В сосуде с водой положили кусок льда массой 84 г
1. На рисунке представлен график зависимости температуры t от времени τ для куска льда массой 480 г, помещённого при температуре −20 °С в калориметр. В тот же калориметр помещён нагреватель. Найдите, какую мощность развивал нагреватель при плавлении льда, считая эту мощность в течение всего процесса постоянной. Теплоёмкостью калориметра и нагревателя можно пренебречь. (Удельная теплота плавления льда — 330 кДж/кг.)
Решение.
Чтобы расплавить весь имеющийся лёд необходимо затратить энергию:
Здесь m — масса льда, λ — удельная теплота плавления льда.
Мощность нагревателя W — есть расход энергии в единицу времени. Время плавления определяем по графику:
Тогда, используя табличные данные и данные задачи, получаем:
Ответ: 330 Вт.
2. Сколько граммов воды можно нагреть на спиртовке на 30 °С, если сжечь в ней 21 грамм спирта? КПД спиртовки (с учётом потерь теплоты) равен 30 %. (Удельная теплота сгорания спирта 2,9·107Дж/кг, удельная теплоёмкость воды 4200 Дж/(кг·°С)).
Решение.
При нагревании тела на температуру тело получает количество теплоты При сгорании тела выделяется энергия Учитывая, что КПД спиртовки равен 30 %, получаем:
Ответ: 1450 г.
3. Теплоизолированный сосуд содержит смесь льда и воды, находящуюся при температуре 0 °С. Масса льда 40 г, а масса воды 600 г. В сосуд впускают водяной пар при температуре +100 °С. Найдите массу впущенного пара, если известно, что окончательная температура, установившаяся в сосуде, равна +20 °С.
Решение.
Окончательная температура положительна, значит, весь лед расплавился, и вся получившаяся вода нагрелась.
При этом пар конденсировался и полученная вода остыла. С учетом этого запишем уравнение теплового баланса:
и выразим отсюда массу пара:
Здесь Qпол и Qотд — полученная и отданная теплота соответственно, m1, m2, m3 — массы льда, воды, пара соответственно, λ — удельная теплота плавления льда, c — удельная теплоемкость воды, τ — удельная теплота парообразования, t2 — конечная температура, t1 — исходная температура смеси лед-вода, t3 — температура пара.
Переведя граммы в килограммы и подставляя данные задачи и табличные данные, получаем:
Ответ: 25,4 г.
4. Литровую кастрюлю, полностью заполненную водой, из комнаты вынесли на мороз. Зависимость температуры воды от времени представлена на рисунке. Какое количество теплоты выделилось при кристаллизации и охлаждении льда?
Примечание.
Удельную теплоту плавления льда считать равной
Решение.
Поскольку объём воды равен одному литру, масса воды равна одному килограмму. Таким образом, кристаллизовался 1 кг льда, выделив при этом
Также тепло выделялось при охлаждении льда:
Следовательно, при кристаллизации и охлаждении льда выделилось 372 кДж энергии.
Ответ: 372 кДж.
5. Сколько граммов спирта нужно сжечь в спиртовке, чтобы нагреть на ней воду массой 580 г на 80 °С? КПД спиртовки (с учётом потерь теплоты) равен 20%. (Удельная теплота сгорания спирта 2,9·107Дж/кг, удельная теплоёмкость воды 4200 Дж/(кг·°С)).
Решение.
При нагревании тела на температуру тело получает количество теплоты При сгорании тела выделяется энергия Учитывая, что КПД спиртовки равен 20%, получаем:
Ответ: 33,6 г.
6. Какое количество теплоты выделится при кристаллизации 2 кг расплавленного олова, взятого при температуре кристаллизации, и последующем его охлаждении до 32 °С? (Удельная теплоёмкость олова — 230 Дж/(кг · °С).)
7. Тонкостенный сосуд содержит смесь льда и воды, находящуюся при температуре 0 °С. Масса льда 350 г, а масса воды 550 г. Сосуд начинают нагревать на горелке мощностью 1,5 кВт. Сколько времени понадобится, чтобы довести содержимое сосуда до кипения? Потерями теплоты и удельной теплоёмкостью сосуда, а также испарением воды можно пренебречь.
