В вертикально расположенном сосуде переменного сечения

В вертикально расположенном сосуде переменного сечения thumbnail

Задача по физике – 8854

В расположенном вертикально цилиндре переменного сечения между закрепленными поршнями находится $n$ молей воздуха. Массы поршней $m_{1}$ и $m_{2}$, площади сечений $S_{1}$ и $S_{2}$. Поршни соединены стержнем длиной $l$ и закреплены на одинаковом расстоянии от стыка (рис.). Насколько переместятся поршни, если убрать крепления?

В вертикально расположенном сосуде переменного сечения


Подробнее

Задача по физике – 8855

Поршень массой 1 кг делит объем сосуда, расположенного вертикально, на части в отношении 1 : 2. С каким ускорением должен двигаться сосуд, чтобы поршень делил сосуд ровно пополам? Давление в нижней половине сосуда равнялось 1,5 атм. Площадь поршня 0,05 $м^{2}$.


Подробнее

Задача по физике – 8856

Цилиндрический сосуд расположен под углом $30^{ circ} С$ к горизонту. В сосуде находится поршень, обладающий теплоизоляционными свойствами и делящий сосуд пополам. Массы газа в обеих половинах сосуда одинаковы. Определите отношение температур газа в обеих половинах сосуда, если давление в нижней половине сосуда 1 атм, площадь поршня $80 см^{2}$, а его масса 2 кг.

В вертикально расположенном сосуде переменного сечения


Подробнее

Задача по физике – 8857

Сосуд с поршнем, к которому с наружной стороны прикреплен стержень, вращаются в горизонтальной плоскости с угловой скоростью 10 рад/с. Поршень находится в цилиндре, площадь поперечного сечения поршня и цилиндра $50 см^{2}$. Масса поршня 1 кг. Длина стержня 60 см. При горизонтальном положении сосуда в неподвижном состоянии поршень находится от дна сосуда на расстоянии 20 см. На какое расстояние перемещается поршень относительно дна сосуда при вращении сосуда? Считать, что во время движения стержень не деформируется.


Подробнее

Задача по физике – 8858

Поршень массой $m$ лежит на пружине, прикрепленной ко дну сосуда. Под поршнем газ отсутствует. Какая должна быть масса газа $m_{x}$, заполняющего сосуд под поршнем, чтобы деформация пружины была такой же по величине, но пружина растянута? Температура газа $T$, атмосферное давление $p_{атм}$. В недеформированном состоянии длина пружины $l_{0}$, площадь поперечного сечения сосуда и поршня $S$, молярная масса газа $M$, жесткость пружины $k$.


Подробнее

Задача по физике – 8859

Цилиндрический сосуд высотой $H$ разделен на две половины перегородкой. В перегородке есть отверстие, закрытое пробкой. В верхней половине находится вода, в нижней — воздух при атмосферном давлении $p_{0}$. Пробку вынимают, и вода начинает выливаться из верхней половины в нижнюю. Каким будет уровень воды в нижней половине сосуда, когда пузырьки воздуха начнут двигаться по водному слою вверх? Температуру считать постоянной, плотность воды $p$.


Подробнее

Задача по физике – 8860

На пути молекулярного пучка находится стенка. Найдите давление, испытываемое при этом стенкой, если скорость молекул $10^{3} м/с$, их концентрация $5 cdot 10^{17} м^{-3}$, а масса молекулы $3,3 cdot 10^{-27} кг$. Стенка движется навстречу пучку со скоростью 50 м/с.


Подробнее

Задача по физике – 8861

В сосуде давление газа во всех точках одинаково. Температуры стенок $T_{1}$ и $T_{2}$. Определите отношение числа соударений молекул со стенками сосуда за один и тот же промежуток времени. Считать, что у стенки температура газа равна температуре стенки.


Подробнее

Задача по физике – 8862

В одном сосуде находятся $10^{19}$, в другом $4 cdot 10^{18}$ молекул одного и того же газа. Сосуды приводят в тепловой контакт. Вначале внутренняя энергия газа в первом сосуде была на 1,9 Дж больше, чем во втором. В конечном состоянии средняя энергия одной молекулы уменьшилась на 25%. Какова внутренняя энергия газа в первом сосуде в конечном состоянии? Теплообменом с окружающими телами пренебречь.


