 =300 К до Т2 = 400 К. Найти изменение энтропии, если известно, что начальное и конечное давление газа одинаковы и близки к атмосферному.
Задача 28 . Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 1,5∙10⁵ Дж. Температура нагревателя Т1 = 400 К, температура холодильника Т2 = 260 К. Найти КПД машины, количество теплоты Q1, получаемое машиной за один цикл от нагревателя, и количество теплоты Q2, отдаваемое за один цикл холодильнику.
Задача 29 . Найти суммарную кинетическую энергию Е поступательного движения всех молекул, содержащихся в объёме V = 1 дм³ газа при атмосферном давлении.
Задача 30 . Чему равны средние кинетические энергии поступательного и вращательного движения молекул, содержащихся в 100 г водорода при температуре 400 К ? Чему равна полная внутренняя энергия газа?
Спасибо, что дочитали до конца, дорогие подписчики ???? Если вам интересен подобный контент и разборы задач, то оставляйте обратную связь в виде лайков и комментариев.
Еще много полезного и интересного вы сможете найти на ресурсах:
Репетитор IT mentor в VK
Источник
ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ
В данной работе предлагается определенный подход к классификации и способам решения задач на газовые законы. Такой подход позволит быстро сориентироваться в большом количестве задач на свойства газов и применить к ним те или иные приемы решения.
Основные теоретические сведения
Состояние газа характеризуется совокупностью трех физических величин или термодинамических параметров:объемом газа V, давлением Р и температурой Т. Состояние газа, при котором эти параметры остаются постоянными считают равновесным состоянием.В этом состоянии параметры газа связаны между собой уравнением состояния. Самый простой вид уравнение состояния имеет для идеального газа. Идеальным газом называют газ, молекулы которого не имеют размеров (материальные точки) и взаимодействуют друг с другом лишь при абсолютно упругих соударениях (отсутствует межмолекулярное притяжение и отталкивание). Реальные газы тем точнее подчиняются законам идеальных газов, чем меньше размеры их молекул (т.е. газ одноатомный), и чем больше он разряжен.
Уравнение состояния идеального газа или уравнение Менделеева-Клапейрона имеет вид:
— универсальная газовая постоянная
Из этого закона вытекает, что для двух произвольных состояний газа справедливо равенство, называемое уравнением Клапейрона:
Так же для идеальных газов имеют место следующие экспериментальные законы:
Закон Бойля — Мариотта:
Закон Гей-Люссака:
Закон Шарля:
Если в сосуде находится смесь нескольких газов, не вступающих друг с другом в химические реакции, то результирующее давление определяется по закону Дальтона: давление смеси равно сумме давлений, производимых каждым газом в отдельности, как если бы он один занимал весь сосуд.
Задачи, решение которых основывается на данных уравнениях, можно разделить на две группы:
§ задачи на применение уравнения Менделеева-Клапейрона.
- задачи на газовые законы.
ЗАДАЧИ НА ПРИМЕНЕНИЕ УРАВНЕНИЯ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА.
Уравнение Менделеева-Клапейрона применяют тогда, когда
I. дано только одно состояние газа изадана масса газа (или вместо массы используют количество вещества или плотность газа).
II. масса газа не задана, но она меняется, то есть утечка газа или накачка.
При решении задач на применение равнения состояния идеального газа надо помнить:
1.если дана смесь газов, то уравнение Менделеева-Клапейрона записывают для каждого компонента в отдельности.Связь между парциальными давлениями газов, входящих в смесь и результирующим давлением смеси, устанавливается законом Дальтона.
2.если газ меняет свои термодинамические параметры или массу, уравнение Менделеева-Клапейрона записывают для каждого состояния газа в отдельности и полученную систему уравнений решают относительно искомой величины.
§ Необходимо пользоваться только абсолютной температурой и сразу же переводить значения температуры по шкале Цельсия в значения по шкале Кельвина.
§ В задачах, где рассматривается движение сосуда с газом (пузырька воздуха, воздушного шара) к уравнению газового состояния добавляют уравнения механики.
§ если между газами происходит реакция, то надо составить уравнение реакции и определить продукты реакции
ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ
Определить давление кислорода в баллоне объемом V = 1 м 3 при температуре t=27 °С. Масса кислорода m = 0,2 кг.
V = 1 м 3 μ = 0,032кг/моль m = 0,2 кг t=27 °С |
V = 12 л μ =0,044кг/моль Т=300К Р =1 МПа |
V = 12 л Т=309К Р =0,7 МПа ρ = 12 кг/м 3 |
V = 12 л t=20°C Р =10 5 Па μ =0,002кг/моль |
Т2=200К ρ1 = ρ2 μ1 =0,032кг/моль μ2 =0,002кг/моль |
V=4·10 -3 м 3 m=0,012 кг t1=177°C ρ2=6·10 -6 кг /см 3 | Т1=450К 6 кг/м 3 | |||||||||
Т2 -? |
V = 25 л μ1 = 0,028кг/моль m1 = 20 г μ2 = 0,004кг/моль m2 = 2 г Т=301К | 0,025м 3 0,02кг 0,002кг | Записываем уравнение Менделеева для каждого газа и находим из него давление газов По закону Дальтона результирующее давление в сосуде равно сумме парциальных давлений газов: | ||||
Р-? |
μ1 = 0,002кг/моль m1 = 4 г μ2 = 0,032кг/моль m2 = 32 г t=7°С Р =93кПа | 0,004кг 0,032кг T=280K 93000Па | По закону Дальтона: |
ρ-? |
μа m1 = m2 = m3 = m μв μк Т |
μа m1 = m2 = m3 = m μв μк Р |