В сосуде постоянного объема находился 1 кг водорода

Агрегатные состояния

Состояние данной массы газа определяется тремя величинами (параметрами): давлением p, объемом V и температурой T. Эти величины связаны между собой функциональной зависимостью, которая может быть представлена соотношением f (p, V, T) = 0, называемым уравнением состояния. Уравнение состояния идеального газа выводится из трех законов – Бойля – Мариотта, Гей-Люссака и Авогадро. Реальные газы подчиняются этим законам тем точнее, чем меньше давление и выше температура [1].

Закон Бойля – Мариотта. При постоянной температуре объем данной массы обратно пропорционален давлению. Если V1и V2 – объемы газа при давлении p1 и p2 соответственно, то

, или (1.1)

Из закона Бойля – Мариотта вытекает следствие: при постоянной температуре плотность газа ρ пропорционально его давлению:

(1.1a)

Законы Гей-Люссака и Шарля. При постоянном давлении с повышением температуры на 1°С объем данной массы газа увеличивается на 1/273,15 его объема при 0°С:

(1.2)

где V – объем газа при температуре t °С, а V – объем газа при 0°С.

При замене шкалы Цельсия абсолютной температурной шкалой (шкалой Кельвина), для которой T=273,15+t, этот закон можно сформулировать следующим образом: при постоянном давлении объем данной массы газа пропорционален его абсолютной температуре:

(1.3)

При постоянном объеме зависимость давления данной массы газа от температуры записывается уравнениями, аналогичными (1.2) и (1.3):

(1.4)

(1.5)

Объединенный закон Бойля – Мариотта – Гей-Люссака выражается уравнением:

(1.6)

где p1 – давление и V1– объем данной массы газа при абсолютной температуре T1, p2— давление и V2– объем той же массы газа при абсолютной температуре T2.

Закон Авогадро: в равных объемах различных газов при одинаковых условиях содержится равное число молекул.

Число молекул (NA) в 1 моль вещества одинаково у всех веществ и равно 6,02·10 23 (число Авогадро). Следовательно, количества веществ 1 моль, находящихся в газообразном состоянии при одинаковой температуре и одинаковом давлении, занимают равные объемы. При нормальных условиях (температура 0°С и давление = 1,01325·10 5 Па) объем 1 моль газа равен 22,414л.

Уравнение состояния идеального газа – уравнение Менделеева – Клайперона для одного моля газа имеет вид:

(1.7)

а для любого количества газообразного вещества:

(1.8)

где R – универсальная газовая постоянная, числовое значение которой зависит от единиц измерения других величин. Величина ее выражается в единицах СИ Дж/(моль·К).

Уравнение (1.8) может быть использовано для определения относительной молекулярной массы Мч. Заменяя в нем величину n отношением m/M, где m – масса газа, а M – молярная масса данного газа, и решая его относительно M, получим:

(1.9)

Закон Дальтона: общее давление смеси газов равно сумме парциальных давлений составных частей (компонентов):

(1.10)

где pоб – общее давление смеси газов, p1, p2, pk – парциальные давления компонентов смеси. Парциальным давлением называется давление каждого компонента, если бы он один занимал объем, равный объему смеси той же температуре.

Уравнения (1.8) и (1.9) применимы к смесям газов, химически не взаимодействующих друг с другом, а также к каждому компоненту смеси. В первом случае n – общее количество вещества компонентов (n=n1+n2+…+nk=∑ni, где i=1, 2, …, k), M – средняя «смешанная» молярная масса, во втором случае n – количество вещества каждого компонента, т.е. n1, n2, …, nk, p – парциальное давление компонента, V – общий объем смеси.

Зависимость между парциальными давлениями и общим выражается уравнениями:

, , …, (1.11а)

Отношения n1/∑ni, n2/∑ni, …, nk/∑ni, называют молярными долями данного компонента. Если молярную долю обозначить через x, то парциальное давление любого i-го компонента смеси (где i = 1, 2, …, k) будет равно:

(1.11б)

Таким образом, парциальное давление каждого компонента равно произведению его молярной доли на общее давление смеси.

