В сосуде под поршнем находится идеальный газ давление газа 100 кпа
A) Внутренняя энергия газа
Б) Средняя кинетическая энергия хаотического движения молекул газа
B) Концентрация молекул
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Поршень оказывает на газ постоянное давление величиной
где — площадь поршня. Поэтому все изменения, происходящие с газом, протекают изобарически. Согласно первому началу термодинамики переданное газу тепло идёт на совершение работы против внешних сил и на изменение внутренней энергии: Работа газа при изобарном процессе пропорциональна изменению объёма (). Внутренняя энергия идеального газа зависит только от температуры (), а температура изменяется пропорционально объёму, так как давление фиксировано. Отсюда заключаем, что после передачи газу тепла он нагреется (его внутренняя энергия увеличится (А — 1)) и расширится (он совершит положительную работы). В результате расширения, концентрация молекул, естественно, уменьшится (В — 2). Средняя кинетическая энергия хаотического движения молекул газа пропорциональна его температуре (), следовательно, эта величина в результате данного процесса увеличивается (Б — 1).
Источник
Физика
Для идеального газа, находящегося в сосуде под поршнем , необходимо учитывать следующее:
- масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:
- постоянным остается также количество вещества (газа):
- плотность газа и концентрация его молекул (атомов) изменяются:
Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).
Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:
p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , >
где p 1 , V 1 , T 1 — давление, объем и температура газа в начальном состоянии; p 2 , V 2 , T 2 — давление, объем и температура газа в конечном состоянии; ν — количество вещества (газа); R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).
Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:
M g + F A = F 1 , M g + F A + F = F 2 , >
где M — масса поршня; g — модуль ускорения свободного падения; F A — модуль силы атмосферного давления, F A = p A S ; p A — атмосферное давление; S — площадь сечения поршня; F 1 — модуль силы давления газа на поршень в начале процесса, F 1 = p 1 S ; p 1 — давление газа в сосуде в начальном состоянии; F — модуль силы, вызывающей сжатие газа; F 2 — модуль силы давления газа на поршень в конце процесса, F 2 = p 2 S ; p 2 — давление газа в сосуде в конечном состоянии.
Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:
- если процесс движения поршня происходит достаточно быстро, то температура газа изменяется —
- если процесс происходит медленно, то температура газа остается постоянной –
Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:
- если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем — неизменно (в том случае, когда из условия задачи не следует обратное) — p = const;
- в остальных случаях давление газа под поршнем изменяется — p ≠ const.
Масса поршня , закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:
- если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю —
- в остальных случаях поршень обладает определенной ненулевой массой —
Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм 2 и массой 1,80 кг находится 360 см 3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см 3 . Температура газа при его сжатии не изменяется. Определить массу гирь.
Решение . На рисунке показаны силы, действующие на поршень:
- сила тяжести поршня M g → ;
- сила атмосферного давления F → A ;
- сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
- сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
- m g → — вес гирь.
Условие равновесия поршня запишем в следующем виде:
где F 1 — модуль силы давления газа, F 1 = p 1 S ; p 1 — давление газа до сжатия; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; F A — модуль силы атмосферного давления, F A = p A S ; p A — атмосферное давление; g — модуль ускорения свободного падения;
где F 2 — модуль силы давления газа, F 2 = p 2 S ; p 2 — давление газа после сжатия; mg — вес гирь; m — масса гирь.
Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева — Клапейрона для газа под поршнем следующим образом:
где V 1 — первоначальный объем газа под поршнем; ν — количество газа под поршнем; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T — температура газа (не изменяется в ходе процесса);
где V 2 — объем сжатого поршнем газа.
и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:
p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , >
которую требуется решить относительно массы гирь m .
Для этого выразим отношение давлений p 2 / p 1 из первой пары уравнений:
p 2 p 1 = M g + p A S + m g M g + p A S
и из третьего уравнения:
запишем равенство правых частей полученных отношений:
M g + p A S + m g M g + p A S = V 1 V 2 .
Отсюда следует, что искомая масса определяется формулой
m = ( M + p A S g ) ( V 1 V 2 − 1 ) .
Вычисление дает результат:
m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.
Указанное сжатие газа вызвано гирями массой 2,15 кг.
Пример 20. Открытый цилиндрический сосуд сечением 10 см 2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?
Решение . На рисунке показаны силы, действующие на пластину после нагревания газа:
- сила тяжести пластины M g → ;
- сила атмосферного давления F → A ;
- сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.
Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:
где F 2 — модуль силы давления нагретого газа, F 2 = p 2 S ; p 2 — давление нагретого газа; S — площадь сечения сосуда; Mg — модуль силы тяжести пластины; M — масса пластины; g — модуль ускорения свободного падения; F A — модуль силы атмосферного давления, F A = p A S ; p A — атмосферное давление.
Запишем уравнение Менделеева — Клапейрона следующим образом:
- для газа в сосуде до его нагревания
где p 1 — давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A ; V — объем газа в сосуде; ν — количество вещества (газа) в сосуде; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 — температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);
- для газа в сосуде после его нагревания
где p 2 — давление нагретого газа; T 2 — температура нагретого газа.
Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:
p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; >
систему необходимо решить относительно температуры T 2 , до которой следует нагреть газ.
Для этого делением первой пары уравнений
p A V p 2 V = ν R T 1 ν R T 2
получим выражение для давления нагретого газа:
и подставим его в третье уравнение системы:
p A T 2 S T 1 = M g + p A S .
Преобразуем полученное выражение к виду
T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,
а затем найдем разность
Δ T = T 2 − T 1 = M g T 1 p A S .
Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.
Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см 2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.
Решение . На рисунке показаны силы, действующие на поршень:
- сила тяжести поршня M g → ;
- сила атмосферного давления F → A ;
- сила давления газа F → , действующая на поршень со стороны нагретого газа.
Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :
F → + F → A + M g → = m a → ,
или в проекции на вертикальную ось —
где F — модуль силы давления газа под поршнем, F = pS ; p — давление газа; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; g — модуль ускорения свободного падения; a — модуль ускорения поршня.
Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:
a = F − F A − M g M = ( p − p A ) S M − g .
Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением
где l — пройденный путь; v — модуль скорости поршня.
Выразим отсюда модуль скорости поршня:
и подставим в записанную формулу выражение для модуля ускорения:
v = 2 l ( ( p − p A ) S M − g ) .
v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.
После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.
Источник
➤ Adblock
detector
Источник
В сосуде находится идеальный газ под давлением 100 кПа. Какова концентрация молекул этого газа, если его температура 17 °С?
В 7:50 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.
Вопрос вызвавший трудности
Ответ подготовленный экспертами Учись.Ru
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «ЕГЭ (школьный)». Ваш вопрос звучал следующим образом: В сосуде находится идеальный газ под давлением 100 кПа. Какова концентрация молекул этого газа, если его температура 17 °С?
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
ответ к заданию по физике
НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:
Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.
Фомина Нора Адольфовна — автор студенческих работ, заработанная сумма за прошлый месяц 59 632 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
Ответы на вопросы — в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи — раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.
Источник
В сосуде находится идеальный газ под давлением 100 кпа
В закрытом сосуде объёмом 20 литров находится 0,2 моль кислорода. Давление газа в сосуде равно 100 кПа. Чему равна среднеквадратичная скорость молекул этого газа? Ответ округлите до целого числа.
Запишем основное уравнение МКТ газа:
Молярная масса кислорода равна M = 0,032 кг/моль. Найдем среднеквадратичная скорость молекул газа:
В закрытом сосуде с клапаном находится идеальный газ при температуре +20 °С и давлении p1. В результате некоторого эксперимента 20 % газа вышло из сосуда через клапан. При этом температура газа повысилась на 10 °С, а его давление изменилось до некоторой величины p2. Найдите отношение
. Ответ округлите до десятых долей.
Количество газа в сосуде, оставшегося после некоторого эксперимента, составляет 0,8 от изначального количества. Температура после эксперимента составит 303 К.
Тогда с помощью уравнения Менделеева-Клайперона получим:
В закрытом сосуде с клапаном находится идеальный газ при температуре +42 °С и давлении p1. В результате некоторого эксперимента 25 % газа вышло из сосуда через клапан. При этом температура газа понизилась на 21 °С, а его давление изменилось до некоторой величины p2. Найдите отношение
. Ответ округлите до десятых долей.
Количество газа в сосуде, оставшегося после некоторого эксперимента, составляет 0,75 от изначального количества. Температура после эксперимента составит 294 К.
Тогда с помощью уравнения Менделеева-Клайперона получим:
В закрытом сосуде объёмом 20 литров находится 0,5 моль азота. Давление газа в сосуде равно 100 кПа. Чему равна среднеквадратичная скорость молекул этого газа? Ответ дайте в м/с и округлите до целого числа.
