В сосуде неизменного объема повысили давление

В сосуде неизменного объема повысили давление thumbnail

Вначале оба идеальных газа в сосуде находились в полностью равных условиях. Полное количество вещества было равно 2 моля. Когда выпустили половину содержимого сосуда, и количество первого газа, и количество второго газа уменьшилось, в сосуде остался 1 моль газов. Затем в сосуд добавили еще 1 моль первого газа. Количество вещества вновь стало равно 2 моля. Следовательно, давление смеси газов в сосуде не изменилось, поскольку оно определяется только полной концентрацией молекул в сосуде. Парциальные давления газов, напротив, изменились. Первого газа стало больше, чем 1 моль, значит, его парциальное давление увеличилось. Второго газа стало меньше, чем 1 моль: парциальное давление второго газа уменьшилось.

«давление смеси газов в сосуде не изменилось, поскольку оно определяется только полной концентрацией молекул в сосуде»

мы же не знаем пропорции и концентрации газов, как можно тогда считать что давление не изменилось?

Отношение между получившимися концентрациями знать и не нужно. Существенно только, что температура остается неизменной.

Смотрите. Обозначим объем сосуда через

В сосуде неизменного объема находится идеальный газ. Часть газа выпускали из сосуда так, что давление оставалось неизменным. Как изменились при этом температура газа, оставшегося в сосуде, его плотность и количество вещества?

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Поскольку из сосуда выпускают часть газа, количество вещества в сосуде уменьшается. При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа:

Объясните пожалйуста,почему температура увеличивается,ведь давление остается постоянным

Если температура будет увеличиваться, тогда получится, что правая часть(URT) уравнения Клапейрона-Менделлева больше левой(PV), а они должны быть равны.

По условию: «Часть газа вы­пус­ка­ли из со­су­да».

(При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа: p=mV)

По условию: «В со­су­де не­из­мен­но­го объ­е­ма на­хо­дит­ся иде­аль­ный газ».

В сосуде неизменного объема находилась при комнатной температуре смесь двух идеальных газов, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль первого газа. Как изменились в результате парци-альные давления газов и их суммарное давление, если температура газов в сосуде поддерживалась неизменной? Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Парциальное давление

первого газа

Парциальное давление

второго газа

Давление смеси газов

Вначале оба идеальных газа в сосуде находились в полностью равных условиях. Полное количество вещества было равно 2 моля. Когда выпустили половину содержимого сосуда, и количество первого газа, и количество второго газа уменьшилось, в сосуде остался 1 моль газов. Затем в сосуд добавили еще 1 моль первого газа. Количество вещества вновь стало равно 2 моля. Следовательно, давление смеси газов в сосуде не изменилось, поскольку оно определяется только полной концентрацией молекул в сосуде. Парциальные давления газов, напротив, изменились. Первого газа стало больше, чем 1 моль, значит, его парциальное давление увеличилось. Второго газа стало меньше, чем 1 моль: парциальное давление второго газа уменьшилось.

«давление смеси газов в сосуде не изменилось, поскольку оно определяется только полной концентрацией молекул в сосуде»

мы же не знаем пропорции и концентрации газов, как можно тогда считать что давление не изменилось?

Отношение между получившимися концентрациями знать и не нужно. Существенно только, что температура остается неизменной.

Смотрите. Обозначим объем сосуда через

. Изначально обоих газов по 1 моль, то есть число молекул каждого газа равно числу Авагадро .

То есть парциальные давления равны:

, . Полное давление:

После выпускания газов,число молекул первого и второго газов уменьшилось до

и соответственно. При этом , поскольку всего в сосуде остался 1 моль. Теперь добавляют 1 моль первого газа, следовательно, число молекул становится и . Теперь . Тогда парциальное давление первого газа после всех операций: .

Парциальное давление второго газа:

.

Новое общее давление:

.

спасибо большое, тоесть

В сосуде неизменного объема находится идеальный газ. Если часть газа выпустить из сосуда при постоянной температуре, то как изменятся величины: давление газа, его плотность и количество вещества в сосуде?

Для каждой величины определите соответствующий характер ее изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Давление газаПлотность газаКоличество вещества

Поскольку из сосуда выпускают часть газа, количество вещества в сосуде уменьшается. При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа:

Макроскопические параметры газа не независимы, они связаны уравнением Клапейрона – Менделеева: Согласно условию, температура содержимого газа не изменяется, объем сосуда также постоянен, следовательно, давление в сосуде после выпускания части газа уменьшается.

Немного не поняла с доказательством изменения давления газа.