Для идеальных газов молярная доля x равна объемной доле φ (V1/∑υi, V2/∑υi, …, Vk/∑υi). Если состав смеси выражен в объемных долях (%), то φ ‘

Кинетическая теория газов. Основным уравнением кинетической теории газов для 1 моль является уравнение:

, (1.13)

где ma – масса молекулы; ū – средняя квадратичная скорость молекул; NA – число молекул в 1 моль. Для любого количества вещества в уравнении вместо NA входит N.

Из основного уравнения кинетической теории газов можно вывести изложенные выше газовые законы и некоторые новые положения.

Сопоставляя уравнения (1.7) и (1.13) получим для 1 моль газа:

, (1.14)

1. Отсюда находим среднюю квадратичную скорость молекул:

(1.15)

Из этого уравнения следует, что для одного и того же газа средняя квадратичная скорость молекул прямо пропорциональна корню квадратному из абсолютной температуры:

(1.16)

где ū1 – средняя квадратичная скорость при температуре T1, а ū2 –то же самое при T2.

Для различных газов при одинаковой температуре средняя квадратичная скорость молекул обратно пропорциональна корню квадратному из относительных молекулярных масс:

(1.17)

Здесь ū1 и

относятся к первому газу, а ū2 и — ко второму.

2. Из уравнения (1.14) находим:

(1.18)

Выражение, стоящее в левой части этого равенства, есть средняя кинетическая энергия поступательного движения молекул идеального газа в количестве вещества 1 моль. Обозначив ее через Е, получим:

(1.19)

Разделив обе части уравнения (1.18) на NA, найдем, что средняя кинетическая энергия поступательного движения одной молекулы газа равна:

(1.20)

где

, а — константа, называемая постоянной Больцмана.

Следовательно, кинетическая энергия идеального газа пропорциональна абсолютной температуре.

Примеры

1.В баллоне емкостью 20 л находится водород под давлением 162·10 5 Па. Сколько шаров-пилотов можно наполнить водородом, если объем шара равен 200 л и давление в нем должно быть равно 2·10 5 Па? Водород при этих условиях считать идеальным газом.

Читайте также:  Сосуд для растирки 6 букв

Решение. Так как температура и масса газа остаются постоянными, то для решения задачи применим закон Бойля – Мариотта (1.1). После наполнения шаров-пилотов объем водорода (V2) буде равен:

где V3 – объем одного шара; n – число шаров; V1 – объем баллона, в котором водород после наполнения последнего шара находится под давлением 2·10 5 Па. Заменив в уравнении (1.1) V2 его значением, получим:

Находим, что водородом можно наполнить восемь шаров-пилотов.

2.При нормальных условиях плотность азота равна 1,25 г/л. Определить плотность газа при 0°С и давлении 5,065·10 5 Па.

Решение. Требуется определить плотность азота при 0°С и давлении 5,065·10 5 Па. Из уравнения (I, 1а) находим ρ2 – плотность при давлении p2:

;

3. При постоянном давлении открытая двухлитровая колба охлаждается от 200 до 0°С. Насколько увеличится масса воздуха в колбе, если плотность воздуха при нормальных условиях равна 1,293 г/л? Изменением объема колбы вследствие охлаждения стекла пренебречь.

Решение. Объем одного и того же количества газа согласно закону Гей-Люссака при 0°С должен быть меньше, чем при 200°С. Если при t2 = 0°С его объем V2 = 2 л, то при t1 = 200°Сон может быть определен из уравнения (1.3):

;

При 0°С масса газа в двухлитровой колбе равна 1,293×2=2,586 (г). При 200°С такую же массу будет иметь 3,465 л. Таким образом, если температура понизится с 200°С до 0°С, то в колбу войдет 3,465-2=1,465 (л) воздуха; соответствующая масса может быть определена из пропорции:

;

Следовательно, масса газа в колбе увеличится на 1,093 г.

4.Смесь эквивалентных количеств этана и кислорода находится в замкнутом сосуде при температуре 15°С и давлении 1·10 5 Па. Каково будет давление после взрыва смеси и приведения содержимого сосуда к первоначальной температуре?

