В сосуде находятся 11 шаров
Следствием теорем сложения и умножения является формула полной вероятности.
Допустим, что предполагается провести опыт, об условиях которого можно сделать n исключающих друг друга предположений (гипотез) ,, причем .
Вероятность некоторого события A, которое может появиться только вместе с одной из гипотез, вычисляется по формуле
.
Эта формула носит название формулы полной вероятности..
Получить решение
Если же событие A совершилось и необходимо найти вероятность того, что оно произошло совместно с некоторой гипотезой , то необходимо воспользоваться формулой Бейеса
.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
ПРИМЕР 13.2.30. Имеются три одинаковые на вид урны; в первой 2 белых и 3 черных шара, во второй – 4 белых и 1 черный шар, в третьей – 3 белых шара. Наугад выбирается одна из урн и из нее вынимается один шар. Найти вероятность того, что этот шар будет белым.
Решение. Опыт предполагает 3 гипотезы:
выбор первой урны; ;
выбор второй урны; ;
выбор третьей урны; .
Рассмотрим интересующее нас событие.
A — вынутый шар белый. Данное событие может произойти только с одной из гипотез .
Тогда .
ПРИМЕР 13.2.31. Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение. Можно сделать два предположения (гипотезы):
деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй) ;
деталь произведена вторым автоматом, причем .
Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом , если произведена вторым автоматом .
Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна
.
Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна
.
ПРИМЕР 13.2.32. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго – 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку (исход «обе пробоины совпали» отбрасываем, как ничтожно маловероятный).
Решение. До опыта возможны следующие гипотезы:
ни первый, ни второй стрелки не попадут;
оба стрелка попадут;
первый стрелок попадет, а второй – нет;
первый стрелок не попадет, а второй попадает.
Доопытные (априорные) вероятности гипотез:
,
,
,
.
Условные вероятности осуществленного события A — в мишени одна пробоина, при этих гипотезах равны:
.
После опыта гипотезы и становятся невозможными, а послеопытные (апостериорные) вероятности гипотез и по формуле Бейеса будут
; .
Примеры и задачи для самостоятельного решения
Решить задачи, используя формулу полной вероятности и формулу Бейеса
13.2.5.1. В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника – 0,9, для велосипедиста – 0,8 и для бегуна – 0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.
Отв.:0,86
13.2.5.2. Из урны, содержащей 5 белых и 3 черных шара, извлекается наудачу один шар и перекладывается в другую урну, которая до этого содержала 2 белых и 7 черных шаров. Цвет перекладываемого шара не фиксируется. Из второй урны наудачу извлекается один шар. Какова вероятность, что этот шар окажется белым?
Отв.:21/80
13.2.5.3. В урну, содержащую шаров, опущен белый шар, после чего наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Отв.:(n+2)/(2(n+1))
13.2.5.4. В условиях предыдущей задачи из урны был извлечен белый шар. Найти вероятность того, что в урне было белых шаров.
Отв.:2(m+1)/((n+1)(n+2))
13.2.5.5. В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом равна 0,95; для винтовки с обычным прицелом эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
Отв.:0,85
13.2.5.6. В условиях предыдущей задачи стрелок попал в мишень. Определить вероятность того, что он стрелял а) из винтовки с оптическим прицелом; б) из винтовки с обычным прицелом.
Отв.:а)57/85; б)28/85
13.2.5.7. Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса 4, из второй – 6, из третьей группы – 5 студентов. Вероятности того, что студент первой, второй и третьей группы попадает в сборную института, соответственно равны 0,9; 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную. К какой из групп вероятнее всего принадлежал этот студент?
Отв.:18/59;21/59;20/59
13.2.5.8. Из полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую извлеченную наудачу кость можно приставить к первой.
Отв.:7/18
13.2.5.9. В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.
Отв.:0,5
13.2.5.10. Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе как 3:2. Вероятность того, что будет заправляться грузовая машина равна 0,1; для легковой машины эта вероятность равна 0,2. Найти вероятность того, что наудачу выбранная машина потребует заправки.
Отв.:
13.2.5.11. В условиях предыдущей задачи к бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.
