В сосуде разделенном перегородкой
2017-05-27
Теплоизолированный сосуд, разделенный на две неравные части ($V_{1} = 2 л, V_{2} = 3 л$), наполнен идеальным газом. В первой части газ находится под давлением $p_{1} = 10^{5} Па$ при температуре $t_{1} = 27^{ circ} С$, во второй части — под давлением $p_{2} = 5 cdot 10^{5} Па$ и той же температуре (рис.). Найти изменение энтропии всей системы после удаления перегородки и установления равновесного состояния. Изменится ли ответ, если в объемах $V_{1}$ и $V_{2}$ находятся разные газы?
Решение:
Рассматриваемая система изолирована — теплообмен не происходит, внешние силы не действуют. После удаления перегородки начнется заведомо необратимый самопроизвольный процесс, в результате которого во всем сосуде будет находиться однородный газ под некоторым давлением $p_{0}$, причем $p_{1}
Энтропия системы в результате этого необратимого процесса увеличивается. Изменение ее определяется только начальным и конечным состояниями системы. Чтобы найти это изменение, надо представить себе любой обратимый процесс, переводящий данную систему из начального состояния в конечное.
Представим себе, что сосуды разделены поршнем, который перемещается до тех пор, пока давление с обеих его сторон не станет одинаковым и равным $p_{0}$ (газ в левой части сосуда сжимается, в правой расширяется). Чтобы процесс был изотермическим и обратимым, во-первых, должна быть нарушена теплоизоляция сосуда: газ в левой части сосуда должен отдавать теплоту, в правой — получать. Во-вторых, Рис. 63 поршень должен двигаться медленно, следовательно, на него должна действовать внешняя сила, компенсирующая результирующую силу давления газов.
После выравнивания давлений обе части газа окажутся в одинаковых равновесных состояниях; поэтому если убрать перегородку (поршень), то энтропия системы не изменится. Следовательно, искомое изменение энтропии системы равно сумме изменений энтропии каждой части газа в отдельности при описанном изотермическом перемещении поршня:
$Delta S = Delta S_{1} + Delta S_{2} = int_{p_{1}}^{ p_{0}} frac{ delta Q}{T} + int_{p_{2}}^{p_{0}} frac{ delta Q}{T}$. (1)
При изотермическом процессе
$delta Q_{T} = delta A_{T} = pdV = – V dp$.
[Последнее из равенств следует из того, что $d(pV) = 0$ при $pV = const$.] Тогда из уравнения (1)
$Delta S = frac{1}{T_{1}} left ( int_{p_{0}}^{p_{1}} Vdp + int_{p_{0}}^{p_{2}} Vdp right )$.
Выражая в интегралах текущий объем $V$ из уравнений изотермических процессов, записанных для начального и текущего состояний, получим
$Delta S = frac{1}{T_{1}} left ( int_{p_{0}}^{p_{1}} frac{p_{1}V_{1}}{p} dp + int_{p_{0}}^{p_{2}} frac{p_{2}V_{2}}{p} dp right ) = frac{1}{T_{1}} left ( p_{1}V_{1} ln frac{p_{1}}{p_{0}} + p_{2}V_{2} ln frac{p_{2}}{p_{0}} right )$. (2)
Давление $p_{0}$ может быть найдено из уравнений изотермических процессов для каждой части газа:
$p_{1}V_{1} = p_{0}V_{1}^{ prime}, p_{2}V_{2} = p_{0}V_{2}^{ prime}$, (3)
где $V_{1}^{ prime}$ и $V_{2}^{ prime}$ — объемы каждой части газа после выравнивания давлений, причем $V_{1}^{ prime} + V_{2}^{ prime} = V_{1} + V_{2}$. Тогда почленное сложение уравнений (3) дает
$p_{1}V_{1} + p_{2}V_{2} = p_{0}(V_{1} + V_{2})$,
откуда
$p_{0} = frac{p_{1}V_{1} + p_{2}V_{2}}{V_{1} + V_{2}}$. (4)
Подставив выражение (4) в (2), находим
$Delta = frac{1}{T_{1}} left [ p_{1}V_{1} ln frac{p_{1}(V_{1} + V_{2})}{p_{1}V_{1} + p_{2}V_{2}} + p_{2}V_{2} ln frac{p_{2}(V_{1} + V_{2})}{p_{1}V_{1} + p_{2}V_{2}} right ]= 1,1 Дж/К$.