Я исходила из объединенного газового закона, где при постоянных объеме и температуре, выходит, что давление тоже неизменно.. Помогите разрешить этот казус)

Не очень понимаю, что Вы называете объединенным газовым законом. Если

, то ответ на Ваш вопрос очень прост. Этот закон попросту нельзя здесь использовать, как и любой другой газовый закон (Бойля-Мариотта, Гей-Люссака, Шарля), поскольку они верны только для постоянного количества вещества,а у нас количество вещества изменяется.

Закон

, на самом деле, ведь просто следствие уравнения Клапейрона-Менделеева в случае, если . Действительно, . Таким образом, данный закон неформально можно называть законом «изоколичества вещества». А закон Шарля – это «изобрано/изоколичественный» закон.

В сосуде неизменного объема при комнатной температуре находилась смесь водорода и гелия, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль водорода. Считая газы идеальными, а их температуру постоянной, выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных экспериментальных исследований, и укажите их номера.

1) Парциальное давление водорода уменьшилось.

2) Давление смеси газов в сосуде не изменилось.

3) Концентрация гелия увеличилась.

4) В начале опыта концентрации газов были одинаковые.

5) В начале опыта массы газов были одинаковые.

Вначале сосуде находилась смесь 1 моль водорода и 1 моль гелия. После выпускания половины содержимого сосуда в нём стало 0,5 моль водорода и 0,5 моль гелия. Затем в сосуд добавили 1 моль водорода, в нём стало 1,5 моль водорода и 0,5 моль гелия. Объём сосуда и температура по условию постоянны.

1) Количество водорода увеличилось, значит, его парциальное давление увеличилось.

2) Общее количество вещества одинаково (2 моль), давление смеси газов в сосуде не изменилось.

3) Количество гелия уменьшилось, значит, его концентрация уменьшилась.

4) В начале опыта количество вещества водорода и гелия было одинаковым, концентрации газов были одинаковые.

5) Молярные массы водорода и гелия разные, при одинаковом количестве вещества массы газов были разными.

Верны второе и четвёртое утверждения.

В сосуде неизменного объема при комнатной температуре находилась смесь водорода и гелия, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль гелия. Считая газы идеальными, а их температуру постоянной, выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных экспериментальных исследований, и укажите их номера.

1) Парциальное давление водорода уменьшилось.

2) Давление смеси газов в сосуде уменьшилось.

3) Концентрация водорода увеличилась.

4) В начале опыта концентрации водорода была больше, чем концентрация гелия.

5) В начале опыта масса гелия была больше, чем масса водорода.

Вначале сосуде находилась смесь 1 моль водорода и 1 моль гелия. После выпускания половины содержимого сосуда в нём стало 0,5 моль водорода и 0,5 моль гелия. Затем в сосуд добавили 1 моль гелия, в нём стало 0,5 моль водорода и 1,5 моль гелия. Объём сосуда и температура по условию постоянны.

1) Количество водорода уменьшилось, значит, его парциальное давление уменьшилось.

2) Общее количество вещества одинаково (2 моль), давление смеси газов в сосуде не изменилось.

3) Количество водорода уменьшилось, значит, его концентрация уменьшилась.

4) В начале опыта количество вещества водорода и гелия было одинаковым, концентрации газов были одинаковые.

5) Молярная масса гелия больше, чем у водорода, при одинаковом количестве вещества масса гелия больше.

Верны первое и пятое утверждения.

В сосуде неизменного объёма находится идеальный газ. Во сколько раз нужно увеличить количество газа в сосуде, чтобы после уменьшения абсолютной температуры газа в 2 раза его давление стало вдвое больше начального?

Из уравнения Менделеева-Клапейрона:

Следовательно, для увеличения давления в два раза после уменьшения в два раза температуры газа нужно увеличить количество газа в сосуде в 4 раза.

В сосуде неизменного объёма находится идеальный газ. Во сколько раз нужно уменьшить количество вещества газа в сосуде, чтобы после увеличения абсолютной температуры газа в 2 раза его давление стало вдвое меньше начального?

Из уравнения Менделеева-Клапейрона:

Следовательно, для уменьшения давления в два раза после увеличения в два раза температуры газа нужно уменьшить количество газа в сосуде в 4 раза.

В сосуде неизменного объёма находится разреженный газ в количестве 3 моль. Во сколько раз уменьшится давление газа в сосуде, если выпустить из него 1 моль газа, а абсолютную температуру газа уменьшить в 2 раза?

Согласно уравнению Менделеева – Клапейрона давление разреженного газа равно

При уменьшении количества вещества газа на треть и абсолютной температуры в 2 раза давление уменьшится в 3 раза.

Среднеквадратичная скорость молекул идеального одноатомного газа, заполняющего закрытый сосуд, равна

Как и на сколько изменится среднеквадратичная скорость молекул этого газа, если давление в сосуде вследствие охлаждения газа уменьшить на 19%?