Отв.:3/7
13.2.5.12. В группе из 10 студентов, пришедших на экзамен, 3 подготовлены на отлично, 4 – хорошо, 2 – посредственно, 1 – плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент знает все 20 вопросов, хорошо подготовленный – 16 вопросов, посредственно подготовленный – 10 вопросов и двоечник – 5 вопросов. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен а) отлично; б) плохо.
Отв.:а)114/197; б)1/591
13.2.5.13. При отклонении от нормального режима работы автомата срабатывает сигнализатор С-1 с вероятностью 0,8, а сигнализатор С-11 срабатывает с вероятностью 1. Вероятности того, что автомат снабжен сигнализатором С-1 или С-11 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С-1 или С-11?
Отв.:P(С-1)= 6/11, Р(С-11)= 5/11
13.2.5.14. В каждой из трех урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.
Отв.:0,4
13.2.5.15. Имеется урн, в каждой из которых белых и черных шаров. Из первой урны во вторую перекладывается наудачу один шар, затем из второй в третью и так далее. Затем из последней урны извлекается один шар. Найти вероятность того, что он белый.
Отв.:a/(a+b)
13.2.5.16. По объекту производится три одиночных независимых выстрела. Вероятность попадания при первом выстреле равна 0,4; при втором – 0,5; при третьем – 0,7. Для вывода объекта из строя заведомо достаточно трех попаданий, при двух попаданиях он выходит из строя с вероятностью 0,6; при одном – с вероятностью 0,2. Найти вероятность того, что в результате трех выстрелов объект будет выведен из строя.
Отв.:0,458
13.2.5.17. Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 20, 15, 10. Из наудачу выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Деталь возвращают в партию и вторично из той же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.
Отв.:4/29
13.2.5.18. Три стрелка произвели залп, причем две пули поразили мишень. Найти вероятность того, что третий стрелок поразил мишень, если вероятности попадания в мишень первым, вторым и третьим стрелками соответственно равны 0,6; 0,5 и 0,4.
Отв.:10/19
13.2.5.19. Ребенок, не умеющий читать, рассыпал разрезанное на буквы слово “каракатица”. Какова вероятность того, что, потеряв одну из гласных букв, неизвестно какую именно, и взяв затем, друг за другом 5 букв он составит слово “карат”?
Отв.:1/1050
13.2.5.20. В урне 3 белых и 2 черных шара. Два игрока поочередно вынимают из урны по шару, не вкладывая их обратно. Выигрывает тот, кто раньше получит белый шар. Найти вероятность того, что выиграет первый игрок.
Отв.:0,7
13.2.5.21. Для передачи сообщения путем подачи сигналов ”точка” и ”тире” используется телеграфная система. Статистические свойства помех таковы, что искажается в среднем 2/5 сообщений ”точка” и 1/5 сообщений ”тире”. Известно, что среди передаваемых сигналов ”точка” и ”тире” встречаются в отношении 5:3. Определить вероятности того, что при приеме сигналов ”точка” и ”тире” в действительности были переданы эти сигналы.
Отв.:5/6;6/11
Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >
Источник
Из
60 вопросов, входящих в экзаменационные
билеты, студент подготовил 50. Какова
вероятность того, что вытянутый студентом
билет, содержащий два вопроса, будет
состоять из подготовленных им вопросов?
Задание
2
В
сосуде находится 11 шаров, из которых 4
цветных и 7 белых. Найти вероятность
двукратного извлечения из сосуда
цветного шара:
а)
если вынутый шар возвращается обратно
в сосуд;
б)
если вынутый шар в сосуд не возвращается.
Задание
3
Трое
рабочих обрабатывают однотипные детали.
Первый обработал за смену 20 деталей,
второй – 25, третий – 15. Вероятность
брака для первого рабочего равна 0,03,
для второго – 0,02, для третьего – 0,04. Из
общей выработки за смену наудачу взята
и проверена одна деталь, которая оказалась
бракованной. Найти вероятность того,
что она обработана вторым рабочим.
