В сосуде под давлением 8мпа

Random converter

  • Калькуляторы
  • Термодинамика — теплота

Калькулятор закона состояния идеального газа (давление–объем–температура–количество)

Illustration

Калькулятор закона состояния идеального газа определяет одну из четырех величин, входящих в уравнение состояния (давление, объем, температура или количество), если известны три другие величины.

Пример: Рассчитать давление в паскалях в 70-литровом баке работающего на метане автомобиля, если в нем хранится 800 молей метана при 30 °С.

Еще несколько примеров решения задач о состоянии идеального газа под приводится калькулятором.

Выберите неизвестную величину для решения уравнения состояния идеального газа:

PVTn

Абсолютное давление

P

Объем

V

Температура

T

ИЛИ

Поделиться ссылкой на этот калькулятор, включая входные параметры

Для расчета выберите неизвестную величину и введите три известные величины из четырех имеющихся в уравнении состояния газа (давление, объем, температура, количество). Четвертая величина будет рассчитана после нажатия на кнопку Рассчитать. Количество можно ввести в молях или указать молярную массу и массу газа. Для определения молярной массы любого газа можно использовать калькулятор молярной массы. Если нужно определить молярную массу смеси газов, например, сухого воздуха, нужно определить молярные массы каждого газа и умножить их на процентное содержание по массе каждого газа в воздухе.

Примеры решения задач по уравнению состояния идеального газа (уравнению Менделеева — Клапейрона)

Задача 1: Плотность воздуха при нормальных условиях (температура 0 °С и атмосферное абсолютное давление 100 кПа) составляет 1,28 кг/м³. Определить среднюю молярную массу воздуха.

Решение: Поскольку плотность воздуха задана, это означает, что в калькулятор можно ввести массу одного кубического метра воздуха, равную 1,28 кг. Введите в калькулятор данные:

  • Выберите n (Количество в молях) в селекторе Выберите неизвестную величину.
  • Введите абсолютное давление P = 100 кПа.
  • Введите объем V = 1 м³.
  • Введите температуру T = 0 °C.
  • Нажмите кнопку Рассчитать.
  • Калькулятор покажет количество молей в 1 м3 воздуха.
  • Введите массу воздуха m = 1,28 кг и нажмите кнопку Рассчитать.
  • Калькулятор рассчитает молярную массу воздуха M = 0,029 кг/моль

Задача 2: Молярная масса газа кислорода (O₂) M = 32 г/моль. Определить абсолютную температуру 128 г. кислорода, находящегося в 10-литровом сосуде под давлением P = 3 МПа.

Решение: Нажмите кнопку Reset и введите в калькулятор данные задачи:

  • Выберите T (Температура) в селекторе Выберите неизвестную величину.
  • Введите молярную массу кислорода N = 32 г/моль.
  • Введите массу кислорода m = 128 г.
  • Калькулятор рассчитает количество кислорода в молях.
  • Введите объем V = 4 л и давление P = 3 МПа.
  • Нажмите кнопку Рассчитать.
  • Считайте температуру в кельвинах.

Задача 3: В сосуде высокого давления находится газ под давлением P = 0.5 МПа при температуре T = 15 °С. Объем газа V = 5 л. Рассчитать объем этой массы газа при нормальных условиях (P = 100 кПа, T = 0 °С).

Решение: Нажмите кнопку Reset и введите в калькулятор данные задачи:

  • Выберите T (Температура) в селекторе Выберите неизвестную величину.
  • Введите давление P = 500 кПа.
  • Введите температуру T = 15 °C.
  • Введите объем V = 5 л.
  • Нажмите кнопку Рассчитать.
  • Калькулятор рассчитает количество в молях, которое будет использовано в следующем шаге.
  • Выберите Объем в селекторе Выберите неизвестную величину.
  • Введите температуру и давление P = 100 kPa, T = 0 °C (нормальные условия) и нажмите кнопку Рассчитать.
  • Калькулятор рассчитает новый объем газа V = 23.69 л при нормальных условиях.