Запишем основное уравнение МКТ газа:
Молярная масса азота равна M = 0,028 кг/моль. Найдем среднеквадратичную скорость молекул газа:
В закрытом сосуде с жёсткими стенками находится кислород при некоторой температуре и давлении 55 кПа. Концентрация молекул кислорода 4·10 25 1/м 3 . В этот сосуд добавляют азот при такой же температуре. Концентрация молекул азота в сосуде становится равной 7,2·10 25 1/м 3 . На какую величину изменится давление в этом сосуде. Ответ выразите в кПа.
Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) термодинамической системы с микроскопическими (масса молекул, средняя скорость их движения):
где
— концентрация молекул газа.
Найдём температуру кислорода, которая по условию также равна температуре азота
Парциальное давление азота тогда равно
Общее давление газовой смеси является суммой парциальных давлений её компонентов. Парциальное давление кислорода не изменилось, значит, давление газа в сосуде увеличится на величину p2 = 99 кПа.
В закрытом сосуде находится идеальный газ при давлении 105750 Па и температуре, соответствующей среднеквадратичной скорости теплового хаотического движения молекул 494 м/с. Чему равна плотность этого газа? Ответ выразите в кг/м 3 и округлите до десятых долей.
Средняя энергия теплового движения молекул связана с абсолютной температурой газа соотношением
где
— масса одной молекулы.
По определению среднеквадратичная скорость равна
Согласно уравнению состояния идеального газа давление связано с температурой газа
Тогда преобразуем предыдущее уравнение
Учитывая то, что плотность газа — это произведение массы одной молекулы на концентрацию газа, получим
В закрытом сосуде объёмом 20 литров находится 5 моль кислорода. Температура газа равна 127 °С. Чему равно давление газа? Ответ выразите в кПа.
Состояние идеального газа описывается уравнением Клапейрона — Менделеева:
Найдём отсюда давление:
В закрытом сосуде объёмом 10 литров находится 5 моль азота. Температура газа равна 26 °С. Чему равно давление газа? Ответ выразите в килопаскалях и округлите до целого числа.
Состояние идеального газа описывается уравнением Клапейрона — Менделеева:
Найдем отсюда давление:
В закрытом сосуде с жёсткими стенками находится кислород при некоторой температуре и давлении 55,5 кПа. Концентрация молекул кислорода 5,4·10 25 1/м 3 . В этот сосуд добавляют азот при такой же температуре. Концентрация молекул азота в сосуде становится равной 7,2·10 25 1/м 3 . Чему равно парциальное давление азота в этом сосуде? Ответ выразите в кПа и округлите до целого числа.
Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) термодинамической системы с микроскопическими (масса молекул, средняя скорость их движения)
где
— концентрация молекул газа.
Найдём температуру кислорода, которая по условию также равна температуре азота
Парциальное давление азота тогда равно
В закрытом сосуде находится азот под давлением 2 атм с начальной температурой 280 К. Газ нагревают до температуры 3000 К, при этом давление газа увеличивается до 30 атм и часть молекул распадается на атомы. Какая часть молекул распалась?
Запишем уравнение состояния идеального газа:
Найдём отношение давлений в начальном и конечном состоянии: Откуда получаем, что число частиц в конечном состоянии: Обозначим долю распавшихся частиц за Тогда из уравнения получаем
Аналоги к заданию № 6468: 11644 Все
Идеальный одноатомный газ, находящийся в герметично закрытом сосуде с жёсткими стенками, нагревают. Как изменяются в этом процессе следующие физические величины: концентрация молекул, внутренняя энергия газа, теплоёмкость газа?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Концентрация молекул | Внутренняя энергия газа | Теплоёмкость газа |
Поскольку газ находится в сосуде с жёсткими стенками, его объём не изменяется. Количество газа в ходе процесса также остаётся постоянным, а значит, концентрация молекул не изменяется.
Внутренняя энергия фиксированного одноатомного идеального газа зависит только от температуры:
следовательно, при нагревании газа, его внутренняя энергия увеличивается.
Теплоёмкость — это физическая величина, показывающая, какое количество теплоты надо сообщить системе, чтобы нагреть её на один градус. Согласно первому началу термодинамики, передаваемое газу тепло идёт на изменение его внутренней энергии и на работу против внешних сил:
Так как объём газа фиксирован, работы он не совершает, а значит всё передаваемое тепло идёт на изменение внутренней энергии. Таким образом, теплоёмкость даётся выражением:
Следовательно, теплоёмкость в ходе данного процесса остаётся неизменной.