Решение.
Чтобы довести содержимое сосуда до кипения за время τ, необходимо расплавить лёд, а затем нагреть всю получившуюся воду до температуры кипения, следовательно, затратить энергию, равную
Здесь m1, m2, — массы льда и воды соответственно, λ — удельная теплота плавления льда, c — удельная теплоёмкость воды, t2 — температура кипения воды, t1 — исходная температура смеси лед-вода.
Мощность горелки W есть расход энергии в единицу времени, откуда находим τ:
Подставляя табличные данные и данные задачи, находим:
Ответ: 5,5 мин.
8. На рисунке представлен график зависимости температуры от полученного количества теплоты для вещества массой 1 кг. Первоначально вещество находилось в твёрдом состоянии. Определите удельную теплоёмкость вещества в твёрдом состоянии.
Решение.
Удельная теплоёмкость — это количество теплоты, необходимое для того, чтобы нагреть вещество на 1 °C. Из графика видно, что для нагревания 1 кг вещества на 200 °C потребовалось 50 кДж. Таким образом, удельная теплоёмкость равна:
Ответ:
9. В тонкостенный сосуд налили воду, поставили его на электрическую плитку мощностью 800 Вт и начали нагревать. На рисунке представлен график зависимости температуры воды t от времени τ. Найдите массу налитой в сосуд воды. Потерями теплоты и теплоёмкостью сосуда пренебречь.
10. Какое количество теплоты потребуется, чтобы в алюминиевом чайнике массой 700 г вскипятить 2 кг воды? Первоначально чайник с водой имели температуру 20 °С.
Примечание.
Удельную теплоёмкость алюминия считать равной
Решение.
Для нагревания чайника необходимо
Для нагревания воды:
Всего потребуется
Ответ: 723,52 кДж.
11. Какое количество теплоты выделится при конденсации 2 кг пара, взятого при температуре кипения, и последующего охлаждения воды до 40 °С при нормальном атмосферном давлении?
Решение.
В данном случае тепло отдавали пар и получившаяся из него вода. Пар отдал:
вода отдала:
Таким образом:
Ответ: 5104 кДж.
12. Какое минимальное количество теплоты необходимо для превращения в воду 500 г льда, взятого при температуре −10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.
Решение.
Для нагревания льда до температуры плавления необходимо:
Для превращения льда в воду:
Таким образом:
Ответ: 175 500 Дж.
13. В сосуд с водой положили кусок льда. Каково отношение массы льда к массе воды, если весь лёд растаял и в сосуде установилась температура 0 °С? Теплообменом с окружающим воздухом пренебречь. Начальные температуры воды и льда определите из графика зависимости температуры t от времени τ для воды и льда в процессе теплообмена.
Решение.
Лёд растает за счёт того, что вода будет остывать и тем самым отдавать своё тепло. Запишем это в формульном виде: где — теплоёмкость воды, — удельная теплота плавления льда, — масса воды и льда соответственно.
Таким образом,
Ответ: 0,42.
14. Как изменится внутренняя энергия 500 г воды, взятой при 20°С, при её превращении в лёд при температуре 0 °С?
Решение.
При охлаждении воды до 0 °С выделится количество теплоты, равное:
Затем при кристаллизации воды выделится количество теплоты, равное:
Таким образом, всего вода отдаст теплоты.
Ответ: 207 кДж.
15. В стакан массой 100 г, долго стоявший на улице, налили 200 г воды из лужи при температуре +10 °С и опустили в неё кипятильник. Через 5 минут работы кипятильника вода в стакане закипела. Пренебрегая потерями теплоты в окружающую среду, найдите мощность кипятильника. Удельная теплоёмкость материала стакана равна 600 Дж/(кг · °С).
16. Два однородных кубика привели в тепловой контакт друг с другом (см. рисунок). Первый кубик изготовлен из цинка, длина его ребра 2 см, а начальная температура t1 = 1 °C. Второй кубик изготовлен из меди, длина его ребра 3 см, а начальная температура t2 = 74,2 °C. Пренебрегая теплообменом кубиков с окружающей средой, найдите температуру кубиков после установления теплового равновесия.