Подробнее

Задача по физике – 8863

Определите работу, совершаемую 1 молем газа в замкнутом цикле, показанном на рис. Температуры в точках 1 и 3 равны соответственно $T_{1}$ и $T_{2}$. Точки 2 и 4 лежат на одной изотерме.

В вертикально расположенном сосуде переменного сечения


Подробнее

Задача по физике – 8864

Состояние идеального газа изменяется по закону $p = alpha V$. Найдите работу моля идеального газа при повышении его температуры от $T_{1}$ до $T_{2}$.


Подробнее

Задача по физике – 8865

При расширении одноатомного газа его давление растет по линейному закону $p = alpha V$. Определите совершаемую при этом газом работу и изменение его внутренней энергии. Начальные давление и объем газа $p_{1}, V_{1}$, а конечные $p_{2}, V_{2}$.


Подробнее

Задача по физике – 8866

В сосуде находится газ неон, который изобарно расширяется. К нему было подведено количество теплоты 100 кДж. Чему равна работа расширения? На какую величину изменится внутренняя энергия неона?


Подробнее

Задача по физике – 8867

В цилиндре под невесомым поршнем, находящемся на высоте 20 см, содержится воздух. Площадь поршня $100 см^{2}$. Какую работу необходимо совершить, чтобы поднять поршень на 30 см? Атмосферное давление $10^{5} Па$. Температура воздуха постоянна.


Подробнее

Задача по физике – 8868

Определите КПД тепловой машины, работающей по циклу, изображенному на рис. В качестве рабочего вещества используется азот. Масса газа 14 г. Сравните с КПД идеальной тепловой машины. Считать, что температуры нагревателя и холодильника равны соответственно максимальной и минимальной температурам данного цикла.

В вертикально расположенном сосуде переменного сечения


Подробнее

Источник

Страница 1 из 2

211. Полый медный шар (ρ = 8,93 г/см3) весит в воздухе 3 Н, а в воде (ρ’ = 11 /см3) — 2Н. Пренебрегая выталкивающей силой воздуха определите объем внутренней полости шара.

212. На столе стоит цилиндрический сосуд, наполненный водой до уровня H = 20 см от дна. Если в воду (ρ = 1 г/см3) опустить плавать тонкостенный никелевый стакан (ρ` = 8,8 г/см3), то уровень воды поднимается на h = 2,2 см. Определить уровень H1 воды в сосуде, если стакан утопить.

Читайте также:  С разреженным азотом который находится в сосуде провели два опыта

213. По трубе радиусом r = 1,5 см течет углекислый газ (ρ = 7,5 кг/м3) Определите скорость его течения, если за t = 20 мин через поперечное сечение трубы протекает m = 950 г газа.

214. В бочку заливается вода со скоростью 200 см3/с. На дне бочки образовалось отверстие площадью поперечного сечения 0,8 см2. Пренебрегая вязкостью воды, определить уровень воды в бочке.

215. В сосуд заливается вода со скоростью 0,5 л/с. Пренебрегая вязкостью воды, определите диаметр отверстия в сосуде, при котором вода поддерживалась бы в нем на постоянном уровне h = 20 см

216. Бак цилиндрической формы площадью основания 10 м2 и объемом 100 м3 заполнен водой. Пренебрегая вязкостью воды, определить время, необходимое для полного опустошения бака, если на дне бака образовалось круглое отверстие площадью 8 см2.

217. Сосуд в виде полусферы радиусом R = 10 см до краев наполнен водой. На дне сосуда имеется отверстие площадью поперечного сечения S = 4 мм2. Определите время, за которое через это отверстие выльется столько воды, чтобы ее уровень в сосуде понизился на 5 см.

218. Определить работу, которая затрачивается на преодоление трения при перемещении воды объемом V = 1,5 м3 в горизонтальной трубе от сечения с давлением p1 = 40 кПа до сечения с давлением p2 = 20 кПа.