Задание
4
Вероятность
того, что деталь окажется бракованной,
равна p =
0,3. Составить ряд распределения для
случайной величины X,
представляющей собой число бракованных
деталей в выборке объема n =
4. Определить вероятность того, что в
выборке будет:
а)
ровно k =
2 бракованных деталей;
б)
не более k =
2 бракованных деталей;
в)
ни одна деталь не бракованная.
Найти
функцию распределения F(x),
математическое ожидание M(x),
дисперсию D(x).
Задание
5
Случайная
величина X задана
функцией распределения F(x):
Найти:
1)
плотность распределения вероятностей f(x);
2)
математическое ожидание;
3)
построить графики функций f(x), F(x).
Задание
6
Требуется
найти вероятность попадания в заданный
интервал (4, 8) нормально распределенной
случайно величины, если известны ее
математическое ожидание m =
5 и среднее квадратическое отклонение =
3.
Задание
7
Известны x1, x2,
…, xn –
результаты независимых наблюдений над
случайной величиной X.
50 | 52 | 140 | 138 | 165 | 165 | 210 | 165 | 170 | 142 | 150 | 168 |
103 | 63 | 68 | 88 | 85 | 105 | 110 | 112 | 131 | 125 | 126 | 135 |
148 | 92 | 99 | 102 | 110 | 115 | 118 | 125 | 121 | 118 | 130 | 133 |
141 | 182 | 199 | 205 | 127 | 132 | 135 | 98 | 105 | 119 | 115 | 125 |
124 |
1)
Сгруппировать эти данные в интервальную
таблицу, подобрав длину интервала или
воспользовавшись заданной длиной
интервала.
2)
Построить гистограмму и эмпирическую
функцию распределения.
3)
Найти несмещенные оценки для математического
ожидания и дисперсии случайной величины X.
4)
По критерию Пирсона проверить гипотезу
о том, что случайная величина Xимеет
нормальный закон распределения.
5)Найти
интервальные оценки математического
ожидания и среднего квадратического
отклонения случайной величины X с
уровнем доверия 0,99
Вариант №5
Задание
1
Среди
17 студентов группы, из которых 8 девушек,
разыгрывается 7 билетов. Какова вероятность
того, что среди обладателей билетов
окажутся 4 девушки?
Задание
2
От
группы студентов, состоящей из 14 юношей
и 11 девушек, на профсоюзную конференцию
выбирается два человека. Какова
вероятность того, что среди выбранных
будет хотя бы одна девушка?
Задание
3
Радиолампа
может принадлежать к одной из трех
партий с вероятностью P1,P2, P3,
где P1 = P2 =
0,25, P3 =
0,5. Вероятность того, что радиолампа
проработает заданное число часов, равна
соответственно 0,1; 0,2; 0,4. Определить
вероятность того, что радиолампа
проработает заданное число часов.
Задание
4
Вероятность
того, что деталь окажется бракованной,
равна p =
0,3. Составить ряд распределения для
случайной величины X,
представляющей собой число бракованных
деталей в выборке объема n =
5. Определить вероятность того, что в
выборке будет:
а)
ровно k =
4 бракованных деталей;
б)
не более k =
4 бракованных деталей;
в)
ни одна деталь не бракованная.
Найти
функцию распределения F(x),
математическое ожидание M(x),
дисперсию D(x).
Задание
5
Случайная
величина X задана
функцией распределения F(x):
Найти:
1)
плотность распределения вероятностей f(x);
2)
математическое ожидание;
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
30. Молекулярная физика (расчетная задача)
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Воздушный шар, оболочка которого имеет массу (M) = 145 кг и объём (V) = 230 м(^3), наполняется при нормальном атмосферном давлении горячим воздухом, нагретым до температуры (t) = 265 (^{circ})С. Определите максимальную температуру (t_o) окружающего воздуха, при которой шар начнёт подниматься. Оболочка шара нерастяжима и имеет в нижней части небольшое отверстие (см. рисунок).
“Демоверсия 2019”
Покажем на рисунке все силы, действущие на воздушный шар и введем вертикальную ось (y):
Рассмотрим предельный случай, когда шар вот-вот оторвется от поверхности земли, и запишем для него второй закон Ньютона: [vec{F}_text{Арх} + mvec{g} +Mvec{g} = 0] где (F_text{Арх}) — выталкивающая сила, (m) — масса горячего воздуха, (g) — ускорение свободного падения.
