В стенках внутренних органов и сосудов находятся
Мышечные ткани – это ткани, для которых способность к сокращению является главным свойством. Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей).
Общими свойствами всех мышечных тканей является сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечнополосатая скелетная и поперечнополосатая сердечная мышечные ткани. Клетки мышечной ткани имеют хорошо развитый цитоскелет, содержат много митохондрий.
Гладкая (висцеральная) мускулатура
Эта мышечная ткань встречается в стенках внутренних органах (бронхи, кишечник, желудок, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.
Состоит из веретенообразных миоцитов – коротких одноядерных клеток. Между клетками имеются межклеточные контакты – нексусы (лат. nexus – связь). Благодаря нексусам возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.
Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру мочевого пузыря), сокращается медленно, практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает – сокращается и утомляется быстро.
Осуществляется сокращение с помощью клеточных органоидов – миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим).
Особо заметим, что в гладкой мышечной ткани миофиламенты собираются в миофибриллы только во время сокращения. У таких временных миофибрилл не может быть регулярной организации, а значит ни у таких миофибрилл, ни у гладких миоцитов не может быть поперечной исчерченности.
Гладкая мышечная ткань сокращается непроизвольно (неподвластна воле человека). Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой. К примеру невозможно по желанию сузить или расширить бронхи, кровеносные сосуды, зрачок.
Гладкая мышечная ткань называется неисчерченной, так как не обладает поперечной исчерченностью, характерной для поперечнополосатых скелетной и сердечной мышечных тканей.
Скелетная (поперечнополосатая) мышечная ткань
Скелетная мышечная ткань образует диафрагму (дыхательную мышцу), мускулатуру туловища, конечностей, головы, голосовых связок.
В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер – миосимпластами. Миосимпласт (греч. sim – вместе + plast – образованный) представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметров (соответствует длине мышцы).
Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой. Сократительные элементы – миофибриллы (лат. fibra – волоконце) – длинные тяжеобразные органеллы в миосимпласте (около 1400).
Характерная черта данной ткани – поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы – саркомер.
Саркомер (от греч. sarco – мясо (мышца) + mere – маленький)
Саркомер – элементарная сократительная единица поперечнополосатых мышц, структурная единица миофибриллы. В состав саркомера (и миофибриллы в целом) входят миофиламенты (лат. filamentum – нить) двух типов, которые обеспечивают сократимость мышечной ткани.
Саркомер состоит из актиновых (тонких) и миозиновых (толстых) филаментов, которые образованы главным образом белками актином и миозином. Сокращение происходит за счет взаимного перемещения миофиламентов: они тянутся навстречу друг другу, саркомер укорачивается (и мышца в целом).
Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином, что приводит к изменению конформации тропомиозина (тропонин и тропомиозин – регуляторные белки между нитями актина), за счет чего становится возможно соединение актина и миозина. При сокращении мышц выделяется тепло (сократительный термогенез).
Замечу, что трупное окоченение (лат. rigor mortis) – посмертное затвердевание мышц – связано именно с ионами кальция, которые устремляются в область низкой концентрации (в саркоплазму миосимпласта), способствуя связыванию актина и миозина.
После смерти в мышце перестает синтезироваться АТФ, ее уровень быстро снижается. Как следствие этого перестает функционировать Ca-АТФаза – насос, выкачивающий ионы Ca из саркоплазмы в саркоплазматический ретикулум (мембранная органелла мышечных клеток (сходная с ЭПС), в которой запасаются ионы Ca).
В саркоплазме повышается концентрация ионов Ca – замыкаются мостики между актином и миозином, однако разомкнуться они уже не могут, в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura – стягивание, сужение): конечности очень сложно разогнуть или согнуть.
Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.
В процесс возбуждения вовлекается изолированно один миосимпласт, соседние миосимпласты (волокна) не возбуждают друг друга, в отличие от гладких миоцитов, где возбуждение предается между соседними клетками через нексусы. Скелетные мышцы сокращаются быстро и быстро утомляются (у гладких мышц фазы сокращения и расслабления растянуты во времени, мало утомляются) .
Скелетные мышцы сокращаются произвольно: они подконтрольны нашему сознанию. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.
Сердечная поперечнополосатая мышечная ткань
Сердечная мышечная ткань образует мышечную оболочку сердца – миокард (от др.-греч. μῦς «мышца» + καρδία – «сердце»). Миокард – средний слой сердца, составляющий основную часть его массы. При работе сердечная мышечная ткань не утомляется.