219. В дне сосуда имеется отверстие диаметром d1. В сосуде вода поддерживается на постоянном уровне, равном h. Считая, что струя не разбрызгиваются, и, пренебрегая силами трения в жидкости, определить диаметр струи, вытекающей из сосуда на расстоянии h1 = 2h от его дна.

220. Площадь поршня, вставленного в горизонтально расположенный налитый водой цилиндр, S1 = 1,5 см2, а площадь отверстия S2 = 0,8 мм2. Пренебрегая трением и вязкостью, определить время t, за которое вытечет вода из цилиндра, если на поршень действовать постоянной силой F = 5 H, а ход поршня l = 5 см. Плотность воды ρ = 1000 кг/м3.

224. Для точного измерения малых разностей давления служат U-образные манометры, которые заполнены двумя различными жидкостями. В одном из них при использовании нитробензола (ρ = 1,203 г/см3) и воды (ρ‘ = 1,000 г/см3) получили разность уровней Δh = 26 мм. Определите разность давлений.

225. По горизонтальной трубе в направлении, указанном на рисунке стрелкой, течет жидкость. Разность уровней Δh жидкости в манометрических трубках 1 и 2 одинакового диаметра составляет 8 см. Определить скорость течения жидкости по трубе.

226. По горизонтальной трубе переменного сечения течет вода. Площади поперечных сечений трубы на разных её участках соответственно равна S1 = 10 см2 и S2 = 20 см2. Разность уровней Δh воды в вертикальных трубках одинакового составляет 20 см. Определить объем воды, проходящей за 1 с через сечение трубы.

227. Определите, на какую высоту h поднимется вода в вертикальной трубе, впаянной в узкую часть горизонтальной трубы диаметром d2 = 3 см, если в широкой части трубы диаметром d1 = 9 см скорость газа v1 = 25 см/с.

228. Определите разность давлений в широком и узком (d1 = 9 см, d2 = 6 см) коленах горизонтальной трубы, если в широком колене воздух (ρ = 1,29 кг/м3) продувается со скоростью v1 = 6 м/с.

229. Вдоль оси горизонтальной трубки диаметром 3 см, по которой течет углекислый газ (ρ = 7,5 кг/м3), установлена трубка Пито. Пренебрегая вязкостью, определить объем газа, проходящего за 1 с через сечение трубы, если разность уровней в жидкостном манометре составляет Δh = 0,5 см. Плотность жидкости принять равной ρ` = 1000 кг/м3.

230. Через трубку сечением S1 = 100 см2 продувается воздух со скоростью 2 м3/мин. В трубке имеется короткий участок с меньшим поперечным сечением S2 = 20 см2. Определите: 1) скорость v1 воздуха в широкой части трубки, 2) разность уровней Δh воды, используемой в подсоединенном к данной системе манометре. Плотность воздуха ρ = 1,3 кг/м3, воды ρ’ = 1000 кг/м3

231. Пренебрегая вязкостью жидкости, определить скорость истечения жидкости из малого отверстия в стенке сосуда, если высота h уровня жидкости над отверстием составляет 1,5 м.

Источник

Можаев В. Задачи с жидкостями //Квант. — 2006. — № 1. — С. 40-43.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

В этой статье будут рассмотрены задачи, в которых жидкость, с одной стороны, является средой, где находятся твердые тела, а с другой стороны, она, как жидкий элемент, участвует в движении, подобно твердому телу. Наиболее сложными являются комбинированные задачи, в которых жидкость движется вместе с находящимся в ней твердым телом (например, разобранная ниже задача 6).

Перейдем к обсуждению конкретных задач.

Задача 1. В цилиндрический сосуд с водой опустили кусок льда, в который вморожен осколок стекла. При этом уровень воды в сосуде поднялся на h = 11 мм, а лед остался на плаву, целиком погрузившись в воду. На сколько опустится уровень воды в сосуде после того, как весь лед растает? Плотность воды ρв = 1 г/см3, плотность льда ρл = 0,9 г/см3, стекла ρст = 2,0 г/см3

Обозначим первоначальный объем льда через Vл, а объем стекла — через Vст. Когда кусок льда полностью погрузился в воду, он вытеснил объем воды, равный

Очевидно, что этот же объем равен

где S — площадь поперечного сечения сосуда.