Спроецируем второй закон Ньютона на ось (y), направленную вертикально вверх: [; ; ; ; F_text{Арх} – mg-Mg = 0 ; ; ; ; (1)] Выталкивающая сила равна: [; ; ; ; F_text{Арх} = rho_o gV ; ; ; ; (2)] где (rho_o) — плотность холодного воздуха, (V) — объем шара.
Подставим (2) в (1) и разделим на (g): [; ; ; ; rho_o V – m – M = 0 ; ; ; ; (3)] Заметим, что (rho_o V = m_o), где (m_o) — масса холодного воздуха.
Тогда уравнение (3) будет иметь вид: [; ; ; ; m_o – m – M = 0 ; ; ; ; (4)] Чтобы найти массы горячей и холодного воздуха, запишем для них уравнение Менделеева – Клапейрона: [; ; ; ; p_oV = dfrac{m}{Mr}RT ; ; ; Rightarrow ; ; ; m = dfrac{p_o VMr}{RT} ; ; ; ; (5)] [; ; ; ; p_oV = dfrac{m_o}{Mr}RT_o ; ; ; Rightarrow ; ; ; m_o = dfrac{p_o VMr}{RT_o} ; ; ; ; (6)] где (p_o) — атмосферное давление, (Mr) — молярная масса воздуха, (R) — универсальная газовая постоянная, (T) (T_o) — абсолютные температуры горячего и холодного воздуха соответственно.
Подставим (5), (6) в (4) и выразим максимальную температуру окружающего воздуха, при которой шар начнет подниматься: [dfrac{p_o VMr}{RT_o} – dfrac{p_o VMr}{RT} – M = 0 ; ; ; / :dfrac{p_o VMr}{RT}] [dfrac{1}{T_o} – dfrac{1}{T} – dfrac{MR}{p_oVMr} = 0] [T_o=dfrac{mu p_oVT}{mu p_oV+MRT}] [T_o = dfrac{0,029text{ кг/моль}cdot10^5text{ Па}cdot230text{ м}^3cdot(265+273)text{ К}}{0,029text{ кг/моль}cdot10^5text{ Па}cdot230text{ м}^3+145text{ кг}cdot8,31text{ Дж/(моль$cdot$К)}cdot(265+273)text{ К}}approx273 text{ К}=0^{circ}text{С}]
Ответ: 0 ∘С (273 К)
В теплоизолированном сосуде в начальный момент находится одноатомный газ при температуре (T_o) = 300 К и кусочек железа массой (m) = 2 кг, нагретый до температуры (T_1) = 500 К. Начальное давление газа (p_o) = 10(^5) Па, его объем (V_o) = 10000 см(^3), удельная теплоемкость железа (c) = 0,45 кДж/(кг(cdot)К). Найдите давление газа в равновесном состоянии, считая объем газа неизменным.
Так как по условию задачи система замкнута, то внутренняя энергия ее неизменна. Поэтому равновесное состояние системы будет устанавливаться при передаче тепла газу от более горячего куска железа. По первому закону термодинамики: [Delta U=Q-A,] где (Delta U) — изменение внутренней энергии, (Q) — количество теплоты, которое подводили к телу, (A) — работа газа.
В данном случае работа газа равна нулю, так как (V=const). Уравнение теплового баланса в этом случае имеет вид: [dfrac{3}{2}nu R(T-T_o)=cm(T_1-T), hspace{7 mm} (1)] где (nu) — количество вещества газа, (R) — универсальная газовая постоянная.