Если бы в объемах $V_{1}$ и $V_{2}$ находились разные газы, то после удаления перегородки, даже при условии, что по обе ее стороны газы находятся под одинаковым давлением $p_{0}$, начнется необратимый самопроизвольный процесс диффузии, который приведет к выравниванию концентраций каждого из газов во всем объеме сосуда. Очевидно, что в процессе диффузии энтропия будет возрастать. Следовательно, в этом случае полное изменение энтропии системы больше значения, найденного ранее.
Чтобы рассчитать изменение энтропии в процессе диффузии, надо заменить реальный необратимый процесс таким воображаемым обратимым процессом, который приведет систему в то же самое конечное состояние. Такой процесс может быть осуществлен только с помощью полупроницаемых перегородок, т. е. перегородок, проницаемых для молекул одного газа и непроницаемых для молекул другого газа.
Источник
Автор
Тема: Теплоизолированный сосуд разделён пористой перегородкой на две части (Прочитано 32544 раз)
0 Пользователей и 1 Гость просматривают эту тему.
Помогите, пожалуйста, решить две задачи:
1. Теплоизолированный сосуд объёмом 2 куб.м разделён пористой перегородкой на две равные части. Атомы гелия могут свободно проникать через поры в перегородке, а атомы аргона – нет. В начальный момент в одной части сосуда находится 1 кг гелия, а в другой – 1 кг аргона, а средняя квадратичная скорость атомов аргона равна скорости атомов гелия и составляет 500 м/с. Определите внутреннюю энергию гелий-аргоновой смеси после установления равновесия в системе.
2. Теплоизолированный сосуд объёмом 2 куб.м разделён пористой перегородкой на две равные части. Атомы гелия могут свободно проникать через поры в перегородке, а атомы аргона – нет. В начальный момент в одной части сосуда находится гелий массой 1 кг, а в другой – аргон массой 1 кг. Средняя квадратичная скорость атомов аргона равна скорости атомов гелия и составляет 500 м/с. Определите внутреннюю энергию газа, оставшегося в той части сосуда, где первоначально находился гелий, после установления равновесия в системе.
И ещё вопрос по форуму: многие решённые задачи содержат ссылки на рисунки, которых нигде нет. Как их найти?
« Последнее редактирование: 18 Марта 2012, 18:23 от alsak »
Записан
И ещё вопрос по форуму: многие решённые задачи содержат ссылки на рисунки, которых нигде нет. Как их найти?
Их искать не надо. Зайдите на форум под своим именем (ником) и все увидите.
Записан
Решение: наиболее рациональный способ решения задачи – энергетический. Для начала определим количество вещества в сосуде:
ν = νHe + νAr = m/MHe + m/MAr.
Здесь: молярная масса гелия: MHe = 4г/моль, молярная масса аргона: MAr = 40 г/моль. После установления равновесия в системе гелий равномерно распределится по всему объёму сосуда. В результате в той части сосуда, где первоначально находился аргон, окажется смесь гелия и аргона, количество молей вещества в получившейся смеси будет равно:
ν1 = νHe /2 + νAr = m/2MHe + m/MAr,
В другой части сосуда останется только гелий, и число молей будет:
ν2 = νHe /2 = m/2MHe,
Аргон и гелий будем считать идеальными газами. Внутренняя энергия идеального газа, это суммарная средняя кинетическая энергия движения всех его молекул.
[ U={{E}_{He}}+{{E}_{Ar}}=2cdot frac{mcdot {{upsilon }^{2}}}{2}=mcdot {{upsilon }^{2}}, ]
Здесь: E – средняя кинетическая энергия движения всех молекул газа, m =1 кг – масса газа, υ = 500 м/с – средняя квадратичная скорость молекул. После установления равновесия, согласно закона сохранения энергии, суммарная энергия системы не изменится (система замкнута, т.к. сосуд теплоизолирован). При этом внутренняя энергия пропорциональна количеству молекул (количеству вещества) в каждой из частей сосуда. Другими словами – полная энергия системы Uразделится пропорционально количеству вещества в каждой из частей сосуда. Для первой части, содержащей смесь гелия и аргона, получим:
[ {{U}_{1}}=frac{{{nu }_{1}}}{nu }cdot U, ]
Для второй части сосуда, содержащей только гелий:
[ {{U}_{2}}=frac{{{nu }_{2}}}{nu }cdot U, ]
После подстановки определённых ранее количеств вещества и преобразований, получим:
[ {{U}_{1}}=frac{left( 2{{M}_{He}}+{{M}_{Ar}} right)}{2left( {{M}_{He}}+{{M}_{Ar}} right)}cdot m{{upsilon }^{2}}, ]
[ {{U}_{2}}=frac{{{M}_{Ar}}}{2left( {{M}_{He}}+{{M}_{Ar}} right)}cdot m{{upsilon }^{2}}. ]
Ответ: U1 = 1,36∙105 Дж, U2 = 1,14∙105 Дж.