Теперь запишем условие плавания куска льда с вмороженным осколком стекла — суммарная сила тяжести льда и стекла равна выталкивающей силе:

Из совместного решения полученных уравнений найдем объемы льда и стекла:

Из растаявшего льда образовалась вода объемом

Читайте также:  Сужаются сосуды при курении

Поскольку кусок стекла остается в воде, понижение уровня воды в сосуде за время таяния льда будет равно

Задача 2. В вертикально расположенной трубке — с открытым верхним концом, с постоянным внутренним сечением и длиной 3L = 1080 мм — столбиком ртути длиной L заперт слой воздуха такой же длины. Какой длины столб ртути останется в трубке, если ее перевернуть открытым концом вниз? Внешнее давление p0 = 774 мм рт. ст.

Обозначим давление воздуха под ртутным столбиком в исходном положении трубки через p1. Тогда условие равновесия столбика ртути длиной L запишется в виде

где ρ – плотность ртути. Предположим, что после переворота трубки и установления первоначальной температуры часть ртути выльется. Обозначим через h длину столбика оставшейся в трубке ртути. Новое условие равновесия будет иметь вид

где p2 – новое давление воздуха над ртутным столбиком.

Условие сохранения количества изолированного воздуха позволяет записать

Подставляя сюда p1 из первого равенства, а p2 – из второго, получим уравнение относительно h:

или, если записать атмосферное давление в виде , где H0 = 774 мм:

Для данных численных значений L и H0 (в мм) получается, что

h = 270 мм.

Задача 3. U–образная трубка расположена вертикально и заполнена жидкостью. Один конец трубки открыт в атмосферу, а другой конец соединен с сосудом объемом V0 = 0,1 л, заполненным гелием (рис. 1). Объем всей трубки равен объему этого сосуда. В некоторый момент гелий начинают медленно нагревать. Какое минимальное количество теплоты необходимо подвести к гелию, чтобы вся жидкость вылилась из трубки? Атмосферное давление p0 = 105 Па; длины трех колен трубки одинаковы; давление, создаваемое столбом жидкости в вертикальном колене, равно p0/8.

Рис. 1

Обозначим полную длину трубки через 3L, а площадь внутреннего поперечного сечения трубки – S. Поскольку объем трубки V0, то длина каждого колена

Весь процесс нагрева гелия можно разбить на три участка. Первый участок — это когда жидкость еще находится в левом вертикальном колене. Рассмотрим момент времени, когда уровень жидкости в левом колене переместился на величину z, . Из условия равновесия жидкости в трубке найдем давление гелия:

где ρж – плотность жидкости. На втором участке, для которого , давление гелия

а на третьем участке, для

На рисунке 2 изображен график зависимости давления гелия от его объема V, который связан со смещением z простым соотношением:

На первых двух участках тепло необходимо подводить к гелию — это однозначно: здесь газ, расширяясь, совершает работу и одновременно нагревается. А вот третий участок неоднозначен: здесь газ также совершает работу, но при этом он может и охлаждаться. Убедимся, что и на этом участке тепло тоже подводится.

Учитывая, что , запишем уравнение процесса для третьего участка в виде

В вертикально расположенном сосуде переменного сечения

Рис. 2.

Рассмотрим малое изменение объема ΔV. Тогда работа, совершенная гелием, равна

Запишем уравнение состояния гелия как идеального газа:

где ν – количество вещества, Т – температура газа. Подставим в это уравнение выражение для давления на третьем участке процесса и получим

Продифференцируем обе части этого уравнения:

Теперь найдем изменение внутренней энергии гелия при изменении объема на ΔV:

Согласно первому началу термодинамики, подведенное количество теплоты равно сумме изменения внутренней энергии газа и совершенной им работы:

Легко убедиться, что при  и

Итак, на всех участках тепло подводится, поэтому полное подведенное к гелию количество теплоты Q найдем как сумму полного изменения внутренней энергии и полной работы, которую совершил гелий:

Поскольку начальная и конечная температуры равны, соответственно,

то изменение внутренней энергии равно

Полную работу найдем как площадь под кривой на рисунке 2:

Тогда окончательно

Задача 4. «Тройник» с двумя открытыми в атмосферу вертикальными трубками и одной закрытой (горизонтальная трубка) полностью заполнен водой (рис. 3). После того, как тройник начали двигать по горизонтали в плоскости рисунка влево с некоторым постоянным ускорением, из него вылилась 1/16 массы всей воды. Чему при этом стало равно давление в жидкости у закрытого конца – в точке А? Трубки имеют одинаковые внутренние сечения. Длину L считать заданной. Диаметр трубок мал по сравнению с длиной L.

В вертикально расположенном сосуде переменного сечения

Рис. 3.

При движении тройника влево с ускорением а гидростатические давления в точках А, В и С (см. рис. 3) связаны между собой уравнением движения воды в горизонтальной трубке:

где ρ – плотность воды. Давление в точке С больше давления в точке В, поэтому вода будет выливаться из правой вертикальной трубки. Из условия неразрывности струи жидкость при этом будет отсасываться из левой вертикальной трубки. В установившемся режиме правая трубка будет полностью заполнена водой, а левая – частично. Поскольку вылилась 1/16 массы всей воды, что соответствует массе воды в части трубки длиной L/4, то в левой трубке останется столбик воды высотой 3/4L. Поэтому давления в точках В и С будут равны

где p0 – атмосферное давление.

Исключая из всех уравнений рB и рС, получим систему двух уравнений относительно рА и а:

Решая эту систему относительно рА, найдем

Задача 5. Тонкая, запаянная с одного конца и изогнутая под прямым углом трубка заполнена ртутью и закреплена на горизонтальной платформе, которая вращается с угловой скоростью ω вокруг вертикальной оси (рис. 4). При вращении платформы ртуть не выливается и полностью заполняет горизонтальное колено. Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке; атмосферное давление р0; плотность ртути ρ. Найдите давление ртути у запаянного конца трубки.

Читайте также:  Дуплексное сканирование сосудов нижних конечностей

В вертикально расположенном сосуде переменного сечения

Рис. 4.

Выделим в горизонтальной части трубки небольшой элемент ртути длиной dr, расположенный на произвольном расстоянии r от оси вращения (рис. 5).

В вертикально расположенном сосуде переменного сечения

Рис. 5.

Этот элемент вращается в горизонтальной плоскости с угловой скоростью ω. Запишем уравнение движения выделенного элемента:

где S – площадь поперечного сечения трубки, dp – разность давлений между левым концом элемента ртути и правым. После сокращения на S получим связь между малыми приращениями dp и dr:

Проинтегрируем обе части этого уравнения и получим

Константу определим из условия, что при r = 3R (точка А) давление равно

и получим зависимость p(r)

Отсюда найдем давление ртути у запаянного конца трубки (r = R):

Задача 6. Стеклянный шар объемом V и плотностью ρ находится в сосуде с водой (рис. 6). Угол между стенкой сосуда и горизонтальным дном α, внутренняя поверхность сосуда гладкая, плотность воды ρ0. Найдите силу давления шара на дно сосуда в двух случаях: 1) сосуд неподвижен; 2) сосуд движется с постоянным горизонтальным ускорением а.

В вертикально расположенном сосуде переменного сечения

Рис. 6.

Сначала рассмотрим движущийся по горизонтали с постоянным ускорением а сосуд с водой. Введем систему координат XY, связанную с сосудом, как это изображено на рисунке 7.

В вертикально расположенном сосуде переменного сечения

Рис. 7.