Сердечная мышечная ткань состоит из кардиомиоцитов – одиночных клеток, имеющих поперечную исчерченность. Соединяясь друг с другом, кардиомиоциты образуют функциональные волокна.
Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство – автоматизм.
Автоматизм – способность сердечной мышечной ткани возбуждаться и сокращаться самопроизвольно, без влияний извне. Это легко можно подтвердить, наблюдая сокращения изолированного сердца лягушки в физиологическом растворе: сокращения сердца в нем будут продолжаться несколько десятков минут после отделения сердца от организма.
Места контактов соседних кардиомиоцитов – вставочные диски (в их составе находятся нексусы), благодаря которым возбуждение одной клетки передается на соседние, таким образом волнообразно охватываются возбуждением и сокращаются новые участки миокарда.
Большое число контактов между кардиомиоцитами обеспечивает высокую эффективность и надежность проведения возбуждения по миокарду. Сокращается эта ткань непроизвольно, не утомляется.
На рисунке или микропрепарате узнать данную ткань можно по центральному положению ядер в клетках, поперечной исчерченности, наличию вставочных дисков и анастомозов (греч. anastomosis – отверстие) – мест соединений боковых поверхностей функциональных волокон (кардиомиоцитов).
В норме возбуждение проводится по проводящей системе сердца от предсердий к желудочкам (однонаправленно). Участок сердечной мышцы, в котором генерируются импульсы, определяющие частоту сердечных сокращений – водитель сердечного ритма.
Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker – задающий ритм) клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.
Ответ мышц на физическую нагрузку
Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή – еда, пища) – в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.
В условиях гиподинамии (от греч. ὑπό – под и δύνᾰμις – сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии (греч. а – “не” + trophe – питание). В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.
Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца – состояние, требующее вмешательства врача и наблюдения за пациентом.
В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).
Происхождение мышц
Мышцы развиваются из среднего зародышевого листка – мезодермы.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Виды кровеносных сосудов:
артерии – сосуды, несущие кровь от сердца;
вены – сосуды, несущие кровь к сердцу;
капилляры – тончайшие кровеносные сосуды, образующие сеть в тканях и органах.
Самые мелкие артерии и вены, переходящие в капилляры, называются артериолами и венулами.
Крупные артерии, отходящие от сердца постепенно распадаются на более тонкие сосуды, доходя до самых тонких капилляров, которые в свою очередь постепенно сливаются сначала в венулы, затем в вены, несущие кровь к сердцу.
Диаметр кровеносных сосудов сначала уменьшается (от артерий к капиллярам), а затем – возрастает (от капилляров к венам). Так, диаметр начала аорты у человека приблизительно равен 3 см, а диаметр капилляра – от 6 до 20 мкм. Однако по мере удаления от аорты ширина сосудистого русла, несмотря на уменьшение калибра каждого из сосудов, в сумме больше аорты, следовательно, скорость движения крови в капиллярах всегда ниже, чем в более крупных сосудах.
Распределение сосудов в теле имеет определенный порядок.
Артерии, например на туловище и шее, расположены на передней стороне и спереди от позвоночника; на разгибательной его стороне, на спине и затылке крупных сосудов нет. На конечностях артерии лежат на сгибательных поверхностях, в защищенных укрытых местах.
В некоторых пунктах артерии частично проходят поверхностно под кожей, особенно над костями; в таких местах можно прощупать пульс или сдавить их, если потребуется остановка кровотечения.
формирование кровеносных сосудов
Кровеносные сосуды развиваются из мезенхимы.
В эмбриональном периоде все сосуды закладываются и строятся как капилляры, и только в процессе их дальнейшего развития простая капиллярная стенка постепенно окружается различными структурными элементами, и капиллярный сосуд превращается либо в артерию, либо в вену, либо в лимфатический сосуд (рис. 1).
Вначале закладывается первичная стенка из плоских клеток мезенхимы, превращающаяся впоследствии во внутреннюю оболочку сосуда – эндотелий. Позднее из окружающей мезенхимы формируется более сложно построенная стенка сосуда.
Рис. 1. Сравнительная характеристика сосудов
Окончательно сформированные стенки артерий и вен состоят из трех основных слоев: интимы, медии и адвентиции (рис. 2).
Интима – тонкая внутренняя оболочка, выстланная со стороны полости сосудов тонким, эластичным плоским эндотелием. Интима является непосредственным продолжением эндотелия эндокарда.
Функция интимы: предотвращение свертывания крови.