Примечание.
Плотности цинка и меди соответственно:
Удельные теплоёмкости цинка и меди соответственно:
Решение.
При нагревании(охлаждении) тела на температуру тело получает(отдаёт) количество теплоты Более горячее тело передаёт тепло более холодному, запишем уравнение теплового баланса: Заметим, что теплоёмкости цинка и меди равны, поэтому их можно сократить. Раскроем скобки:
Найдём массы кубиков:
Подставим эти значения в формулу для конечной температуры:
Ответ:
17. Сколько литров воды при 83 °С нужно добавить к 4 л воды при 20 °С, чтобы получить воду температурой 65 °С? Теплообменом с окружающей средой пренебречь.
Решение.
Плотность воды равна 1 кг/л, теплоемкость равна 4 200 Дж/кг. Таким образом, изначально мы имеем m0 = 4 кг воды при температуре t0 = 20 °C. Добавляется некоторое количество воды массой m1 при температуре t1 = 83 °C. Конечная температура смеси равна tкон, а её масса m0 + m1.
Составим уравнение теплового баланса для процесса:
— отданное в процессе тепло;
— полученное в процессе тепло;
.
Таким образом,
следовательно, необходимо 10 л воды.
Ответ: 10.
18. В тонкостенный сосуд налили воду массой 1 кг, поставили его на электрическую плитку и начали нагревать. На рисунке представлен график зависимости температуры воды t от времени τ. Найдите мощность плитки. Потерями теплоты и теплоёмкостью сосуда пренебречь.
Решение.
Мощность, это отношение теплоты ко времени, за которую эта теплота получена Теплота, полученная телом при нагревании на температуру рассчитывается по формуле Используя график, найдём мощность плитки:
Ответ: 700 Вт.
19. 3 л воды, взятой при температуре 20 °С, смешали с водой при температуре 100 °С. Температура смеси оказалась равной 40 °С. Чему равна масса горячей воды? Теплообменом с окружающей средой пренебречь.
Решение.
Более холодная вода нагрелась за счет остывания горячей воды: . Масса воды вычисляется по формуле:
Выражаем массу горячей воды:
Ответ: 1.
20. Килограммовый кусок льда внесли с мороза в тёплое помещение. Зависимость температуры льда от времени представлена на рисунке. Какое количество теплоты было получено в интервале времени от 50 мин до 60 мин?
Решение.
Исходя из графика, в интервале от 50 до 60 минут происходил нагрев воды от 0 °C до 20 °C. Вычислим количество теплоты:
Ответ: 84 кДж.
21. В стакан массой 100 г, долго стоявший на столе в комнате, налили 200 г воды при комнатной температуре +20 °С и опустили в неё кипятильник мощностью 300 Вт. Через 4 минуты работы кипятильника вода в стакане закипела. Пренебрегая потерями теплоты в окружающую среду, найдите удельную теплоёмкость материала стакана.
22. Два однородных кубика привели в тепловой контакт друг с другом. Первый кубик изготовлен из меди, длина его ребра 3 см, а начальная температура t1 = 2 °C. Второй кубик изготовлен из алюминия, длина его ребра 4 см, а начальная температура t2 = 74 °C. Пренебрегая теплообменом кубиков с окружающей средой, найдите температуру кубиков после установления теплового равновесия.
Примечание.
Плотности алюминия и меди соответственно:
Удельные теплоёмкости алюминия и меди соответственно:
Решение.
При нагревании(охлаждении) тела на температуру тело получает(отдаёт) количество теплоты Более горячее тело передаёт тепло более холодному, запишем уравнение теплового баланса: Раскроем скобки:
Найдём массы кубиков:
Подставим эти значения в формулу для конечной температуры:
Ответ:
23. Двигатель трактора совершил полезную работу 23 МДж, израсходовав при этом 2 кг бензина. Найдите КПД двигателя трактора.
Решение.
При сгорании 2 кг бензина выделяется теплоты, где — удельная теплота сгорания бензина. КПД рассчитывается по формуле:
Ответ: 25 %.