Решение. Напишем уравнение реакции горения этана:

Вода при температуре 15°С будет в жидком состоянии, и при подсчета числа молекул не нужно учитывать образовавшихся молекул воды (так как объем жидкости по сравнению с объемом газа той же массы несоизмеримо мал). Из уравнения следует, что из 9 молекул исходных веществ образовалось 4 молекулы. Так как объем газов и температура остаются постоянными, то с уменьшением числа молекул в 9/4 раза и давление должно уменьшиться в такое же число раз, т.е. оно будет равно: 1·10 5 :9/4=0,4·10 5 Па.

5.Для хлорирования питьевой воды хлор доставляется в баллонах под давлением. Давление в этих баллонах равно ,722·10 5 Па при 0°С и 15,47·10 5 Па при 30°С. Можно ли считать хлор в этих условиях идеальным газом?

Решение. Так как в баллоне объем постоянен, то для идеального газа, как следует из уравнения (I, 5),

— величина постоянная. Вычисляем это отношение для хлора: при 0°С , а при 30°С . Оно непостоянно. Следовательно, хлор в этих условиях считать идеальным газом нельзя.

6. При температуре 18°С и давлении 98,64 кПа объем газа равен 2 л. Привести объем газа к равным нормальным условиям.

Решение. Из уравнения (1.6) находим V1 – объем при нормальном давлении 1,013·10 5 Па и температуре 273 К. Данные задачи переводим в единицы СИ:

;

7. Вычислить при нормальных условиях газовую постоянную R, выразив ее в: а) Па·м 3 /(моль·К); б) Дж/(моль·К).

Решение. Из уравнения (1.7) находим:

. Подставляем в эту формулу числовые значения: p=1.01325·10 5 Па, Т-273,15 К и Vm=2,2414·10 -2 м 3 (молярный объем газа):

а)

;

б) 8,314 Па·м 3 /(моль·К) = 8,314 Н/м 2 · м 3 /(моль·К) = 8,314 Дж/(моль·К).

8. Какое количество вещества и какая масса кислорода находится в газометре емкостью 10 л при 20°С и под давлением 100 кПа?

Решение. Решаем уравнение (1.8) относительно n:

. Данные задач подставляем в уравнение в единицах СИ: R=8,314 Дж/(моль·К), p=1·10 5 Па, Т=273+20=293 К, V=0,01 м 3 :

m = nM ; m = 0,41 · 32 = 13,12 (г)

9. По методу В. Майера определялась относительная молекулярная масса этилового эфира. При испарении эфира массой 0,0856 г его пары вытеснили в эвдиометрическую трубку воздух объемом 29,2 мл; высота водяного столба в эвдиометрической трубке 22,5 см, температура воздуха 17°С, атмосферное давление 1005 гПа. Давление насыщенного пара воды при 17°С равно 19,37гПа. Вычислить относительную молекулярную массу эфира и найти относительную ошибку опыта в процентах.

Решение. Давление сухого воздуха, заключенного в эвдиометрической трубке, будет равно:

где 1 – значение плотности воды и 13,6 – значение плотности ртути. Подставляем в уравнение (I, 9) соответствующие значения, выразив их в единицах СИ, получаем:

;

Таким образом, относительная молекулярная масса эфира равна 72,94. Относительная ошибка в процентах равна:

где 74,08 – табличная величина относительной молекулярной массы эфира.

10. Смешаны водород объемом 3 л и под давлением 2·10 5 Па с кислородом объемом 2 л под давлением 1·10 5 Па. Общий объем смеси равен 4 л. Определить парциальные давления газов и общее давление смеси.

Решение. Водород, занимавший объем V1, равный 3 л, при давлении p1 равном 2·10 5 Па, после смешивания с кислородом распространится в объеме V2, равном 4 л. Парциальное давление водорода , равное p2, находим из закона Бойля – Мариотта (1.1):

; .

Парциальное давление кислорода находим аналогичным способом:

Читайте также:  Проверка сосудов через вены

Общее давление p смеси равно: 1,5·10 5 + 0,5·10 5 = 2·10 5 (Па).