Если эндотелий сосуда поврежден, то у места повреждения образуются небольшие сгустки крови – тромбы, которые могут вызвать закупорку сосуда. Иногда они отрываются от места образования, уносятся током крови (флотирующие тромбы) и закупоривают сосуд в каком-либо другом месте.
Средняя оболочка (медия) стенки сосудов образована гладкой мышечной тканью.
Функция: регуляция просвета (диаметра) сосуда.
Адвентиция – наружная оболочка сосудов. Она образована фиброзной волокнистой соединительной тканью.
Функция: механическая защита и фиксация сосуда.
Оболочки отделены друг от друга тонкими прослойками из эластических волокон.
Ткани, образующие оболочки кровеносных сосудов нуждаются в питании. Поэтому наружная и средняя оболочки пронизаны сетью кровеносных капилляров, приносящих питательные вещества и кислород и удаляющих продукты обмена.
Рис. 2. Строение стенки сосуда
капилляры
Стенки капилляров очень тонкие и состоят из эндотелия. Снаружи эндотелий оплетен сетью тонких соединительнотканых волокон, эластично фиксирующих капилляр.
В состав капиллярной стенки входят перициты – клетки соединительной ткани с многочисленными отростками, проникающими в эндотелий (рис. 3). Обладая сократительной активностью они способны изменять просвет капилляра.
Перициты, или клетки Руже относятся к малодифференцированным клеткам. При дифференцировке они могут превратиться в фибробласты (клетки соединительной ткани), гладкомышечные клетки или в макрофаги (клетки, способные к фагоцитозу).
Рис. 3. Перициты на стенке капилляра
Стенка капилляра легко проницаема для лейкоцитов и некоторых веществ, переносимых кровью. Через стенку капилляров происходит обмен веществ между кровью и тканевыми жидкостями, а также между кровью и внешней средой (в выделительных органах).
Благодаря проницаемости капиллярной стенки, происходит газообмен между кровью и воздухом, поступающем в легкие при вдохе.
артерии
Артерии делятся на два типа:
артерии мышечного типа – мелкие (артериолы) и средние артерии;
артерии эластического типа – самые крупные артерии: аорта и ее крупные ветви.
Артерии мышечного типа
Стенка артериолы состоит из всех трех оболочек: эндотелиальной, средней из циркулярно расположенных гладкомышечных клеток и наружной соединительнотканой оболочки (рис. 4).
При переходе артериолы в капилляр в ее стенке отмечаются только одиночные гладкие мышечные клетки. С укрупнением же артерий количество мышечных клеток постепенно увеличивается до непрерывного кольцевого слоя.
В более крупных артериях под внутренней эндотелиальной оболочкой расположен слой звездчатых клеток, играющий роль камбия (росткового слоя) для сосудов. Этот слой участвует в процессах регенерации – восстанавливает мышечный и эндотелиальный слои артерии. Чем крупнее артерия, тем больше развит камбиальный (ростковый) слой.
Рис. 4. Строение артерии
Артерии эластического типа
Артерии крупного калибра (легочная артерия, аорта и ее крупные ветви) называются артериями эластического типа, т. к. в их стенках преобладают эластические элементы.
Наличие большого количества эластических элементов (волокон, мембран) позволяет этим сосудам растягиваться при систоле сердца и возвращаться в исходное положение во время диастолы.
Внутренний слой аорты состоит из эндотелия и субэндотелиального слоя.
Субэндотелиальный слой составляет примерно 15 – 20 % толщины стенки сосуда.
Состав субэндотелиального слоя:
рыхлая фибриллярная соединительная ткань;
клетки звездчатой формы, выполняющие трофическую функцию для эндотелия;
отдельные продольно направленные гладкие мышечные клетки.
Глубже субэндотелиального слоя в составе внутренней оболочки расположено густое сплетение эластических волокон, соответствующее внутренней эластической мембране.
Межклеточное вещество внутренней оболочки аорты играет большую роль в питании стенки сосуда и обусловливает степень проницаемости стенки сосуда. У людей среднего и пожилого возраста в межклеточном веществе обнаруживаются холестерин и жирные кислоты.
В средней оболочке концентрически расположены прочные эластические и коллагеновые волокна. Гладкомышечный слой представлен одиночными клетками, косо залегающими в волокнах.
Наружная оболочка состоит из рыхлой волокнистой соединительной ткани с большим количеством продольных толстых эластических и коллагеновых волокон. Адвентиция богата кровеносными сосудами и нервными волокнами.
Функция адвентиции: защита сосудов от перерастяжения и разрывов.