Среднеквадратичная скорость молекул идеального газа при температуре

равна где – постоянная Больцмана, – масса одной молекулы этого газа. Учитывая соотношение , где – универсальная газовая постоянная, – молярная масса газа, – постоянная Авогадро, выразим среднеквадратичную скорость молекул в виде

Согласно уравнению Клапейрона – Менделеева

где р – давление газа, V – объем сосуда,

– масса газа. Из этих выражений следует, что Тогда начальная и конечная среднеквадратичная скорости равны и здесь учтено, что изменение давления в сосуде происходит при неизменном объёме (сосуд закрытый).

Согласно условию задачи,

Следовательно,

Отсюда следует, что изменение среднеквадратичной скорости молекул

Таким образом, среднеквадратичная скорость молекул газа уменьшится на 45 м/с.

Ответ: среднеквадратичная скорость молекул газа уменьшится на 45 м/с.

Приведём другое решение.

Запишем основное уравнение МКТ, для первого и второго состояний газа:

Объём сосуда и число молекул в нём не изменяются, следовательно, концентрация остаётся неизменной. Получаем:

Откуда

Ответ:

Источник

➤ Adblock

detector

Источник

12. МКТ и Термодинамика (изменение физических величин в процессах, установление соответствия)

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

В вертикальном цилиндрическом сосуде под подвижным поршнем массой (M), способным скользить без трения вдоль стенок сосуда, находится идеальный газ. Газу сообщают некоторое количество теплоты. Как в этом процессе изменяются следующие физические величины: концентрация молекул и средняя кинетическая энергия хаотического движения молекул газа?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.твете могут повторяться. [begin{array}{|c|c|c|} hline text{ Концентрация молекул газа } &text{ Средняя кинетическая энергия }\ & text{ хаотического } text{ движения молекул газа} \ hline &\ hline end{array}]

Концентрация – 2

1) Концентрация молекул: [n=dfrac{N}{V},] где (N) – количество молекул газа в объеме (V).

Объем в данном процессе увеличивается, а количество молекул не меняется. Следовательно, концентрация молекул газа уменьшается.

Средняя кинетическая энергия хаотического движения молекул газа – 1

2) Среднюю кинетическую энергию можно найти по формуле: [E_{k}=dfrac{3}{2}kT,] где (k) – постоянная Больцмана, (T) – абсолютная температура газа.

Так как температура увеличивается, то (E_k) также увеличивается.

Ответ: 21

В цилиндрическом сосуде под поршнем находится газ. Поршень не закреплён и может перемещаться в сосуде без трения (см. рисунок). В сосуд закачивается ещё такое же количество газа при неизменной температуре. Как изменится в результате этого давление газа и концентрация его молекул?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться. [begin{array}{|c|c|} hline text{ Давление газа}&text{ Концентрация молекул}\ hline &\ hline end{array}]

Давление – 3

1) Так как поршень подвижный (не закреплен), то процесс будет происходить при постоянном давлении.

Концентрация – 3

2) Давление газа связано с его концентрацией: [p=nkT,] где (k) – постоянная Больцмана, (n) – концентрация молекул газа, (T) – абсолютная температура газа.

Выразим концентрацию газа: [n=dfrac{p}{kT}] Так как давление и температура постоянны, то концентрация не изменится.

Ответ: 33

В сосуде неизменного объема находится идеальный газ. Часть газа выпускали из сосуда так, что давление оставалось неизменным. Как изменились при этом температура газа, оставшегося в сосуде, и его плотность ?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться. [begin{array}{|c|c|c|} hline text{ Температура газа} &text{ Плотность газа }\ hline &\ hline end{array}]

Температура газа – 1

1)Уравнение состояния газа: [pV=nu RT,] где (p) – давление газа, (V) – объем, занимаемый газом, (nu) – количество вещестав, (R) – универасальная газовая постоянная, (T) – абсолютная температура.

Выразим температуру газа: [T=dfrac{pV}{nu R}] При уменьшении количества газа ((V=const), (p=const)) его температура увеличится.

Плотность – 2

2) Плотность газа: [rho=dfrac{m}{V},] где (m) – масса газа.

Так как объем газа не изменяется, а его масса уменьшается, то плотность газа также уменьшается.

Ответ: 12

Идеальный газ совершает два процесса. Процесс 1 – газ сначала охлаждался при постоянном давлении, потом его давление уменьшалось при постоянном объеме, затем при постоянной температуре объем газа уменьшался до первоначального значения. Процесс 2 – температура газа уменьшалась при постоянном давлении, потом давление газа увеличивалось при постоянном объеме, а затем температура газа оставалась неизменной при уменьшении давления. Какие из графиков в координатных осях р – T соответствует этим изменениям состояния газа?