Запишем уравнение Менделеева – Клапейрона: [p_oV_o=nu R T_o] Выразим отсюда: [hspace{5 mm} nu R=dfrac{p_oV_o}{T_o} hspace{7 mm} (2)] Выразим из (1) температуру газа (T): [T=dfrac{cmT_1+1,5nu RT_0}{cm+1,5nu R}hspace{5 mm} (3)] Так как объем постоянен и количество вещества газа не меняется, то по закону Шарля: [dfrac{p_1}{T_1} = dfrac{p_o}{T_o}hspace{3 mm} Rightarrow hspace{3 mm} p_1=p_ocdotdfrac{T}{T_o}hspace{5 mm} (4)] Подставим (3) в (4): [p_1=p_ocdotdfrac{cmT_1+1,5nu RT_o}{T_o(cm+1,5nu R)}hspace{5 mm} (5)] Подставим (2) в (5): [p_1=p_ocdotdfrac{cmT_1+1,5dfrac{p_oV_o}{T_o}T_o}{T_oleft(cm+1,5dfrac{p_oV_o}{T_o}right)} = p_ocdotdfrac{cmT_1+1,5p_oV_o}{T_ocm+1,5p_oV_o}] Найдем давление газа в равновесном состоянии: [p_1 = 10^5 text{ Па}cdotdfrac{450text{ Дж}/(text{кг}cdottext{К})cdot2 text{ кг} cdot500 text{ К}+1,5cdot10^5text{ Па}cdot10^{-2}text{ м$^3$}}{300text{ К}cdot450text{ Дж}/(text{кг}cdottext{К})cdot2 text{ кг}+1,5cdot10^5text{ Па}cdot10^{-2}text{ м$^3$}} approx 166 text{ кПа}]
Ответ: 166 кПа
Два литра жидкого аргона находится при температуре своего кипения -186 (^{circ})С. Какое количество теплоты нужно сообщить этому количеству аргона для того, чтобы при постоянном давлении перевести его в газ, имеющий температуру 0 (^{circ})С? Плотность жидкого аргона 1400 кг/м(^3), его удельная теплота испарения 87 кДж/кг.
Чтобы перевести аргон в газ, имеющий температуру 0 (^circ)С, сначала необходимо перевести его из жидкого состояния в газообразное, а затем нагреть до нужной температуры.
Общее количество теплоты (Q), которое необходимо для этого, будет складываться из двух составяющих: [; ; ; ; Q = Q_1 + Q_2 ; ; ; ; (1)] Количество теплоты, которое потребуется для парообразования аргона: [; ; ; ; Q_1=rm, ; ; ; ; (2)] где (m) — масса аргона, (r) — удельная теплота испарения.
Когда аргон превратится в газ, мы будем его рассматривать как идеальный одноатомный газ. Значит, для нагрева аргона до 0 (^{circ}) С запишем перове начало термодинамики: [Q_2=Delta U+A,] где (Q_2) — количество теплоты, необходимое для нагревания, (Delta U) — изменение внутренней энергии аргона, (A) — работа аргона.
[Q_2=dfrac{3}{2}nu RDelta T+p(V_2-V_1), hspace{7 mm} (3)] где (nu) — количество вещества, (Delta T) — изменение температуры, (p) — давление, (V_2) и (V_1) — конечное и начальное давлени газа, а в дальнейшнем (mu) — молярная масса газа, (rho) — плотность аргона.
По уравнению Клапейрона — Менделеева: [p(V_2-V_1)=nu R Delta T hspace{7 mm} (4)] Подставим (4) в (3): [Q_2=dfrac{3}{2}nu RDelta T+nu RDelta T] [; ; ; ; Q_2 = dfrac{5}{2}nu RDelta T ; ; ; ; (5)] Подставим (2), (5) в (1): [Q=rm+dfrac{5}{2}nu RDelta T] Количество вещества аргона можно найти по формуле: (nu = dfrac{m}{mu}), где (mu) — молярная масса аргона.
Массу аргона можно найти, зная его плотность и объем: (m = rho V).