Наша задача – найти уравнение свободной поверхности жидкости  в сосуде, который движется с горизонтальным ускорением а. Для этого выделим маленький элемент жидкости на оси Х, длина которого dx, а площадь поперечного сечения равна единице. С левого торца этого элемента давление равно

а с правого торца оно равно

где у – высота столба жидкости в точке х, а  – аналогичная высота в точке . Так как наш элемент жидкости движется с ускорением а, его уравнение движения имеет вид

Отсюда получаем

или в интегральном виде —

Поскольку при х = 0 у = 0, константа тоже равна нулю, а уравнение свободной поверхности жидкости выглядит так:

Линии, параллельные свободной поверхности, внутри жидкости являются линиями постоянного давления. Таким образом, жидкость, движущаяся с горизонтальным ускорением а, эквивалентна неподвижной жидкости, находящейся в новом поле тяжести с эффективным «ускорением свободного падения», равным  и направленным под углом  к вертикали (рис. 8). Вертикальная составляющая этого эффективного ускорения равна обычному ускорению свободного падения g, а горизонтальная составляющая численно равна ускорению сосуда и направлена в противоположную сторону.

В вертикально расположенном сосуде переменного сечения

Рис. 8.

В том случае, когда сосуд неподвижен (а = 0), эффективное ускорение равно g и направлено по вертикали. Силы, действующие на стеклянный шар в этом случае, показаны на рисунке 9.

В вертикально расположенном сосуде переменного сечения

Рис. 9.

Здесь  – вес (точнее – сила тяжести) шара,  – выталкивающая сила, а N1 – сила реакции дна сосуда на шар. Из условия равновесия шара найдем, что

Очевидно, что сила давления шара на дно численно равна силе реакции дна и направлена в противоположную сторону.

В случае движущейся с горизонтальным ускорением a жидкости или неподвижной жидкости, но находящейся в поле с новым «ускорением свободного падения» gЭ, на шар будут действовать следующие силы (рис.10): вертикальная составляющая нового веса шара , горизонтальная составляющая этого веса , вертикальная составляющая выталкивающей силы , ее горизонтальная составляющая , реакция опоры Т со стороны боковой стенки и, наконец, сила N2 – сила реакции на шар со стороны дна сосуда. Запишем условие равновесия шара, т.е. равенство нулю всех сил, действующих на шар по вертикали:

и по горизонтали:

В вертикально расположенном сосуде переменного сечения

Рис. 10.

Исключая из этих уравнений Т, найдем искомую силу N2:

Разумеется, и в этом случае сила давления шара на дно сосуда численно равна силе реакции дна, но направлена в противоположную сторону.

Упражнения.

1. В цилиндрическом сосуде с водой плавает деревянная дощечка. Если на нее сверху положить стеклянную пластинку, то дощечка с пластинкой останутся на плаву, а уровень воды в сосуде повысится на Δh1. На сколько изменится уровень воды в сосуде с плавающей дощечкой, если ту же стеклянную пластинку бросить на дно сосуда? Плотность стекла ρст, плотность воды ρв.

2. U–образная трубка состоит из трех одинаковых колен, расположена вертикально и заполнена жидкостью (см. рис. 1). Один конец трубки соединен с баллоном, заполненным водородом, другой конец открыт в атмосферу. Водород в баллоне медленно нагревают, и он постепенно вытесняет жидкость из трубки. К моменту, когда из трубки вылилось 2/3 всей массы жидкости, водород получил количество теплоты Q = 30 Дж. Найдите объем баллона. Известно, что объем всей трубки равен объему баллона; атмосферное давление p0 = 105 Па; давление, создаваемое столбом жидкости в вертикальном колене трубки, равно p0/9.

3. «Тройник» из трех вертикальных открытых в атмосферу трубок полностью заполнен водой (рис. 11). После того, как тройник начали двигать в горизонтальном направлении в плоскости рисунка с некоторым ускорением, из него вылилось 9/32 всей массы воды. Чему равно ускорение тройника? Внутренние сечения трубок одинаковы, длина каждой трубки L.

В вертикально расположенном сосуде переменного сечения

Рис. 11

4. Тонкая, запаянная с одного конца и изогнутая под прямым углом трубка заполнена жидкостью и закреплена на горизонтальной платформе, вращающейся с угловой скоростью ω вокруг вертикальной оси (рис. 12). Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке; атмосферное давление p0; плотность жидкости ρ. Найдите давление жидкости у запаянного конца трубки.

В вертикально расположенном сосуде переменного сечения

Рис. 12

Ответы.

1.

2.

3. .

4.

Источник