[begin{array}{|c|c|} hline text{ПРОЦЕССЫ}&text{ГРАФИКИ}\ hline 1& 1)\ &2)\ hline 2&3)\ &4)\ hline end{array}]

Распишем, как должны выглядеть процессы в координатах p-T. Процесс 1 – газ сначала охлаждался при постоянном давлении – горизонтальная прямая , потом его давление уменьшалось при постоянном объеме – прямая, проходящая через начало координат, затем при постоянной температуре объем газа уменьшался до первоначального значения – вертикальная прямая. Нам подходит вариант 2, а вариант 3 не подходит так как газ по условию вернулся в первоначальное положение. Процесс 2 – температура газа уменьшалась при постоянном давлении – горизонтальная прямая, потом давление газа увеличивалось при постоянном объеме – прямая, проходящая через начало координат, а затем температура газа оставалась неизменной при уменьшении давления – вертикальная прямая. Нам подходит вариант 3.

Ответ: 23

Идеальный газ совершает два процесса. Процесс 1 – газ сначала нагревался при постоянном давлении, потом его давление уменьшалось при постоянном объеме, затем при постоянной температуре давление газа увеличилось до первоначального значения. Процесс 2 – газ расширяется таким образом, что давление обратно пропорционально температуре, затем давление газа увеличивалось при постоянной температуре, а в конце температура газа уменьшалось при уменьшении объема газа. Какие из графиков в координатных осях р – Т соответствует этим изменениям состояния газа?

[begin{array}{|c|c|} hline text{ПРОЦЕССЫ}&text{ГРАФИКИ}\ hline 1& 1)\ &2)\ hline 2&3)\ &4)\ hline end{array}]

Распишем, как должны выглядеть процессы в координатах p-T. Процесс 1 – газ сначала нагревался при постоянном давлении – горизонтальная прямая, потом его давление уменьшалось при постоянном объеме – прямая, направленная под углом к осям, затем при постоянной температуре давление газа увеличилось до первоначального значения – вертикальня прямая.График – 1. Процесс 2 – газ расширяется таким образом, что давление обратно пропорционально температуре – гипербола, затем давление газа увеличивалось при постоянной температуре – вертикальная прямая, а в конце температура газа уменьшалось при уменьшении объема газа – горизонтальная прямая. График – 4.

Ответ: 14

В цилиндрическом сосуде под закрепленным поршнем находится газ. Поршень немного выдвигают из сосуда и снова закрепляют. Как при этом изменяется концентрация молекул газа (n) и давление газа (p), если средняя квадратичная скорость движения молекул (overline{v_0}) остается неизменной?

Для каждой величины определите соответствующий характер изменения:

1) увеличилась;

2) уменьшилась;

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

[begin{array}{|c|c|} hline text{Концентрация}&text{Давление}\ text{молекул газа}&text{газа}\ hline & \ hline end{array}]

Запишем основное уравнение МКТ: [~~~~~~~~~~~~~~~p=dfrac{1}{3}nm_0overline{v_0^2},~~~~~~~(1)] где (m_0) – масса одной молекулы газа. [n=dfrac{N}{V},] где (V) – объем газа.

Значит (nsimdfrac{1}{V}).

По условию объем увеличивается, т.к. поршень выдвигают из сосуда. Значит, концентрация молекул газа уменьшается.

Из (1) получаем, что (psim n), значит давление газа также уменьшается.

Ответ: 22

В сосуде под закрепленным поршнем находится газ. Как изменятся его плотность (rho) и давление (p), если среднюю квадратичную скорость молекул газа (overline{v_0}) увеличить?

Для каждой величины определите соответствующий характер изменения:

1) увеличилась;

2) уменьшилась;

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

[begin{array}{|c|c|} hline text{Плотность}&text{Давление}\ text{газа}&text{газа}\ hline & \ hline end{array}]

Запишем основное уравнение МКТ: [~~~~~~~~~~~~~~~p=dfrac{1}{3}rhooverline{v_0^2}~~~~~~~(1)] Известно, что (rho=dfrac{m}{V}). В нашем случае (m) и (V) – не изменяющиеся величины, значит (rho=const).

Из (1) получаем, что (psim overline{v_0^2}). Значит, если (overline{v_0}) увеличивается, то и (p) увеличивается.

Ответ: 31

Максим Олегович

????№16 из ЕГЭ 2014 по математике за 1 минуту. Стоит ли ботать №16 за 1,5 месяца до ЕГЭ?

‼️Премьера в 17:00‼️ Ставь напоминание Ссылка на видео????????

Математика: №16 из ЕГЭ 2014 по математике за 1 минуту!

Источник

Читайте также:  Лекарственные средства от спазмов сосудов