Задача 4: Рассчитать давление в паскалях в 70-литровом баке работающего на метане автомобиля, если в нем хранится 12,8 кг метана (молярная масса 16 г/моль) при 30 °С.

Определения и формулы

Идеальный газ

Идеальный газ — теоретическая модель, в которой газ представляется в виде множества свободно движущихся частиц бесконечно малого размера, которые взаимодействуют друг с другом абсолютно упруго, то есть при столкновении двух частиц их кинетическая энергия не изменяется и не превращается ни в какую другую форму энергию, например, в потенциальную энергию или в тепло. Считается, что суммарный размер частиц настолько мал, что занимаемый ими объем в сосуде пренебрежимо мал. Эта теоретическая модель полезна, так как она упрощает многие расчеты, а также в связи с тем, что идеальный газ подчиняется законам классической механики. Идеальный газ можно представить себе в виде множества абсолютно твердых сфер, которые только сталкиваются друг с другом и больше никак не взаимодействуют.

В обычных условиях, например, при стандартных условиях (при температуре 273,15 К и давлении в 1 стандартную атмосферу) большинство реальных газов ведут себя как идеальный газ. В общем случае, газ ведет себя как идеальный при низком давлении и высокой температуре, когда расстояния между молекулами газа относительно велики. В этих условиях потенциальная энергия вследствие действия межмолекулярных сил намного меньше кинетической энергии частиц. Размер молекул также незначителен по сравнению с расстоянием между ними. Идеальная модель не работает при низких температурах и высоких давлениях, а также для тяжелых газов. При понижении температуры и повышении давления реальный газ может стать жидкостью или даже перейти в твердое состояние, то есть может произойти фазовый переход. В то же время, модель идеального газа не допускает жидкого или твердого состояния.

Закон идеального газа

Идеальный газ, как и любой другой газ, можно охарактеризовать четырьмя переменными и одной константой, а именно:

  • давление (P),
  • объем (V),
  • количество в молях (n),
  • температура (T), and
  • универсальная газовая постоянная (R)

Эти четыре переменные и одна константа объединены в приведенном ниже уравнении, которое называется уравнением состояния идеального газа:

Это уравнение также известно под названием закона идеального газа и уравнения Менделеева — Клапейрона или уравнения Клапейрона, так как уравнение было впервые выведено в 1834 г. французским инженером Эмилем Клапейроном (1799–1864). О вкладе Д. И. Менделеева — чуть ниже. В этом уравнении:

  • Pабсолютное давление, измеряемое в СИ в паскалях (Па),
  • V — объем, измеряемый в СИ в кубических метрах (м³),
  • n — количество вещества (газа) в молях (сокращение моль). Один моль любого вещества в граммах численно равен средней массы одной молекулы в соединении, выраженной в атомных единицах массы. Например, один моль кислорода с атомной массой 16 соответствует 16 граммам. Один моль идеального газа при стандартных условиях занимает 22,4 литра.
  • Tабсолютная температура.
  • Rуниверсальная газовая постоянная, являющаяся физическим коэффициентом пропорциональности уравнения состояния идеального газа.

Приведенное выше уравнение показывает, что при нулевой абсолютной температуре получается нулевой объем. Однако это не означает, что объем реального газа действительно исчезает. При очень низких температурах все газы становятся жидкостями и уравнение идеального газа к ним неприменимо.

Универсальная газовая постоянная соответствует работе, выполненной при расширении одного моля идеального газа при нагревании на 1 К при постоянном давлении. Размерность постоянной — работа на количество вещества на температуру. Постоянная в точности равна 8,31446261815324 Дж⋅К⁻¹⋅моль⁻¹. Универсальная газовая постоянная также определяется как произведение числа Авогадро NA и постоянной Больцмана k:

Входящая в уравнение состояния идеального газа универсальная газовая постоянная была предложена и введена в уравнение Дмитрием Менделеевым в 1877 г. Поэтому уравнение состояния идеального газа в литературе на русском языке и ее переводах на другие языки, называется уравнением Менделеева — Клапейрона.