В горизонтальном цилиндрическом сосуде, закрытом поршнем, находится одноатомный идеальный газ. Первоначальное давление газа p = 4 · 10 5 Па. Расстояние от дна сосуда до поршня равно L. Площадь поперечного сечения поршня S = 25 см 2 . В результате медленного нагревания газ получил количество теплоты Q = 1,65 кДж, а поршень сдвинулся на расстояние x = 10 см. При движении поршня на него со стороны стенок сосуда действует сила трения величиной Fтр = 3 · 10 3 Н. Найдите L. Считать, что сосуд находится в вакууме.
1) Поршень будет медленно двигаться, если сила давления газа на поршень и сила трения со стороны стенок сосуда уравновесят друг друга: p2S = Fтр, откуда
2) Поэтому при нагревании газа поршень будет неподвижен, пока давление газа не достигнет значения р2. В этом процессе газ получает количество теплоты Q12. Затем поршень будет сдвигаться, увеличивая объём газа, при постоянном давлении. В этом процессе газ получает количество теплоты Q23.
3) В процессе нагревания, в соответствии с первым началом термодинамики, газ получит количество теплоты:
4) Внутренняя энергия одноатомного идеального газа:
в начальном состоянии,
в конечном состоянии.
5) Из пп. 3, 4 получаем
в конечной формуле в числителе перед произведением силы трения и величины смещения множитель должен быть 3/2 а не 5/2
Формула верная. 5/2=1+3/2 — сумма коэффициентов перед членами с Fтр в формулах для Q и U3
А почему не учитывается атмосферное давление?
По условию сосуд находится в вакууме.
В большом сосуде с жёсткими стенками, закрытом подвижным поршнем, находятся воздух и насыщенный водяной пар при температуре 100 °C. Давление в сосуде равно 300 кПа. Поршень переместили, поддерживая температуру содержимого сосуда постоянной. При этом половина водяного пара сконденсировалась. Какое давление установилось в сосуде? Ответ выразите в кПа.
В сосуде находятся воздух и насыщенный пар, при этом давление в сосуде состоит из суммы давлений двух газов:
Давление насыщенного пара при равно Значит, давление воздуха Далее сказано, что половина водяного пара сконденсировалась, это означает что газ в сосуде сжали при постоянной температуре. Давление насыщенного пара зависит только от температуры и, следовательно, при сжатии оно не изменилось (). Запишем уравнение Менделеева — Клапейрона: Масса водяного пара уменьшилась вдвое, а значит объём также должен уменьшиться вдвое.
Масса воздуха осталась той же самой, но при уменьшении объёма в два раза при постоянной температуре, давление должно вырасти в два раза. Следовательно,
Давление в сосуде станет равным
В большом сосуде с жёсткими стенками закрытом подвижным поршнем находятся воздух и насыщенный водяной пар при температуре 100 °C. Давление в сосуде равно 300 кПа. Поршень переместили, поддерживая температуру содержимого сосуда постоянной. При этом половина водяного пара сконденсировалась. Какое давление (в кПа) установилось в сосуде?
В сосуде находятся воздух и насыщенный пар, при этом давление в сосуде состоит из суммы давлений двух газов:
Давление насыщенного пара при равно Значит, давление воздуха Далее сказано, что половина водяного пара сконденсировалась, это означает, что газ в сосуде сжали при постоянной температуре. Давление насыщенного пара зависит только от температуры и, следовательно, при сжатии оно не изменилось (). Запишем уравнение Менделеева — Клайперона: Масса водяного пара уменьшилась вдвое, а значит, объём также должен уменьшиться вдвое.
Масса воздуха осталась той же самой, но при уменьшении объёма в два раза при постоянной температуре, давление должно вырасти в два раза. Следовательно,
Давление в сосуде станет равным
Это нужно знать наизусть, что давление насыщенного пара при 100C равно 100кПА или будет всё в справочнике? Просто в вашем справочнике этого нет.
Жидкость закипает, когда парциальное давление её насыщенных паров сравнивается с внешним давлением. Для открытых сосудов внешняя среда — воздух с атмосферным давлением. Вода кипит при 100 °С, значит при этой температуре давление насыщенных паров равно атмосферному 100 кПа.