11. Смесь из 2 моль азота, 3 моль кислорода и некоторого количества вещества аммиака при 20°С и давлении 4·10 5 Па занимает объем 40 дм 3 . Вычислить количество аммиака в смеси и парциальное давление каждого из газов.

Решение. Из уравнения (1.8) находим n – общее количество всех газообразных веществ, составляющих смесь, и подставляем R, равное 8,314 Дж/(моль·К), p = 4·10 5 Па, V = 4·10 -2 м 3 , T =273+20 = 293 К :

;

Количество вещества аммиака

n (NH3) = 6,57 – 2 – 3 = 1,57 (моль)

Парциальное давление газов вычисляем по уравнению (1.11а):

p (N2) = 4·10 5 · 2 : 6,57 = 1,217·10 5 (Па);

p (O2) = 4·10 5 · 3 : 6,57 =1,826·10 5 (Па);

p (NH3) = 4 · 10 5 · 1,57 : 6,57 =0,956·10 5 (Па).

12. 0,5 моль водорода и 0,25 моль азота находятся в газометре вместимостью 5 л при 10°С. Вычислить парциальное давление каждого из газов и состав смеси в объемных долях.

Решение. Парциальное давление каждого компонента находим из уравнения (1.8):

;

По формуле (1.12) вычисляем содержание водорода и азота в объемных долях:

;

13. Какое давление будет иметь при 0°С кислород объемом 10 л и количеством вещества 0,25 моль? Средняя квадратичная скорость молекул кислорода при этой температуре равна 461 м/с.

Решение. Из формулы (1.13) находим давление, подставляя значения в единицах СИ: 10 л равны 0,01 м 3 , масса газа (N·ma) равна произведению молярной массы на количество вещества, т.е. 0,032 кг/моль · 0,25 моль = 0,008 кг:

;

14. При какой температуре средняя квадратичная скорость молекул хлора будет равна 500 м/с?

Решение. Из формулы (1.14) находим T:

Подставляем значения, выражая их в СИ: ū в м/с, М в кг/моль, а R в Дж/(моль·К), и получаем:

Следовательно, температура t будет равна:

Источник

Источник

В данной работе предлагается определенный подход к классификации и способам решения задач на газовые законы. Такой подход позволит быстро сориентироваться в большом количестве задач на свойства газов и применить к ним те или иные приемы решения.

Основные теоретические сведения

Состояние газа характеризуется совокупностью трех физических величин или термодинамических параметров:объемом газа V, давлением Р и температурой Т. Состояние газа, при котором эти параметры остаются постоянными считают равновесным состоянием.В этом состоянии параметры газа связаны между собой уравнением состояния. Самый простой вид уравнение состояния имеет для идеального газа. Идеальным газом называют газ, молекулы которого не имеют размеров (материальные точки) и взаимодействуют друг с другом лишь при  абсолютно упругих соударениях (отсутствует межмолекулярное притяжение и отталкивание). Реальные газы тем точнее подчиняются законам идеальных газов, чем меньше размеры их молекул (т.е. газ одноатомный),  и чем больше он разряжен.

Уравнение состояния идеального газа или уравнение Менделеева-Клапейрона имеет вид:         
– универсальная газовая постоянная

Из этого закона вытекает, что для двух произвольных состояний газа справедливо равенство, называемое уравнением Клапейрона:

Так же для идеальных газов имеют место следующие экспериментальные законы:

Закон Бойля — Мариотта:

Закон Гей-Люссака:
Закон Шарля:
Если в сосуде находится смесь нескольких газов, не вступающих друг с другом в химические реакции, то результирующее давление определяется по закону Дальтона: давление смеси равно сумме давлений, производимых каждым газом в отдельности, как если бы он один занимал весь сосуд.

Р = Р1 + Р2 +… + РN

Задачи, решение которых основывается на данных уравнениях, можно разделить на две группы:

§ задачи на применение уравнения Менделеева-Клапейрона.

  • задачи на газовые законы.