Количество газа в молях часто бывает удобно заменить массой газа. Количество газа в молях n, его масса m в граммах и молярная масса M в граммах на моль связаны формулой:

Читайте также:  Редкое заболевания сосудов у детей

Заменяя в уравнении состояния идеального газа n на m/M, имеем:

Для определения молярной массы элемента, его относительная атомная масса умножается на коэффициент молярной массы в кг/моль

Например, молярная масса кислорода в единицах системы СИ

Если ввести в уравнение состояния идеального газа плотность ρ = m/V, мы получим:

Теперь введем понятие удельной газовой постоянной, которая представляет собой отношение универсальной газовой постоянной R к молярной массе M:

Например, удельная газовая постоянная сухого воздуха приблизительно равна 287 Дж·кг⁻¹·К⁻¹. Подставив удельную газовую постоянную в уравнение состояния идеального газа, получим:

Закон идеального газа объединяет четыре более простых эмпирических газовых закона, открытых в XVII–XIX вв. несколькими учеными, которые аккуратно измеряли свойства газа. Простые газовые законы можно также вывести из уравнения состояния идеального газа (PV=nRT). Поскольку в этом уравнении R является постоянной величиной, можно записать

Поскольку PV/NT — постоянная величина, можно записать это иначе:

Здесь индексы 1 и 2 показывают начальное и конечное состояние газа в системе. Мы будем использовать это уравнение ниже при описании четырех газовых законов.

Отметим, что исторически именно эмпирические законы поведения газа, описанные ниже, привели к открытию обобщенного закона состояния идеального газа. Эти законы были открыты несколькими учеными, которые проводили эксперименты, изменяя только две переменные состояния газа и оставляя две другие переменные постоянными.

Закон Бойля — Мариотта (T=const, n=const)

Роберт Бойль

Изменим предыдущее уравнение с учетом, что количество газа в молях n и его температура Т остаются неизменными:

или

Эдм Мариотт

Это закон Бойля — Мариотта, описывающий зависимость объема V фиксированного количества газа в молях n от давления P при постоянной температуре T. Давление фиксированной массы газа при неизменной температуре обратно пропорционально его объему. Закон был сформулирован англо-ирландским химиком и физиком Робертом Бойлем в 1662 г. В России и континентальной Европе это закон называют законом Бойля — Мариотта с учетом вклада в открытие закона французского физика и священника Эдма Мариотта.

Закон Авогадро (T=const, P=const)

Амедео Авогадро

Если температура и давление остаются неизменными, можно записать

Это закон Авогадро, указывающий, что при неизменных температуре и давлении равные объемы любых газов содержат одинаковое количество молекул. Это уравнение показывает, что, если количество газа увеличивается, объем газа пропорционально растет. Иными словами, количество атомов или молекул газа не зависит от их размеров или от молярной массы газа. Закон назван в честь итальянского ученого Амедео Авогадро, который опубликовал гипотезу об отношениях объема газа и его количества в молях в 1811 году. Число Авогадро также носит его имя.

Закон Гей-Люссака (P=const, n=const)

Жак Шарль

При постоянном давлении объем фиксированного количества газа в молях пропорционален абсолютной температуре системы с газом.

В англоязычной литературе этот закон называется законом объемов и законом Шарля. Закон описывает как расширяется любой газ при увеличении его абсолютной температуры. Закон был сформулирован в неопубликованной работе французским ученым Жаком Шарлем в 80-х гг. XVIII в. Его соотечественник Жозеф Луи Гей-Люссак опубликовал этот закон в 1803 г. и указал, что приоритет открытия принадлежит Жаку Шарлю. Поэтому этот закон в литературе не на английском языке часто называют законом Гей-Люссака. В русскоязычной литературе закон носит имя Гей-Люссака. Итальянцы называют этот закон первым законом Гей-Люссака (ит. prima legge di Gay-Lussac).