вены
Стенки вен обычно тоньше, чем стенки артерий, и имеют ряд особенностей:
слабо развит средний гладкомышечный слой;
мало эластических волокон (вены легко спадаются);
наружная оболочка построена из волокнистой соединительной ткани, в которой преобладают коллагеновые волокна;
есть клапаны.
Внутренняя оболочка вен (интима) образует в них клапаны в виде полулунных кармашков (рис. 5). Клапаны отсутствуют в венах мозга и его оболочек, в венах костей и большей части вен внутренних органов. Клапаны развиты в венах конечностей и шеи.
Функция клапанов: препятствие обратному току крови.
Рис. 5. Венозные клапаны
Одни клапаны не могут обеспечить циркуляцию крови, так как все равно весь столб жидкости давил бы на нижележащие отделы. Вены расположены между скелетными мышцами, которые, сокращаясь, сжимают венозные сосуды. Такой “мышечный насос” помогает циркуляции крови.
малый круг кровообращения
Малый круг кровообращения начинается в правом желудочке.
Сосуды малого круга кровообращения состоят из системы легочной артерии и системы легочных вен.
Легочная артерия является одним из самых крупных сосудов человека. Ее ствол имеет длину около 6 см, а диаметр – 3 см. Легочная артерия с венозной кровью выходит из правого желудочка и делится на две ветви: правую, идущую в правое легкое, и левую, идущую в левое легкое.
От места разветвления легочной артерии к дуге аорты отходит боталлов проток – заросший сосуд, соединявший в эмбриональный период легочную артерию с аортой.
В легких правая ветвь делится на три, а левая – на две ветви соответственно числу долей того и другого легкого.
Ветви легочной артерии идут параллельно бронхам до самых легочных пузырьков (альвеол), и образуют на их стенках густую капиллярную сеть. Здесь происходит обмен газами между кровью и альвеолярным воздухом.
Затем капилляры соединяются в венулы, затем в вены, которые сливаются в четыре легочные вены, по две в каждом легком. Из легких легочные вены несут артериальную кровь в левое предсердие.
Клапаны в легочных венах отсутствуют.
Особенности сосудов малого круга кровообращения
Сосуды малого круга обладают относительно малой длиной и слабо развитой мышечной стенкой. Артериолы легких имеют просвет в 4 – 5 раз больше просвета артериол большого круга. Поэтому сопротивление в малом круге значительно меньше, а кровяное давление в 5 раз меньше, чем в аорте.
Через малый круг проходит столько же крови, сколько и через большой, и минутный объем правого желудочка (в нормальных условиях) всегда равен минутному объему левого желудочка.
большой круг кровообращения
Большой круг кровообращения начинается в левом желудочке (рис. 6).
Рис. 6. Крупные сосуды большого круга кровообращеня
артерии большого круга
Из левого желудочка выходит самый крупный сосуд человеческого тела – аорта. Она несет артериальную кровь ко всем тканям и органам. Выйдя из сердца она образуют дугу влево (левая дуга аорты).
От дуги аорты отходят артерии, несущие кровь к голове (сонные артерии) и верхним конечностям (подключичные артерии).
Пройдя через диафрагму, аорта спускается вниз под названием брюшной аорты, которая делится на две крупнейшие ветви – подвздошные артерии, сама же продолжается вдоль крестца до самого копчика в виде маленькой средней крестцовой артерии.
Подвздошные артерии снабжают кровью нижние конечности и внутренние органы.
Каждая артерия снабжает кровью определенную область. Наиболее сильно артериальная сеть развита в мышцах и железах. Между мелкими артериями и между капиллярами имеется большое количество анастомозов, благодаря чему возможен приток крови окольным путем (коллатеральное кровообращение).
вены большого круга
Вены образуются путем слияния капилляров в венулы, а затем в более крупные венозные стволы. Обычно вены выходят из органов в том же месте, где входят артерии, и идут вместе с ними и нервами в сосудисто-нервных пучках, причем очень часто одну артерию сопровождают две вены. Названия идущих рядом вен и артерий в большинстве случаев одинаковы.
Поверхностные вены образуют подкожные венозные сети.
Так как кровь по венам движется гораздо медленнее, то емкость венозной системы раза в 2-3 больше, чем артериальной.
Вся венозная кровь нашего тела притекает к правой венозной половине сердца по двум крупнейшим венозным стволам: верхней полой вене и нижней полой вене.
От головы из полости черепа венозную кровь несут правая и левая яремные вены.
От верхних конечностей – правая и левая подключичные вены.
С каждой стороны яремная и подключичная вена сливаются, образуя правую и левую безымянную вену.