Записан
Записан
Посидел, поразмышлял и, сложилось, впечатление, что представленное Вами решение первой из указанных задач не совсем верно. Мне кажется, что без сложных вычислений можно получить следующее:
Известно, что скорости всех частиц газов были равны 500 м/с, а общая масса газов равна 2 кг, следовательно, внутренняя энергия, которая является суммой кинетических энергий молекул газа, будет равна U=[2 кг*(500 м/с) в квадрате]/2=2,5*10 в 5-ой степени Дж.
Или я не прав?
Записан
Известно, что скорости всех частиц газов были равны 500 м/с, а общая масса газов равна 2 кг, следовательно, внутренняя энергия, которая является суммой кинетических энергий молекул газа, будет равна U=[2 кг*(500 м/с) в квадрате]/2=2,5*10 в 5-ой степени Дж.
Или я не прав?
Это полная энергия системы (в этом смысле Вы правы), но…
по условию тебовалось найти внутренюю энергию газа в 1-й части сосуда и во 2-й части.
Полная энергия и разделится пропорционально количеству вещества.
Записан
Так в первой задаче и требуется найти полную энергию…
Записан
Читайте внимательно решение. Перегородка пропускает только гелий!
После установления равновесия в системе гелий равномерно распределится по всему объёму сосуда. В результате в той части сосуда, где первоначально находился аргон, окажется смесь гелия и аргона,
В другой части сосуда останется только гелий
Записан
Источник
Задача по физике – 5277
Тепловоз «Карно» ездит из пункта А в пункт В по маршруту длиной $L = 20 км$. Двигатель тепловоза работает по циклу Карно, нагревая воду от температуры атмосферы
до $100^{ circ} C$. Обычно тепловоз выезжал из А ночью, когда температура воздуха была равна $T_{н} = 5^{ circ} С$, и в туже ночь возвращался; запас топлива в тепловозе рассчитан строго для поездки ночью до пункта В и обратно. Однажды чиновники задержали тепловоз в пункте В, так что обратно он выехал днём, когда температура воздуха составляла $T_{д} = 25^{ circ} С$. На сколько «Карно» не доедет до пункта А из-за нехватки топлива? Считать силу трения и силу сопротивления воздуха постоянными, тепловые потери при нагревании воды составляют долю $eta$ от энергии сгорающего топлива.
Подробнее
Задача по физике – 5278
К резиновому воздушному шару, содержащему массу $m$ гелия, привязана очень длинная верёвка, масса единицы длины верёвки $lambda$. При атмосферном давлении $p_{0}$ шар зависает над полом на высоте $H$ (см. рис.). На какой высоте окажется шар, если атмосферное давление увеличится и станет равным $p_{1}$? Считать, что давление газа в шаре всегда на $Delta p$ больше, чем давление окружающего воздуха в данный момент. Молярные массы воздуха и гелия равны $M_{в}$ и $M_{г}$ соответственно.
Подробнее
Задача по физике – 5279
Сосуд разделён на две половины герметичной перегородкой. В левой половине находится в равновесии смесь гелия и ксенона (см. рис. ); масса содержащегося гелия $m_{1}$, масса ксенона $m_{2}$. В правой половине сосуда первоначально—вакуум. В перегородке на короткое время открыли небольшое отверстие. Найти отношение концентраций гелия и ксенона в правой части сосуда после того, как отверстие закрыли. Молярные массы гелия и ксенона равны $M_{1}$ и $M_{2}$ соответственно.