Закон Шарля (или второй закон Гей-Люссака) (V=const, n=const)

Жозеф Луи Гей-Люссак

Закон Шарля (называемый также вторым законом Гей-Люссака) гласит, что давление фиксированного количества газа в молях при его неизменном объеме прямо пропорционально абсолютной температуре газа:

Закон был сформулирован Гей-Люссаком в 1802 г. В литературе на других языках этот закон также называют законом Амонтона по имени французского ученого Гийома Амонтона, который на сто лет раньше обнаружил количественную зависимость объема газа от его температуры. Иногда закон называют вторым законом Гей-Люссака и законом Шарля, так как сам Гей-Люссак считал, что закон открыт Шарлем. Закон зависимости давления от температуры был также независимо открыт английским физиком Джоном Дальтоном в 1801 г. Итальянцы называют этот закон вторым законом Вольта–Гей-Люссака (ит. seconda legge di Volta – Gay-Lussac), потому что итальянец Алессандро Вольта независимо проводил исследования газов и получил аналогичные результаты.

При нагревании воздуха в оболочке воздушного шара его плотность уменьшается и становится меньше плотности окружающего воздуха; в результате шар приобретает положительную плавучесть

Источник

Вопрос:

Для корректного проектирования технической документации, а также в целях формирования единого подхода, используемого различными организациями в сфере проектирования, изготовления, эксплуатации и надзора за оборудованием, работающим под давлением, просим Вас дать пояснения по вопросу перевода единиц измерения давления в соответствии с нижеприведенными доводами.

Традиционно при указании в проектной документации двух единиц измерения давления (МПа и кгс/см2) их значения принимаются с переводным коэффициентом 1:10, т.е. 1 МПа ≈ 10 кгс/см2. К примеру, в технической характеристике сосуда в качестве рабочего давления указывается: 51 кгс/см2 (5,1 МПа). Такое же соотношение между МПа и кгс/см2 принято и при указании давления одновременно в обеих единицах измерения в нормативно-технической документации, регламентирующей проектирование и эксплуатацию сосудов под давлением, в частности ТР ТС 032/2013, ПБ 03-584-03, ФНП «Правила промышленной безопасности опасных производственных объектов на которых используется оборудование, работающее под избыточным давлением» (0,07 МПа (0,7 кгс/см2), 16 МПа (160 кгс/см2) и т.п.).

Согласно «Положению о единицах величин, допускаемых к применению в Российской Федерации» (утверждено постановлением Правительства РФ № 879 от 31.10.2009) и ГОСТ 8.417-2002 1 кгс/см2 = 98066,5 Па, т.е. в случае точного перевода: 1 МПа = 10,197 кгс/см2.

Очевидно, что применение переводного коэффициента 1:10 приводит к ошибке менее 2% которая зачастую нивелируется большей погрешностью используемых на оборудовании приборов (при установке манометров с классом точности 2,5). Однако, согласно п. 307 ФНП «Правила промышленной безопасности опасных производственных объектов на которых используется оборудование, работающее под избыточным давлением» для сосудов с рабочим давлением более 2,5 МПа класс точности применяемых манометров должен быть не ниже 1,5 т.е. погрешность измерения не должна превышать 1,5%. Таким образом, в последнем случае применение переводного коэффициента 1:10 приводит к превышению установленного предела погрешности на 0,47%.

В то же время нормы проектирования сосудов регламентируют не учитывать дополнительные прибавки к основным расчетным величинам (давлению, толщине стенки) в пределах 5% от их номинального значения (см. п. 6.3, 6.5, 12.4 ГОСТ 34233.1-2017). Т.е. фактически погрешность выполнения расчета на прочность любого проектируемого сосуда может составлять, как, минимум 5%.

В связи с различием требований в действующей нормативной документации просим Вас пояснить, каким переводным коэффициентом следует пользоваться при указании в технической документации значений давления одновременно в двух единицах измерения (МПа и кгс/см2), с учетом сложившихся практики проектирования и условий эксплуатации оборудования, работающего под давлением свыше 2,5 МПа.