С учетом этого: [Q=rrho V+dfrac{5}{2}cdotdfrac{rho V}{mu}RDelta T] [Q=87cdot10^3text{ кДж/кг}cdot2cdot10^{-3}text{ м$^3$}cdot1400text{ кг/м$^3$} +dfrac{5}{2}cdotdfrac{1400text{ кг/м$^3$}cdot2cdot10^{-3}text{ м$^3$}}{40cdot10^{-3}text{кг/моль}}cdot8,31cdot186^circtext{C} approx 591 text{ кДж}]
Ответ: 591 кДж
Когда легковой автомобиль едет с постоянной скоростью по горизонтальному шоссе, расход бензина составляет (mu_1) = 7 л/100 км. Каков будет расход бензина (mu_2), если этот автомобиль поедет с той же скоростью вверх по наклонному участку шоссе, образующему угол (alpha) = 0,01 рад с горизонтом? Качество дорожного покрытия на горизонтальном и наклонном участках шоссе одинаково. Масса автомобиля (M) = 1000 кг, коэффициент полезного действия двигателя (eta = 30%), удельная теплота сгорания бензина (q) = 42 МДж/кг, плотность бензина (rho) = 0,7 кг/л. При расчетах положить (sin alpha approx alpha).
По условию задачи КПД двигателя автомобиля равен 30%. Это означает, что только 30% от выделевшегося количества теплоты пойдет на совершение работы по перемещению автомомбиля: [; ; ; ; A = 0,3Q ; ; ; ; (1)] Количество теплоты, которое выделится при сгорании бензина, равно: [; ; ; ;Q = qm ; ; ; ; (2)] где (m) — масса сгоревшего бензина.
Массу бензина можно найти, зная его плотность: [; ; ; ; rho = dfrac{m}{V} ; ; ; Rightarrow ; ; ; m = rho V ; ; ; ; (3)] где (V) — объем сгоревшего бензина.
Зная расход бензина и пройденное расстояние, найдем объем израсходованного бензина: [; ; ; ;V = mu l ; ; ; ;(4)] Подставим последовательно (4), (3), (2) в (1): [; ; ; ;A = 0,3qrhomu l ; ; ; ; (5)] В то же время работа при перемещении автомобиля на расстояние (l) по определению равна: [A = Flcosalpha_o] где (F) — модуль равнодействующей всех сил, действующих на автомобиль, (alpha_o) — угол между направлением силы и направлением перемещения.
В рассматриваемых случаях и для горизонтального движения и для движения под углом к гори3 зонту (cosalpha = 1): [; ; ; ; A = Fl ; ; ; ;(6)]
Рассмотрим движение автомобиля по горизонтальному участку шоссе.
В этом случае работа, совершенная двигателем, по величине равна работе сил сопротивления.
Исходя из формул (5) и (6), получаем, что: [0,3qrhomu_1 l = Fl] Выразим отсюда силу (F): [; ; ; ; F = 0,3qrhomu_1 ; ; ; ; (7)] Рассмотрим движение автомобиля по наклонному участку шоссе той же длины.
В этом случае работа двигателя равна сумме величины работы сил сопротивления и изменения (приращения) потенциальной энергии автомобиля в поле силы тяжести: [A = Fl + Mglsinalpha] С учетом формулы (5) имеем, что: [0,3qrhomu_2 l = Fl + Mglsinalpha] Выразим отсюда силу (F): [; ; ; ; F = 0,3qrhomu_2 – Mgsinalpha ; ; ; ; (8)] Приравняем (7) и (8) с учетом того, что по условию (sinalpha approx alpha), и выразим искомый расход бензина: [0,3qrhomu_1 = 0,3qrhomu_2 – Mgsinalpha] [mu_2 = mu_1 + dfrac{Mgalpha}{0,3rho q}] [mu_2 = 7(text{ л/$100$ км}) + dfrac{1000text{ кг}cdot10text{ м/с}^2cdot0,01}{0,3cdot0,7text{ кг/л}cdot 42cdot10^6text{ Дж/кг}}cdot10^5 approx 8,13text{ л/100 км}]
Ответ: 8,13 л/100 км
Мальчик решил подняться в воздух на воздушных шарах с гелием. Известно, что мальчик весит 40 кг, а на улице нормальное атмосферное давление и температура 27 (^{circ})С. Учитывая, что объем одного шара составляет 10 литров, найдите, сколько потребуется шаров для такого путешествия. Массой оболочки шаров и объемом мальчика пренебречь.
Cила тяжести, действующая на систему, уравновешивается силой Архимеда.