ЗАДАЧИ НА ПРИМЕНЕНИЕ УРАВНЕНИЯ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА.

Уравнение Менделеева-Клапейрона применяют тогда, когда

I. дано только одно состояние газа изадана масса газа (или вместо массы используют количество вещества или плотность газа).

II. масса газа не задана, но она меняется, то есть утечка газа или накачка.

При решении задач на применение равнения состояния идеального газа надо помнить:

1.если дана смесь газов, то уравнение Менделеева-Клапейрона записывают для каждого компонента в отдельности.Связь между парциальными давлениями газов, входящих в смесь и результирующим давлением смеси, устанавливается законом Дальтона.

2.если газ меняет свои термодинамические параметры или массу, уравнение Менделеева-Клапейрона записывают для каждого состояния газа в отдельности и полученную систему уравнений решают относительно искомой величины.

P.S.

§ Необходимо пользоваться только абсолютной температурой и сразу же переводить значения температуры по шкале Цельсия в значения по шкале Кельвина.

§ В задачах, где рассматривается движение сосуда с газом (пузырька воздуха, воздушного шара) к уравнению газового состояния добавляют уравнения механики.

§ если между газами происходит реакция, то надо составить уравнение реакции и определить продукты реакции

ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ

Определить давление кислорода в баллоне объемом V = 1 м3  при температуре t=27 °С. Масса кислорода m = 0,2 кг.

V = 1 м3
μ = 0,032кг/моль
m = 0,2 кг
t=27 °С

Т=300К

Записываем уравнение Менделеева-Клапейрона и находим из него давление, производимое газом:

Р-?

Баллон емкостью V= 12 л содержит углекислый газ. Давление газа Р = 1 МПа, температура Т = 300 К. Определить массу газа.

V = 12 л
μ =0,044кг/моль
Т=300К
Р =1 МПа

0,012м3

1∙106Па

Записываем уравнение Менделеева-Клапейрона и находим массу газа

m -?

При температуре Т = 309 К и давлении Р = 0,7 МПа плотность газа ρ = 12 кг/м3. Определить молярную массу газа.

V = 12 л
Т=309К
Р =0,7 МПа
ρ = 12 кг/м3

0,012м3

0,7∙106Па

Записываем уравнение Менделеева-Клапейрона

Так как масса газа может быть определена через плотность газа и его объем имеем:

μ -?

Отсюда находим молярную массу газа:

Читайте также:  Узи сосудов нижних конечностей в краснодаре

Какова плотность водорода при нормальном атмосферном давлении и температуре 20°С.

V = 12 л
t=20°C
Р =105 Па
μ =0,002кг/моль

0,012м3

T=293К

Нормальное атмосферное давление – это давление, равное 105 Па. И эту информацию запишем как данные задачи. Записываем уравнение Менделеева-Клапейрона

ρ -?

Так как масса газа может быть определена через плотность газа и его объем имеем:

Отсюда находим плотность газа:

До какой температуры Т1 надо нагреть кислород, чтобы его плотность стала равна плотности водорода при том же давлении ,но при температуре Т2 = 200 К?

Т2=200К
ρ1 = ρ2
μ1 =0,032кг/моль
μ2 =0,002кг/моль

Записываем уравнение Менделеева-Клапейрона для кислорода и для водорода через плотности газов:

Так как по условию давление у двух газов одинаковое, то можно приравнять правые части данных уравнений:

Сократим на R и на плотность ρ (по условию плотности газов равны) и найдем Т1

Т1 -?            
 

В сосуде объемом 4·10-3 м3 находится 0,012 кг газа при температуре 177°С. При какой температуре плотность этого газа будет равна 6·10-6 кг /см3, если давление газа остается неизменным.

Смесь газов

В баллоне объемом 25 литров находится 20г азота и 2 г гелия при 301К. Найдите давление в баллоне.

Определить плотность смеси, состоящей из 4 граммов водорода и 32 граммов кислорода при давлении 7°С и давлении 93кПа?