Ответ: Согласно положениям пунктов 7 и 12 Технического регламента Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (далее – ТР ТС 032/2013):

  • оборудование должно разрабатываться (проектироваться) и изготавливаться (производится) таким образом, чтобы при применении по назначению, эксплуатации и техническом обслуживании обеспечивалось его соответствие требованиям безопасности;
  • при изготовлении (производстве) оборудования и устройств безопасности изготовителем обеспечивается их соответствие параметрам и характеристикам, установленным проектной документацией, и требованиям ТР ТС 032/2013.
Читайте также:  Сосуды на веке болит глаз

В соответствии с пунктом 11 ТР ТС 032/2013 безопасность оборудования обеспечивается путем соблюдения при разработке (проектировании), изготовлении (производстве) требований безопасности, изложенных в ТР ТС 032/2013 и приложении № 2 к нему.

В том числе при разработке (проектировании) оборудования для обеспечения его безопасности при эксплуатации:

  • с целью определения рисков для оборудования должны учитываться факторы, представляющие собой основные виды опасности, перечисленные в пункте 8 ТР ТС 032/2013;
  • для идентифицированных видов опасности должна проводится оценка риска расчетным, экспериментальным, экспертным путем или по данным эксплуатации аналогичных видов оборудования согласно пункту 9 ТР ТС 032/2013;
  • рассчитывается прочность оборудования с учетом прогнозируемых нагрузок, которые могут возникнуть в процессе его эксплуатации, транспортировки, перевозки, монтажа и прогнозируемых отклонений от таких нагрузок, а также с учетом факторов, перечисленных в пункте 1 приложения 2 к ТР ТС 032/2013.

Кроме этого, пункт 7 приложения № 2 к ТР ТС 032/2013, устанавливает требования к проекту оборудования, в части применения:

  • а) средств контроля и измерений, погрешность которых в рабочих условиях не превышает предельно допустимое отклонение контрольного параметра;
  • б) средств измерений в соответствии с условиями эксплуатации оборудования.

Исходя из вышесказанного, обращаем Ваше внимание, что, например, для указанного Вами случая, рабочее давление 51 кгс/см2 (5,1 МПа) при применении манометра классом точности 1,5 со шкалой от 0 до 10 МПа: 1,5% погрешности в пересчете в МПа составит 0,15 МПа, что составит меньше 0,09860 МПа разницы между округленным значением 5,1 МПа и 5,00199 МПа (при точном переводе 51 кгс/см2 в МПа). А при применении манометра со шкалой от 0 до 100 кгс/см2 с классом точности 1,5 – вышеуказанное значение 0,09860 МПа при переводе в кгс/см2 равна 1,00551 кгс/см2, что также ниже 1,5% погрешности прибора, составляющей 1,5 кгс/см2.

Следовательно, при таких параметрах, указание в технической документации технических характеристик в кгс/см2 и МПа с использованием коэффициента точного перевода, создаст неисполнимые условия для эксплуатирующих организаций, а также не обеспечит возможности выполнения требований пункта 7 приложения № 2 к ТР ТС 032/2013.

Источник

На сайте ведутся работы, возможны временные перебои. Приносим извинения за возможные неудобства.

Вопрос: Какое рабочее давление правомерно указывать при регистрации цистерны для СУГ на АГЗС, если экспертизой промышленной безопасности по результатам технического освидетельствования рабочее давление данного сосуда установлено (снижено) до 1,55 МПа, а в заводском паспорте указано 1,6 МПа? Каким значением рабочего давления сосуда под давлением следует руководствоваться при его регистрации, если в паспорте данного сосуда рабочее давление указано как: МПа (кгс/см2) соответственно 1,6 (16), а между тем 16 кгс/см2 соответствует 1,57 МПа?