Рассмотрим предельный случай, когда мальчик на воздушных шарах вот-вот оторвется от поверхности земли, и запишем второй закон Ньютона для данной системы: [vec{F}_text{Арх} + Mvec{g} + nmvec{g} = 0] где (M) — масса мальчика, (m) — масса гелия в одном шарике, (n) — количество шаров, (g) — ускорение свободного падения.
Спроецируем второй закон Ньютона на вертикальную ось, направленную вверх: [F_text{Арх} – Mg – nmg = 0] [; ; ; ; F_text{Арх} = Mg + nmg ; ; ; ; (1)] Сила Архимеда равна: [F_text{Арх} = rho_o gnV] где (rho_o) — плотность воздуха, (V) — объем одного шарика.
Подставим (2) в (1): [rho_o gnV = Mg + nmg] [; ; ; ; rho_o nV = M + nm ; ; ; ; (3)] Запишем уравнение Менделеева-Клапейрона для воздуха: [; ; ; ; p_oV_o = dfrac{m_o}{mu_o} RT_o ; ; ; ; (4)] где (p_o) — атмосферное давление, (V_o) — объем, занимаемый воздухом, (m_o) — (mu_o) — масса воздуха, (R) — универсальная газовая постоянная, (T_o) — абсолютная температура воздуха.
Плотность воздуха равна: [; ; ; ; rho_o = dfrac{m_o}{V_o} ; ; ; ; (5)] Подставим (5) в (4) и выразим плотность воздуха: [; ; ; ; p_o = dfrac{rho_o}{mu_o}RT_o ; ; ; Rightarrow ; ; ; rho_o = dfrac{p_omu_o}{RT_o} ; ; ; ; (6)] Найдем массу гелия в одном шарике из уравнения Менделеева-Клапейрона: [; ; ; ; p_o V = dfrac{m}{mu}RT_o ; ; ; Rightarrow ; ; ; m = dfrac{p_o Vmu}{RT_o} ; ; ; ; (7)] где (m) — масса гелия, (mu) — молярная масса гелия.
Подставим (6), (7) в (3) и выразим количество шариков: [M + ndfrac{p_o Vmu}{RT_o} = dfrac{p_o mu_o}{RT_o}nV] [n = dfrac{MRT_o}{p_o V(mu_o – mu)}] [n = dfrac{40text{ кг}cdot8,31text{Дж/(моль$cdot$К)}cdot300text{ К}}{10^5text{ Па}cdot10^{-2}text{ м}^3cdot(29-4)cdot10^{-3} text{кг/моль}}=3989]
Ответ: 3989
Воздушный шар, оболочка которого имеет массу (M) = 145 кг и объём (V) = 230 м(^3), наполняется при нормальном атмосферном давлении горячим воздухом, нагретым до температуры (t) = 265 (^{circ})С. Определите максимальную температуру (t_o) окружающего воздуха, при которой шар начнёт подниматься. Оболочка шара нерастяжима и имеет в нижней части небольшое отверстие (см. рисунок).
Покажем на рисунке все силы, действущие на воздушный шар и введем вертикальную ось (y):
Рассмотрим предельный случай, когда шар вот-вот оторвется от поверхности земли, и запишем для него второй закон Ньютона: [vec{F}_text{Арх} + mvec{g} +Mvec{g} = 0] где (F_text{Арх}) — выталкивающая сила, (m) — масса горячего воздуха, (g) — ускорение свободного падения.
Спроецируем второй закон Ньютона на ось (y), направленную вертикально вверх: [; ; ; ; F_text{Арх} – mg-Mg = 0 ; ; ; ; (1)] Выталкивающая сила равна: [; ; ; ; F_text{Арх} = rho_o gV ; ; ; ; (2)] где (rho_o) — плотность холодного воздуха, (V) — объем шара.
Подставим (2) в (1) и разделим на (g): [; ; ; ; rho_o V – m – M = 0 ; ; ; ; (3)] Заметим, что (rho_o V = m_o), где (m_o) — масса холодного воздуха.