Подробнее
Задача по физике – 5280
Груз поднимают при помощи невесомого поршня, скользящего без трения в вертикальном теплоизолированном цилиндре. Под поршнем находится идеальный одноатомный газ, медленно нагреваемый при помощи электронагревателя с КПД $eta = 1/2$. Определить КПД подъёмного устройства, если атмосферное давление отсутствует.
Подробнее
Задача по физике – 5281
Правый конец металлического стержня длиной 1 м погружен в ацетон, левый погружают в кипящую воду. На стержне, на расстоянии 47 см от его левого конца, лежит маленький кристалл нафталина. Сколько ацетона выкипит, пока расплавится весь нафталин? Считайте, что вся теплопередача происходит только через стержень, а поток тепловой энергии через тонкий слой прямо пропорционален разности температур на торцах слоя. Количество кипящей воды в сосуде очень велико, кипение поддерживается. Температура кипения ацетона и температура плавления нафталина заданы.
Подробнее
Задача по физике – 5282
Теплоизолированный сосуд разделён на две части теплоизолирующим поршнем (см. рис.). С одной стороны от поршня, занимая объём $V_{1}$, находится масса $m_{1}$ водорода, с другой стороны, в объёме $V_{2}$, — масса $m_{2}$ гелия. Газы в сосуде нагревают, подключая к источнику постоянного напряжения два последовательно соединённых нагревательных элемента. Первый из этих элементов нагревает водород; известна зависимость его электрического сопротивления от температуры $R_{1}(T)$. Второй элемент находится в отделении с гелием. При включении нагревательных элементов поршень не сдвинулся. Какова зависимость сопротивления второго элемента от температуры?
Подробнее
Задача по физике – 5283
Горизонтально расположенный теплоизолированный сосуд разделён на $N$ частей $V_{1}, V_{2}, cdots V_{N}$ закреплёнными поршнями, между которыми находятся различные массы идеального одноатомного газа при различных начальных температурах и давлениях $P_{1}, P_{2}, cdots, P_{N}$. Определить давление в секции сосуда с номером i после того, как поршни получили возможность свободно перемещаться, а в сосуде установилось термодинамическое равновесие. Теплоёмкостью поршней пренебречь.
Подробнее
Задача по физике – 5284
Горизонтально расположенный теплоизолирующий цилиндр разделён перегородкой на два равных объёма $V$,в которых находится по одинаковому числу молей $nu$ идеального одноатомного газа при температурах $T_{1}$ и $T_{2}$ ($T_{1} > T_{2}$). Около небольшого отверстия в перегородке со стороны более нагретого газа расположен небольшой пропеллер, приводимый в движение струёй перетекающего через отверстие газа (см. рис.). Приводимый им в движение генератор подключён к расположенному в том же объёме нагревателю. До того, как отверстие было открыто, температура помещённых внутрь сосуда приборов равнялась температуре окружающего газа. Определить давление, которое установится в системе после достижения равновесия, если суммарная теплоёмкость устройств внутри цилиндра равна $C$.
Подробнее
Задача по физике – 5285
На нерастяжимой нити длиной $2L$ закреплены на расстоянии $L/2$ друг от друга два маленьких шарика с зарядами $+q$ и $-2q$. Концы нити связали, образовавшееся кольцо натянули на два тонких цилиндра, расположенных на расстоянии $L$ друг от друга. Радиусы цилиндров очень малы, так что обе половины нити лежат практически на одной прямой (см. рис.). Систему поместили в однородное электрическое поле $E$. Первоначально нить вместе с шариками имела небольшую скорость, так что она скользила по цилиндрам. Затем, из-за небольшого трения о воздух, система остановилась. Где могут расположиться шарики? Силой тяжести и трением нити о цилиндры пренебречь.
Подробнее
Задача по физике – 5338
Медный кубик со стороной $a$, нагретый до температуры $t > 0^{ circ} C$, был помещён в лёгкий, тонкий, плотно прилегающий к стенкам теплоизолирующий колпачок так, что открытой осталась только одна грань (см. рис.). Кубик положили открытой гранью вниз на ледяной куб массы $M$, плавающий в воде при температуре $0^{ circ} C$. Кубик начал проплавлять во льду углубление квадратного сечения, всё глубже погружаясь в него. После установления в системе теплового равновесия измерили глубину, на которую погрузился в воду ледяной куб. Построить график зависимости этой глубины от первоначальной температуры меди. Известны плотности воды, льда и меди, а также удельная теплоёмкость меди и удельная теплота плавления льда. Считать, что вода, образующаяся при плавлении льда, имеет температуру $0^{ circ} C$ и та её часть, которая вытекает из углубления, сразу удаляется —стекает с поверхности ледяного куба.