Ответ: Требования к проектированию и изготовлению сосудов для хранения и транспортирования сжиженных углеводородных газов (далее – СУГ) в настоящее время установлены техническим регламентом Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (ТР ТС 032/2013), принятым Решением Совета Евразийской экономической комиссии от 02.07.2013 № 41, вступившим в силу с 01.02.2014. Область применения ТР ТС 032/2013 определена пунктами 2 и 3 ТР ТС 032/2013, классификация оборудования по категориям опасности установлена в приложении 1 к ТР ТС 032/2013, в том числе при указании значений давления в тексте ТР ТС 032/2013 применены единицы измерения, установленные международной системой измерений СИ – паскаль (Па), мегапаскаль (МПа). В пункте 21 ТР ТС 032/2013 установлены требования к информации, которую должен указать изготовитель в паспорте сосуда, в том числе рабочее давление МПа (кгс/см2). В соответствии с установленными в приложении 2 к ТР ТС 032/2013 требованиями к безопасности оборудования, работающего под избыточным давлением, при его проектировании (разработке) должны быть учтены: нагрузки, действующие на внутреннюю и наружную поверхность; температуры окружающей и рабочей среды; давление в рабочих условиях и в условиях испытаний с учетом веса содержимого; инерционные нагрузки при движении и другие прогнозируемые факторы, влияющие на прочность оборудования. При этом также устанавливаются технические эксплуатационные характеристики, минимизирующие возможность возникновения инцидента, аварии при эксплуатации оборудования. В связи с этим при проектировании сосуда, предназначенного для работы под давлением конкретной рабочей среды, необходимо учитывать требования, установленные к ней соответствующими нормативными документами. Согласно пункту 35 ТР ТС 032/2013 соответствие оборудования требованиям данного технического регламента обеспечивается путем непосредственного выполнения этих требований либо путем выполнения требований стандартов, включенных в перечень стандартов, в результате применения которых на добровольной основе обеспечивается соблюдение требований ТР ТС 032/2013. В указанный перечень стандартов ТР ТС 032/2013, а также в перечень стандартов, применяемых для обеспечения соблюдения требований технического регламента Таможенного союза «О безопасности колесных транспортных средств» (ТР ТС 018/2011), утвержденный Решением Комиссии Таможенного союза от 09.12.2011 № 877, включен ГОСТ 21561 «Автоцистерны для транспортирования сжиженных углеводородных газов на давление до 1,8 МПа. Общие технические условия», в соответствии с которым в настоящее время предприятия-изготовители выпускают автоцистерны для СУГ с давлением до 1,8 МПа. Автоцистерны для транспортирования СУГ более раннего выпуска производились с рабочим давлением 1,6 МПа. Помимо обеспечения технических условий, установленных стандартом, значения расчетного и максимального рабочего давлений для конкретной модели сосуда изготовитель подтверждает расчетами для обеспечения необходимого запаса прочности с учетом вышеперечисленных факторов, влияющих на прочность оборудования. Кроме этого, требования к применяемым в качестве топлива для коммунально-бытового потребления, моторного топлива для автомобильного транспорта, а также в промышленных целях СУГ установлены ГОСТ Р 52087-2003 «Газы углеводородные сжиженные топливные. Технические условия», в котором в числе физико-химических и эксплуатационных показателей СУГ определено значение избыточного давления насыщенных паров СУГ не более 1,6 МПа. С целью обеспечения требований ТР ТС 032/2013 к безопасности оборудования, работающего под избыточным давлением, и минимизации рисков возникновения инцидента, аварии при его эксплуатации, максимальное значение рабочего давления сосудов-автоцистерн для транспортирования СУГ устанавливается и указывается в паспорте изготовителем сосуда и не может быть менее максимального значения давления насыщенных паров СУГ, установленного ГОСТ Р 52087-2003, т.е. 1,6 МПа. Принятие экспертной организацией решения о снижении значения рабочего давления сосудов-автоцистерн для транспортирования СУГ менее 1,6 МПа в процессе эксплуатации в случае выявления дефектов, влияющих на прочность сосуда, по результатам технического освидетельствования или экспертизы промышленной безопасности уменьшает уровень безопасности сосуда ниже установленного изготовителем, что не допустимо, так как с учетом вышеизложенного и условий эксплуатации автоцистерны не позволяет сделать положительный вывод о ее соответствии требованиям промышленной безопасности. В ином случае принятие указанного решения о снижении давления без каких-либо оснований по инициативе эксплуатирующей организации незаконно, так как экспертная и эксплуатирующая организации не являются изготовителем данного сосуда и не правомочны изменять его паспортные технические характеристики, установленные изготовителем.