Сосуд емкостью 2V разделен пополам полупроницаемой перегородкой. В одной половине находится водород массой mВ  и азот массой mА. В другой половине вакуум. Во время процесса поддерживается постоянная температура Т. Через перегородку может диффундировать только водород. Какое давление установиться в обеих частях сосуда?

μа
m1 = m2 = m3 = m
μв
μк
Т

отсек №1   отсек №2 отсек №3

Диффундирует только водород. Следовательно, после завершения установочных процессов, в отсеке I будет водород, массой на

РI-?
РII-?

половину меньшей, чем была, и весь азот. А во втором отсеке только половина массы водорода. Тогда для первого отсека установившееся давление равно:

Для отсека II можно так же определить установившееся давление:

Вакуумированный сосуд разделен перегородками на три равных отсека, каждый объемом V. В средний отсек ввели одинаковые массы кислорода, азота и водорода. В результате чего давление в этом отсеке стало равно Р. Перегородка I проницаема только для молекул водорода, перегородка II проницаема для молекул всех газов. Найти давления Р1 Р2 и Р3, установившиеся в каждом отсеке, если температура газа поддерживается постоянной и равной Т.

μа
m1 = m2 = m3 = m
μв
μк
Р

отсек №1  отсек №2 отсек №3

После диффундирования газов через перегородки в первом отсеке окажется треть массы водорода. Во втором и в третьем отсеках будет треть водорода, половина массы кислорода и половина всей массы азота. Тогда для первого отсека установившееся давление равно:

Р1-?
Р2-?
Р3-?

Если до диффундирования первоначальное давление во втором отсеке было Р, то можно записать:

Отсюда можно найти

Находим выражение для давления во втором и в третьем отсеках

И тогда давление в первом отсеке равно:

С химическими реакциями

В сосуде находится смесь азота и водорода. При температуре Т, когда азот полностью диссоциирован на атомы, давление равно Р (диссоциацией водорода можно пренебречь). При температуре 2Т, когда оба газа полностью диссоциированы, давление в сосуде 3Р. Каково отношение масс азота и водорода в смеси?

μа
μв
Т1 =Т
Т2 =2Т
Р1=Р
Р2=3Р

mв μвmа
Т             Т
Рв                Ра
 

При температуре Т параметры газов в сосуде следующие:

И результирующее давление в сосуде по закону Дальтона равно:

2Т             2Т
Р’в                Р’а
 

При температуре 2Т параметры газов в сосуде следующие:

И результирующее давление в сосуде по закону Дальтона равно:

В герметично закрытом сосуде находится 1 моль неона и 2 моля водорода. При температуре Т1=300К, когда весь водород молекулярный, атмосферное давление в сосуде Р1=105 Па. При температуре Т2=3000К давление возросло до Р2=1,5∙105 Па. Какая часть молекул водорода диссоциировала на атомы?

ν1=1 моль
ν2=2 моль
Т1 =300К
Т2 =3000К
Р1=105 Па
Р2=1,5∙105 Па

При температуре Т1 давление газа в сосуде складывается из парциальных давлений двух газов и равно:

При температуре Т2 давление газа равно:

Из уравнения (1):

Из первого находим объем V:

В закрытом баллоне находится смесь из m1= 0,50 г водорода и m2 = 8,0 г кислорода при давлении Р1= 2,35∙105 Па. Между газами происходит реакция с образованием водяного пара. Какое давление Р установится в баллоне после охлаждения до первоначальной температуры? Конденсации пара не происходит.

V = 25 л
μ1 = 2г/моль
m1 = 0,5 г
μ2 = 32г/моль
m2 = 8 г
В сосуде будет происходить реакция водорода с кислородом с образованием воды:

 

Р-? Из уравнения реакции видно, что если в реакцию вступит весь водород, то кислорода только половина

В результате образуется ν3=0,25 молей водяного пара и останется ν4= 0,125молей кислорода.

По закону Дальтона результирующее давление в сосуде равно сумме парциальных давлений

Так как известно, что до реакции давление в сосуде было Р1, то для этого момента можно так же применить закон Дальтона:

Решаем полученные уравнение в системе относительно неизвестного:

Дата добавления: 2018-04-04; просмотров: 3894;

Источник