24. Автомобиль УАЗ израсходовал 30 кг бензина за 2 ч. езды. Чему равна мощность двигателя автомобиля, если его КПД составляет 30%? (Удельная теплота сгорания бензина 4,6·107Дж/кг).
Решение.
Энергия, полученная двигателем от 30 кг бензина КПД определяется как отношение полезной работы к энергии, потребляемой двигателем Мощность двигателя — это отношение полезной работы совершаемой двигателем ко времени:
Ответ: 57,5 кВт.
25. В сосуд с водой положили кусок льда. Каково отношение массы воды к массе льда, если весь лёд растаял и в сосуде установилась температура 0 °С? Теплообменом с окружающим воздухом пренебречь. Начальную температуру воды и льда определите из графика зависимости от времени для воды и льда в процессе теплообмена.
Решение.
Лед растает за счёт того, что вода будет остывать и тем самым отдавать своё тепло. Запишем это в формульном виде: где — удельная теплоёмкость воды, — удельная теплота плавления льда, — масса воды и льда соответственно.
Таким образом,
Ответ: 2,38.
Источник
Решебник
ВСЕ
ФИЗИКА
МАТЕМАТИКА
ХИМИЯ
Задача по физике – 11564
В цилиндрическом сосуде с площадью дна $S$ в воде плавает кусок льда с вмерзшим в него куском свинца массой $m$. На сколько изменится уровень воды в сосуде после таяния льда, если плотность воды $rho_{0}$, свинца $rho_{с}$?
Подробнее
Задача по физике – 11565
Кусок льда, внутри которого вморожен шарик из свинца, плавает в цилиндрическом сосуде с водой. Площадь дна сосуда $S$. Какова масса шарика, если после полного таяния льда уровень воды в сосуде понизился на $h$? Плотность свинца $rho_{1}$, воды $rho_{0}$.
Подробнее
Задача по физике – 11566
В цилиндрическом сосуде с водой плавает брусок высотой $l$ и сечением $S$ (рис.). Какую работу необходимо совершить, чтобы с помощью тонкой стальной спицы брусок медленно опустить на дно стакана? Сечение стакана $S_{1} = 2S$, начальная высота воды в стакане $l$, плотность материала бруска $rho = 0,5 rho_{в}$, где $rho_{в}$ – плотность воды.
Подробнее
Задача по физике – 11567
Подвеска состоит из однородных стержней, соединенных шарнирно. Вес системы $P$. Определите натяжение нити AВ (рис.).
Подробнее
Задача по физике – 11568
Однородная цепочка длиной 2 м лежит на столе. Когда часть цепочки длиной 0,2 м опускают со стола, она начинает скользить вниз. Масса цепочки 5 кг, а сила трения между столом и цепочкой составляет 0,1 веса цепочки. Какая работа против силы трения совершается при соскальзывании цепочки?
Подробнее
Задача по физике – 11569
Автомобиль с двигателем мощностью $N_{1} = 30 кВт$ при перевозке груза развивает скорость $v_{1} = 15 м/с$. Автомобиль с двигателем мощностью $N_{2} = 20 кВт$ при тех же условиях развивает скорость $v_{2} = 10 м/с$. С какой скоростью будут двигаться автомобили, если их соединить тросом?
Подробнее
Задача по физике – 11570
Наблюдая за лодкой, ведущей на буксире другую такую же, можно заметить, что буксирный канат бывает натянут не все время. Объясните причину этого явления. (Мощность, развиваемая буксиром, постоянна.)
Подробнее
Задача по физике – 11571
В двух одинаковых сосудах ко дну прикреплены одинаковые тонкие нерастяжимые стальные стержни. На верхних концах стержней находятся одинаковые стальные шарики. Один из сосудов заполнен водой. Будет ли одинаковой потенциальная энергия шариков относительно дна этих сосудов?
Подробнее
Задача по физике – 11572
На полу лежат куб и шар, сделанные из стали. Масса их одинакова. Тела подняли до соприкосновения с потолком. Одинаково ли изменилась при этом их потенциальная энергия?