В горизонтальном сосуде, закрытом поршнем, находится разреженный газ. Максимальная сила трения между поршнем и стенками сосуда составляет Fтр.макс, а площадь поршня равна S. На pТ-диаграмме показано, как изменялись давление и температура разреженного газа в процессе его нагревания. Как изменялся объём газа (увеличивался, уменьшался или же оставался неизменным) на участках 1−2 и 2−3? Объясните причины такого изменения объёма газа в процессе его нагревания, указав, какие физические явления и закономерности вы использовали для объяснения.
1) На участке 1–2 процесс изохорный, объём газа под поршнем остаётся постоянным. Поршень остаётся в покое, пока сила трения покоя не достигнет максимального значения Fтр. макс.
2) На участке 2-3 процесс изобарный. Поршень начинает двигаться при условии, что сила давления со стороны газа становится больше, чем сумма силы трения и силы давления на поршень со стороны атмосферы:
p1S ≥ Fтр. макс + pатмS. По закону Гей-Люссака при увеличении температуры объем увеличивается.
В закрытом цилиндрическом сосуде находится влажный воздух при температуре 100 °С. Для того, чтобы на стенках этого сосуда выпала роса, требуется изотермически изменить объем сосуда в 25 раз. Чему приблизительно равна первоначальная абсолютная влажность воздуха в сосуде? Ответ приведите в г/м 3 , округлите до целых.
Абсолютная влажность воздуха — это физическая величина, показывающая массу водяных паров, содержащихся в 1
воздуха. Другими словами, это плотность водяного пара в воздухе. На стенках сосуда при изотермическом сжатии начнет образовываться роса после того, как пар достигнет состояния насыщения. Как известно, кипение начинается, когда давление насыщенных паров сравнивается с внешним давлением. Таким образом, давление насыщенных паров при 100 °С равно нормальному атмосферному давлению, то есть порядка
Определим сперва, какое давление имеет пар до начала сжатия. Водяной пар подчиняется уравнениям идеального газа, в частности, при изотермическом сжатии выполняется закон Бойля — Мариотта:
Следовательно, начальное давление водяного пара было в 25 раз меньше и равнялось
Определим теперь первоначальную абсолютную влажность. Для этого воспользуемся уравнением состояния Клапейрона-Менделеева:
Здравствуйте. почему малярная масса равна 0,018 кг/моль а не как в справочнике 0,029 кг/моль?
Потому что здесь использована молярная масса водяных паров, то есть воды, а не воздуха.
Здравствуйте!Закон Бойля-Мариотта применим а том случае,если масса вещества не изменяется,а по условию задачи выпадает роса,то есть часть водяного пара переходит в воду.
В процессе сжатия до момента выпадения росы масса паров не менялась.
Добрый день! Наверно задача дана в предположении, что при изменении объёма сосуда в 25 раз давление в нём достигло атмосферного? Но это не указано в условии задачи!
Дана температура, по ней устанавливается давление насыщенных паров.
В цилиндрическом сосуде, закрытом подвижным поршнем, находится водяной пар и капля воды. С паром в сосуде при постоянной температуре провели процесс a→b→c, pV−диаграмма которого представлена на рисунке. Из приведённого ниже списка выберите два правильных утверждения относительно проведённого процесса.
1) На участке b→c масса пара уменьшается.
2) На участке a→b к веществу в сосуде подводится положительное количество теплоты.
3) В точке c водяной пар является насыщенным.
4) На участке a→b внутренняя энергия капли уменьшается.
5) На участке b→c внутренняя энергия пара уменьшается.
1. Неверно. По условию температура на участке
не изменялась, давление уменьшилось в 2 раза, объём увеличился в 2 раза. Из уравнения для каждого состояния и Так как то и
2. Верно. Поскольку на участке
объём изобарно увеличивался, то пар совершил положительную работу; а так как температура не менялась, но менялась масса пара, то внутренняя энергия увеличивалась. Из первого закона термодинамики следует, что Q — положительная величина, т. е. пар теплоту получал.
3. Неверно. На участке
давление пара уменьшалось, а при постоянной температуре давление насыщенного пара оставалось неизменным. Значит, относительная влажность уменьшалась.
4. Верно. На участке
давление и температура пара не изменялись, объем увеличивался. Исходя из уравнений состояния идеального газа, следует, что масса пара увеличивалась за счёт испарения, при котором внутренняя энергия воды уменьшается.
5. Неверно. На участке
температура и масса пара не менялись, следовательно, внутренняя энергия не менялась.
Источник
Источник