При указании в тексте давлений в единицах (МПа и кгс/см2) двух систем измерений (СИ и СГС) их значения приведены не с точностью до тысячных, а с округлением, например, 0,07 МПа (0,7 кгс/см2). Применение на протяжении длительного периода времени практики перевода единиц измерения давления из кгс/см2 в МПа с округлением до целого значения при эксплуатации сосудов объясняется тем, что манометры применяемые для контроля в сосуде давления СУГ не обеспечивают возможности более точного измерения его значений, так как их погрешность (класс точности – 2,5) превышает разницу между единицами измерения систем СИ и СГС при более точном их переводе. В связи с чем указание в паспортах сосудов значений давления СУГ, не соответствующих техническим возможностям применяемых для его измерения манометров, а также использование их при разработке и утверждении эксплуатирующей организацией производственных инструкций по режиму работы и безопасному обслуживанию сосудов, устанавливает условия, не выполнимые при эксплуатации.

Вопрос: Правомочно ли указание в паспорте сосуда СУГ величины рабочего давления 1,57 МПа, если это согласовано с заводом-изготовителем?

Ответ: В настоящее время требования к проектированию и изготовлению сосудов для хранения и транспортирования сжиженных углеводородных газов (далее – СУГ) установлены техническим регламентом Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (ТР ТС 032/2013), принятым Решением Совета Евразийской экономической комиссии от 02.07.2013 № 41, вступившим в силу с 01.02.2014.

Обязательные требования, направленные на обеспечение промышленной безопасности, предупреждение аварий, инцидентов, производственного травматизма на объектах при использовании оборудования, работающего под избыточным давлением, в том числе указанных сосудов, установлены Федеральными нормами и правилами в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением» (далее – ФНП ОРПД), утвержденными приказом Ростехнадзора от 25.03.2014 № 116 (зарегистрирован в Минюсте России 19.05.2014, рег. № 32326).

Область применения ТР ТС 032/2013 определена пунктами 2 и 3 ТР ТС 032/2013, классификация оборудования по категориям опасности установлена в приложении 1 к ТР ТС 032/2013, в том числе при указании значений давления в тексте ТР ТС 032/2013 применены единицы измерения, установленные международной системой измерений СИ – паскаль (Па), мегапаскаль (МПа).

В пункте 21 ТР ТС 032/2013 установлены требования к информации, которую должен указать изготовитель в паспорте сосуда, в том числе значения рабочего и расчетного давлений МПа (кгс/см2). При этом согласно ТР ТС 032/2013 и ранее действовавшим до его вступления в силу Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 03-576-03), изготовитель в паспорте сосуда и иной технической документации в сведениях о технических характеристиках указывает конкретные значения расчетного давления и рабочего (максимально допустимого при нормальном протекании рабочего процесса) давления, при превышении которого эксплуатация сосуда недопустима.

В соответствии с установленными в приложении 2 к ТР ТС 032/2013 требованиями к безопасности оборудования, работающего под избыточным давлением, при его проектировании (разработке) должны быть учтены: нагрузки, действующие на внутреннюю и наружную поверхность; температуры окружающей и рабочей среды; давление в рабочих условиях и в условиях испытаний с учетом веса содержимого; инерционные нагрузки при движении и другие прогнозируемые факторы, влияющие на прочность оборудования. При этом также устанавливаются технические эксплуатационные характеристики, минимизирующие возможность возникновения инцидента, аварии при эксплуатации оборудования.

При проектировании и изготовлении конкретной модели сосуда разработчик проекта (изготовитель) подтверждает значения расчетного и максимального рабочего давлений расчетами для обеспечения необходимого запаса прочности с учетом вышеперечисленных факторов, влияющих на прочность оборудования, в том числе свойств конкретной рабочей среды и требований, установленных к ней соответствующими нормативными документами.