Подробнее
Задача по физике – 11573
Грузы, массой 100 г каждый, подвешены на одинаковых нитях длиной 25 и 75 см соответственно (рис.). Для какой из нитей более вероятен обрыв: короткой или длинной, если оба груза поднять на одинаковую высоту (до второго уровня) и отпустить?
Подробнее
Задача по физике – 11574
На какую глубину $l$ погрузится тело, упавшее с высоты $h$ в воду, если плотность вещества тела $rho$ меньше плотности воды $rho_{в}$? Трением о воздух и воду пренебречь.
Подробнее
Задача по физике – 11575
Земля движется вокруг Солнца со средней скоростью $v_{ср} = 29,8 км/с$. Зимой скорость движения больше, а летом меньше. Исчезает ли разность кинетических энергий Земли между зимним и летним периодом движения ее по орбите вокруг Солнца?
Подробнее
Задача по физике – 11576
Мячик массой $m$ и объемом $V$ мальчик погрузил на глубину $H$ в воду плотностью $rho$ и отпустил его. На какую высоту над поверхностью воды должен был выскочить мячик, если бы сопротивление воды (и воздуха) отсутствовало?
Подробнее
Задача по физике – 11577
В каком случае шина автомобиля при его движении больше нагреется: когда она слабо надута или надута хорошо?
Подробнее
Задача по физике – 11578
Одинаковые цилиндрические сообщающиеся сосуды с площадью сечения $S$ частично заполнены ртутью. На поверхности ртути лежат невесомые поршни. Когда на левый поршень положили груз весом $P$, уровни ртути в сосудах установились так, как показано на рисунке б. На сколько изменилась потенциальная энергия системы груз – ртуть?
Подробнее
Источник
Задача 2.
Ведро, в котором находится m = 10 кг смеси воды со льдом, внесли в комнату и сразу начали измерять температуру смеси. График зависимости температуры от времени t(t) изображен на рисунке. Какая масса льда была в ведре, когда внесли в комнату? Удельная теплоемкость воды с=4200 Дж/(кг оС), удельная теплота плавления льда l = 330 кДж/кг. Теплоемкостью ведра пренебречь.
(10 баллов)
Возможное решение | |
Таяние льда в ведре и нагревание воды происходит за счет теплообмена с окружающей средой. Так как рост температуры от времени в рассматриваемом диапазоне является линейным, то мощность Р теплового потока можно считать постоянной. Уравнение теплового баланса для таяния льда mлl = Рt0, где mл – масса льда в ведре, t0 = 50 мин – время таяния льда. Уравнение теплового баланса при нагревании воды mсΔt = РΔt, где Δt – время нагревания воды. Из графика определим. Таким образом | |
Критерии оценивания выполнения задания | Баллы |
Приведено полное правильное решение, включающее следующие элементы: описаны все вновь вводимые в решении буквенные обозначения физических величин; представлено полное верное объяснение с указанием наблюдаемых явлений и законов: пояснили, что таяние льда в ведре и нагревание воды происходит за счет теплообмена с окружающей; Заметили, что рост температуры от времени в рассматриваемом диапазоне является линейным, следовательно мощность Р теплового потока можно считать постоянной средой записано уравнение теплового баланса для таяния льда mлl = Рt0; уравнение теплового баланса при нагревании воды mсΔt = РΔt; определим проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу; представлен правильный ответ с указанием единиц измерения искомой величины | 1 1 2 1 1 1 2 1 |
Задача 3.
Резисторы сопротивлениями R1 = 1 кОм, R2 = 2 кОм, R3 = 3 кОм, R4 = 4 кОм подключены к источнику постоянного напряжения U0 = 33В через клеммы А и В. К резисторам подключили два идеальных амперметра А1, А2. Определите показания амперметров I1, I2.
(10 баллов).