Подробнее
Задача по физике – 5339
Два литра воды нагревают на плитке мощностью 500 Вт. Часть тепла теряется в окружающую среду. Зависимость мощности тепловых потерь от времени приведена на рис. Начальная температура воды равна $20^{ circ} C$. За какое время вода нагреется до $30^{ circ} C$? Удельная теплоёмкость воды $c$ известна.
Подробнее
Задача по физике – 5340
Имеются три цилиндрических сосуда, отличающиеся только по высоте. ?мкости сосудов равны 1 л, 2 л и 4 л. Все сосуды заполнены водой до краёв. Воду в сосудах греют с помощью кипятильника. Из-за потерь тепла в атмосферу мощности кипятильника не хватает для того, чтобы вскипятить воду. В первом сосуде воду можно нагреть до $t_{1} = 80^{ circ} C$, во втором — до $t_{2} = 60^{ circ} C$. До какой температуры можно нагреть воду в третьем сосуде, если комнатная температура $t = 20^{ circ} C$? Считайте, что теплоотдача в атмосферу с единицы площади поверхности пропорциональна разности температур воды и окружающей среды. Вода в сосуде прогревается равномерно.
Подробнее
Задача по физике – 5341
В лаборатории провели исследование 1 г новой жидкости X. На рис. дан график зависимости объёма синтезированной жидкости от температуры. Оказалось, что теплоёмкость полученного количества жидкости равна $c = 3 Дж/^{ circ} C$ и не зависит от температуры, что температура кипения — $T_{К} = 80^{ circ} C$, а теплота парообразования — $Q_{П} = 240 Дж$. Также выяснилось, что жидкость не смешивается с водой. В воду объёмом $V_{В} = 5 мл$ при температуре $T_{В} = 9^{ circ} C$ налили $V_{Х} = 1 мл$ жидкости X при некоторой температуре $T_{X}$. Найти минимальную $T_{X}$, при которой вся добавленная в воду жидкость выкипит. Удельная теплоёмкость воды известна.
Подробнее
Задача по физике – 5342
На сильном морозе лыжники дышат через специальную «грелку», внутри пластмассового корпуса которой находится система проволочных решёток. Решётки нагреваются воздухом, который лыжник выдыхает, и нагревают вдыхаемый воздух. При температуре на улице $T_{0} = – 20^{ circ} C$ температура грелки, которую использовал лыжник, была равна $T_{1} = – 6^{ circ} C$. Во время разминки лыжник стал дышать вдвое чаще. До какой температуры $T_{2}$ нагрелась грелка?
Примечание. Температура воздуха, выдыхаемая лыжником, равна $T_{Л} = 36^{ circ} C$. Считать, что температура воздуха, проходящего через грелку, успевает сравняться с её температурой. Мощность теплоотдачи от грелки в окружающую среду (через боковую поверхность) пропорциональна разности температур грелки и окружающей среды. Теплоёмкость грелки достаточно большая, так что за время вдоха/выдоха её температура практически не меняется.
Подробнее
Задача по физике – 5343
Система, изображённая на рисунке, состоит из неподвижного блока A, через который перекинута верёвка, соединяющая кусок льда В при температуре $0^{ circ} C$ и невесомый блок C. Через блок C также перекинута верёвка, на одном конце которой висит груз массой $m = 10 г$, а другой конец которой соединён с полом через пружину жёсткостью $k = 100 Н/м$. Вначале кусок льда погружен наполовину в воду при температуре $t_{к} = 20^{ circ} C$, находящуюся в стакане. Объём воды в стакане $V = 200 мл$. В процессе таяния льда система приходит в движение, и лёд поднимается из воды. Какая температура будет у воды, когда лёд полностью выйдет из неё? Считать, что теплообмен происходит только между льдом и водой в стакане. Плотности воды и льда, удельные теплоёмкость воды и теплота плавления льда, а также ускорение свободного падения известны.
Подробнее
Источник