Тогда уравнение (3) будет иметь вид: [; ; ; ; m_o – m – M = 0 ; ; ; ; (4)] Чтобы найти массы горячей и холодного воздуха, запишем для них уравнение Менделеева – Клапейрона: [; ; ; ; p_oV = dfrac{m}{Mr}RT ; ; ; Rightarrow ; ; ; m = dfrac{p_o VMr}{RT} ; ; ; ; (5)] [; ; ; ; p_oV = dfrac{m_o}{Mr}RT_o ; ; ; Rightarrow ; ; ; m_o = dfrac{p_o VMr}{RT_o} ; ; ; ; (6)] где (p_o) — атмосферное давление, (Mr) — молярная масса воздуха, (R) — универсальная газовая постоянная, (T) (T_o) — абсолютные температуры горячего и холодного воздуха соответственно.
Подставим (5), (6) в (4) и выразим максимальную температуру окружающего воздуха, при которой шар начнет подниматься: [dfrac{p_o VMr}{RT_o} – dfrac{p_o VMr}{RT} – M = 0 ; ; ; / :dfrac{p_o VMr}{RT}] [dfrac{1}{T_o} – dfrac{1}{T} – dfrac{MR}{p_oVMr} = 0] [T_o=dfrac{mu p_oVT}{mu p_oV+MRT}] [T_o = dfrac{0,029text{ кг/моль}cdot10^5text{ Па}cdot230text{ м}^3cdot(265+273)text{ К}}{0,029text{ кг/моль}cdot10^5text{ Па}cdot230text{ м}^3+145text{ кг}cdot8,31text{ Дж/(моль$cdot$К)}cdot(265+273)text{ К}}approx273 text{ К}=0^{circ}text{С}]
Ответ: 0 ∘С (273 К)
Сосуд объемом (V) л, содержащий (nu) моль воздуха при давлении (p) Па и температуре (T_o) К, сверху заткнут пробкой массой (m) кг с площадью (S) см(^2). Найдите на какую величину надо увеличить температуру газа, чтобы пробка вылетела из сосуда, если коэффицент трения пробки о стенки сосуда равен (mu), а атмосферное давление равно (p_o).
Запишем 2 закон Ньютона для предельного случая, когда пробка вот-вот вылетит из сосуда: [; ; ; ; F = F_text{тяж}+F_text{тр}+F_text{атм}, ; ; ; ; ; (1)] где (F) — сила, с которой газ воздействует на пробку, (F_text{тяж}) — сила тяжести, действующая на пробку , (F_text{тр}) — сила трения пробки о стенки сосуда, (F_text{атм}) — сила давления атмосферы на пробку.
Сила, с которой газ воздействует на пробку, равна: [; ; ; ; p=dfrac{F}{S} ; ; ; Rightarrow ; ; ; F=pS ; ; ; ; (2)] По уравнению Клайперона – Менделеева: [; ; ; ; pV=nu R T ; ; ; Rightarrow ; ; ; p=dfrac{nu R T}{V},; ; ; ; (3)] где (T) — абсолютная температура газа, (Delta T) — изменение температуры газа.
Подставим (3) в (2): [; ; ; ; F = dfrac{nu R T}{V}S ; ; ; ; (4)] Сила давления атмосферы на пробку равна: [; ; ; ; F_text{атм}=p_oS ; ; ; ; (5)] Силу тяжести и силу трения найдем по формулам: [; ; ; ; F_text{тяж}=mg ; ; ; (6) ; ; ; ; ; ; ; ; ; ; ; F_text{тр}=mu mg, ; ; ; (7)] где (g) — ускорение свободного падения.
Подставим (4), (5), (6), (7) в (1) и получим: [; ; ; ; S dfrac{nu R T}{V} = mg +mu m g +p_o S ; ; ; ; (8)] Конечная температура газа равна: [; ; ; ; T=T_o + Delta T ; ; ; ; (9)] Подставим (9) в (8) и выразим (Delta T), на которую нужно увеличить температуру газа, чтобы пробка вылетела: [S dfrac{nu R (T_o + Delta T)}{V} = mg +mu m g +p_o S] [Delta T =dfrac{V}{nu R}left(dfrac{mg}{S}+dfrac{mu m g }{S}+p_oright)-T_o]
Ответ: $Delta T =dfrac{V}{nu R}left(dfrac{mg}{S}+dfrac{mu m g }{S}+p_oright)-T_o$
Источник