Безымянные вены, сливаясь, образуют верхнюю полую вену.
Таким образом, верхняя полая вена собирает кровь со всей верхней половины тела: от головы, шеи, верхних конечностей, а так же области плечевого пояса и стенок грудной полости.
Клапанов верхняя полая вена не имеет.
Нижняя полая венa располагается в брюшной полости и является самой крупной веной нашего тела. Она образуется из слияния двух общих подвздошных вен и впадает снизу в правое предсердие.
Нижняя полая вена собирает кровь со всей нижней половины тела: из вен брюшной полости, от всех органов таза и нижних конечностей.
В области прямой кишки нижняя полая вена имеет анастомозы с ветвями воротной вены печени.
Таким образом, все сосуды тела составляют два круга кровообращения (рис. 7).
Рис. 7. Круги кровообращения
Воротная вена отличается от других вен тем, что она начинается и оканчивается капиллярами. Она образуется из множества вен, собирающих кровь от всех непарных органов брюшной полости (желудка, селезенки, поджелудочной железы и всего кишечника).
Из слияния вен образуется короткий ствол, который двумя ветвями (для правой и левой долей печени) входит в ворота печени (откуда и название воротная вена).
В печеночной ткани воротная вена распадается на густую сеть капилляров; из капиллярных сетей воротной вены и печеночной артерии образуются четыре печеночные вены, впадающие уже по выходе из печени непосредственно под диафрагмой в нижнюю полую вену.
Таким образом, вся венозная кровь от непарных органов живота, прежде чем попасть в нижнюю полую вену, проходит через печень.
Функции воротной вены:
отведение крови, насыщенной питательными веществами, от пищеварительного тракта в печень, где они откладываются или перерабатываются;
фильтрация и нейтрализация печенью токсических веществ, поступивших в кровь из пищеварительного тракта.
Таким образом, воротная вена является функциональным кровеносным сосудом печени, в то время как питающим ее ткань сосудом является собственная печеночная артерия.
На нижней конечности также имеется обширная сеть поверхностных вен. При застое крови поверхностные вены могут сильно расширяться (варикозное расширение), особенно у женщин во время беременности, а также у лиц некоторых профессий, связанных с длительным стоянием.
Верхняя и нижняя полые вены, впадая в правое предсердие, замыкают большой круг кровообращения тела человека.
значение капилляров
Сердце, развивающее энергию для движения крови, артериальная система, распределяющая ее, и венозная система, возвращающая кровь к сердцу, – все это системы, имеющие вспомогательное значение.
Только через капиллярную систему осуществляется питание тканей и обмен веществ. Капилляры, окруженные межклеточными тканевыми жидкостями, находятся в тесной связи с клетками тканей тела. Часть кровяной плазмы проникает через стенку капилляров в межклеточные пространства и примешивается к межклеточному веществу; в свою очередь часть межклеточных веществ проникает в капиллярное русло и примешивается к циркулирующей в нем крови.
Артерии ветвятся на более тонкие сосуды вплоть до артериол, которые отдают многочисленные сети капилляров, образующих оросительную систему органа, снабжаемого данной артерией.
Распределение капиллярных сосудов между тканевыми элементами весьма разнообразно. В скелетной мышце, например, капилляры тянутся вдоль мышечных волокон и, анастомозируя между собой, образуют узкие длинные петли, охватывающие волокно и обеспечивающие обмен по всей длине волокна. Капилляры в мышечной ткани самые узкие.
Интенсивность тканевого обмена зависит от развития капиллярной сети. Поэтому не все органы тела в одинаковой мере снабжены капиллярами. Они гуще всего там, где происходит более интенсивный обмен веществ: в коре головного мозга, печени, легочных пузырьках, почечной ткани, эндокринных железах, кишечных ворсинках, мышечной ткани. Зато такие органы, как кости, сухожилия, связки и т. д., содержат количество капилляров, в сотни раз меньшее. Однако есть органы, совсем лишенные капилляров: производные эпидермиса (волосы и ногти), эмаль зубов и часть хрящевой ткани.
Обмен веществ между тканями и кровью совершается через тончайшие эндотелиальные стенки. Проницаемость эндотелиальной стенки избирательна и может меняться. Кроме того, интенсивность обмена веществ зависит количества крови, проходящий через капилляр, т. е. от просвета капилляра.
Многочисленные исследования показывают, что на изменение просвета капилляров влияют перициты, сами эндотелиальные клетки и особые “жомы” в местах отхождения капилляров от артериол.
Источник