При этом согласно пункту 35 ТР ТС 032/2013 соответствие оборудования требованиям данного технического регламента обеспечивается путем непосредственного выполнения этих требований либо путем выполнения требований стандартов, включенных в перечень стандартов, в результате применения которых на добровольной основе обеспечивается соблюдение требований ТР ТС 032/2013. В указанный перечень стандартов ТР ТС 032/2013, а также в перечень стандартов, применяемых для обеспечения соблюдения требований технического регламента Таможенного союза «О безопасности колесных транспортных средств» (ТР ТС 018/2011), утвержденный Решением Комиссии Таможенного союза от 09.12.2011 № 877, включен ГОСТ 21561 «Автоцистерны для транспортирования сжиженных углеводородных газов на давление до 1,8 МПа. Общие технические условия.», в соответствии с которым в настоящее время предприятия-изготовители выпускают автоцистерны для СУГ с давлением до 1,8 МПа. Автоцистерны для транспортирования СУГ более раннего выпуска производились с рабочим давлением 1,6 МПа.

Требования к СУГ, применяемым в качестве топлива для коммунально-бытового потребления, моторного топлива для автомобильного транспорта, а также в промышленных целях, установлены ГОСТ Р 52087-2003 «Газы углеводородные сжиженные топливные. Технические условия.», в котором в числе физико-химических и эксплуатационных показателей СУГ определено значение избыточного давления насыщенных паров СУГ не более 1,6 МПа.

С целью обеспечения требований ТР ТС 032/2013 к безопасности оборудования, работающего под избыточным давлением, и минимизации рисков возникновения инцидента, аварии при его эксплуатации, максимальное значение рабочего давления сосудов-автоцистерн для транспортирования СУГ устанавливается и указывается изготовителем в паспорте сосуда, оформляемом на него в процессе изготовления, и не может быть менее максимального значения давления насыщенных паров СУГ, установленного ГОСТ Р 52087-2003, т.е. 1,6 МПа.

Снижение значения рабочего давления сосудов-автоцистерн для транспортирования СУГ менее 1,6 МПа в процессе эксплуатации по результатам технического освидетельствования или экспертизы промышленной безопасности в случае выявления дефектов, влияющих на прочность сосуда, также не допустимо, так как с учетом вышеизложенного и условий эксплуатации автоцистерны уменьшает уровень безопасности сосуда и не позволяет сделать положительный вывод о его соответствии требованиям промышленной безопасности.

В отношении существующей практики применения при оформлении документации на оборудование различных систем единиц измерения давлений и их конкретных значений обращаем Ваше внимание, что в ТР ТС 032/2013 и ФНП ОРПД, как и в действовавших до их вступления в силу Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 03-576-03), при указании в тексте давлений в единицах (МПа и кгс/см2) двух систем измерений (СИ и СГС) их значения приведены не с точностью до тысячных, а с округлением, например, 0,07 МПа (0,7 кгс/см2), что также было указано изготовителями в паспортах автоцистерн – 1,6 МПа (16 кгс/см2).

Применение на протяжении длительного периода времени при проектировании, изготовлении и эксплуатации сосудов практики перевода единиц измерения давления из кгс/см2 в МПа с округлением до целого значения объясняется тем, что манометры, применяемые для контроля в сосуде давления СУГ технически не обеспечивают возможности более точного измерения его значений, так как их погрешность (класс точности – 2,5) превышает разницу между единицами измерения систем СИ и СГС при более точном их переводе.Указание в паспортах сосудов значений давления СУГ, не соответствующих техническим возможностям применяемых для его измерения манометров, а также использование их при разработке и утверждении эксплуатирующей организацией производственных инструкций по режиму работы и безопасному обслуживанию сосудов устанавливает условия, не выполнимые при эксплуатации.

Читайте также:  Стеноз сосудов почки лечение

Источник