Возможное решение | |
Определим токи Ii, текущие через резисторы Ri (i = 1, 2, 3, 4). Так как амперметры идеальные, то можно рассмотреть эквивалентную электрическую цепь. Для этой цепи , RAB = RAC + RCB = . Полный ток в цепи Для определения показания амперметров запишем закон сохранения токов в узлах d и с ( выбранное направление токов указано на рисунке): I1 = IR1 – IR3 = 5 мА, I2 = IR3 – IR4 = 4 мА | |
Критерии оценивания выполнения задания | Баллы |
Приведено полное правильное решение, включающее следующие элементы: Сделан пояснительный рисунок; проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу определили сопротивление RAC; определили сопротивление RCB; определили сопротивление RAB; | 1 1 1 1 |
определили I; определили IR1; определили IR2; определили IR3; представлен правильный ответ с указанием единиц измерения искомой величины : I1 = 5 мА, I2 = 4 мА | 1 1 1 1 2 |
Задача 4.
Кусок льда привязан нитью ко дну цилиндрического сосуда с водой (см. рис.). Над поверхностью воды находится некоторый объём льда. Нить натянута с силой Т= 1Н. На сколько и как изменится уровень воды в сосуде, если лёд растает? Площадь дна сосуда S= 400 см2 , плотность воды ρ= 1 г/см3.
(10 баллов)
Возможное решение | |
Запишем условие плавания куска льда в воде: mлg+ Т =FА= ρ вVп.ч.g; где Vп.ч – объём погружённой в воду части куска льда. Найдём первоначальный уровень воды в сосуде (1), где V о – первоначальный объём воды в сосуде до таяния льда. Соответственно (2), где h2 – уровень воды в сосуде, после таяния льда, V 1 – объём воды, полученной из льда. Решая совместно (1) и (2), получаем h 1 –h 2 = (V п.ч. –V1 )/S; найдём Vп.ч = (m лg+Т)/( ρ в.g). Учтём mл = m1, где m1 – масса воды, полученной изо льда m1 = ρвV1 ; V1 = mл/ρв. Тогда h 1 –h 2 = ((mлg+Т)/ ρ вg. – m л / ρ в )/ S = 2,5 мм | |
Критерии оценивания выполнения задания | Баллы |
Приведено полное правильное решение, включающее следующие элементы: cделан пояснительный рисунок, с указанием всех действующих сил; описаны все вновь вводимые в решении буквенные обозначения физических величин; представлено полное верное объяснение с указанием наблюдаемых явлений и законов: записано условие плавания куска льда в воде: mлg + Т = FА= ρвVп.ч.g; записали формулу для расчета h1 ; записали формулу для расчета h2; проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу: h 1 –h 2 = (V п.ч. –V1 )/S; Vп.ч = (mлg+Т)/(ρв.g); V1 = mл/ρв ; h 1 –h 2 = ((mлg+Т)/ ρ вg. – m л / ρ в )/ S. Представлен правильный ответ с указанием единиц измерения искомой величины: h 1 –h 2 = 2,5 мм | 1 1 1 1 1 1 1 1 1 1 |
Задача 5.
Чему должен быть равен минимальный коэффициент трения μ между шинами и поверхностью наклонной дороги с уклоном α=30о, чтобы автомобиль мог двигаться по ней вверх с ускорением a=0,6 м/с2?
(10 баллов)
Возможное решение | |
Cилой, вынуждающей двигаться автомобиль является сила трения покоя F(тр.п)макс . Проскальзыванием колёс и силой трения качения пренебрегаем. Укажем все действующие на автомобиль силы и запишем 2 закон Ньютона ma = Fтр.п. + mg. Через проекцию на ось ОХ: Fтр.п. – mg = ma Fтр.п.=μN; OY: N = mg Þ Fтр.п.=μ mg Þ μmg – mg = ma ; μ = (а + g)/g ; μ = 0,64. | |
Критерии оценивания выполнения задания | Баллы |
Приведено полное правильное решение, включающее следующие элементы: cделан пояснительный рисунок, с указанием всех действующих сил; представлено полное верное объяснение с указанием наблюдаемых явлений и законов (II закон Ньютона); cилой, вынуждающей двигаться автомобиль является сила трения покоя F(тр.п)макс; Проскальзыванием колёс и силой трения качения пренебрегаем; проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу: ОХ: Fтр.п. – mg = ma OY: N = mg μmg – mg = ma μ = (а + g)/g Представлен правильный ответ с указанием единиц измерения искомой величины: μ = 0,64 | 2 1 1 1 1 1 1 1 1 |
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 |
Источник