В вертикальном сосуде с прямыми

В вертикальном сосуде с прямыми thumbnail

Это задание решали 91 раз. С ним справились 41% пользователей.

Это задание решали 183 раза. С ним справились 48% пользователей.

Частота колебаний математического маятника равна  Гц.

Определите длину нити маятника (в ).

Ускорение свободного падения считать равным  м/с Считать

Это задание решали 116 раз. С ним справились 33% пользователей.

На рисунке представлен график зависимости координаты тела от времени при гармонических колебаниях вдоль оси

Чему равна скорость (в м/с) тела в момент времени с?

Это задание решали 172 раза. С ним справились 30% пользователей.

Груз, подвешенный на пружине жёсткостью  Н/м, совершает свободные
гармонические колебания.

Какой должна быть жёсткость пружины (в Н/м),
чтобы частота колебаний этого груза увеличилась в  раза?

Это задание решали 683 раза. С ним справились 26% пользователей.

В широкую U-образную трубку с вертикальными прямыми коленами налиты
жидкость плотностью кг/м и вода плотностью кг/м (см.
рисунок). На рисунке см, см.

Определите высоту (в см) столба
воды в правом колене U-образной трубки.

Это задание решали 203 раза. С ним справились 21% пользователей.

Гиря массой  кг, подвешенная на пружине, совершает свободные
гармонические колебания с периодом  с.

С каким периодом будет совершать
свободные колебания гиря массой  кг, подвешенная на этой же пружине?

Ответ дайте в секундах.

Это задание решали 82 раза. С ним справились 72% пользователей.

Чему равна масса (в кг) тела, совершающего гармонические колебания на
пружине жесткостью Н/м, если период колебаний тела равен с?

Число принять равным

Это задание решали 48 раз. С ним справились 92% пользователей.

Однородный куб опирается одним ребром на пол, другим — на вертикальную стену (см. рисунок).

Чему равно плечо силы упругости относительно оси, проходящей через точку перпендикулярно плоскости рисунка, если расстояния см, а см.

Ответ выразите в см.

Это задание решали 272 раза. С ним справились 18% пользователей.

Деревянный шарик плавает в керосине.

Во сколько раз объем всего шарика
больше объема его части, погруженной в керосин?

Плотность керосина равна
кг/м, плотность материала шарика равна кг/м.

Это задание решали 66 раз. С ним справились 82% пользователей.

Коромысло весов, к которому подвешены на нитях два тела (см. рисунок), находится в равновесии.

Во сколько раз нужно уменьшить плечо чтобы после увеличения массы первого тела в раз, а массы второго тела в раза равновесие сохранилось?

Коромысло и нити считать невесомыми.

Это задание решали 68 раз. С ним справились 71% пользователей.

Математический маятник с периодом колебаний с отклонили на небольшой угол от положения равновесия и отпустили с начальной скоростью, равной нулю.

Через какое время (в с) после этого кинетическая энергия маятника во второй раз достигнет своего максимального значения?

Сопротивлением воздуха пренебречь.

Это задание решали 332 раза. С ним справились 18% пользователей.

К легкому стержню подвешены два груза так, как показано на рисунке. Система
находится в равновесии. Масса первого груза кг.

Какова масса второго
груза

Массой стержня можно пренебречь.

Ответ выразите в кг.

Это задание решали 40 раз. С ним справились 57% пользователей.

Лёгкий стержень с прикрепленным к нему грузом удерживают в
горизонтальном положении с помощью нити (см. рисунок).

Чему равна масса
подвешенного к стержню груза, если сила натяжения нити равна Н?

Ответ
выразите в килограммах.

Это задание решали 80 раз. С ним справились 55% пользователей.

Это задание решали 71 раз. С ним справились 62% пользователей.

Источник

Можаев В. Задачи с жидкостями //Квант. — 2006. — № 1. — С. 40-43.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

В этой статье будут рассмотрены задачи, в которых жидкость, с одной стороны, является средой, где находятся твердые тела, а с другой стороны, она, как жидкий элемент, участвует в движении, подобно твердому телу. Наиболее сложными являются комбинированные задачи, в которых жидкость движется вместе с находящимся в ней твердым телом (например, разобранная ниже задача 6).

Читайте также:  Лестницы для сосудов и аппаратов

Перейдем к обсуждению конкретных задач.

Задача 1. В цилиндрический сосуд с водой опустили кусок льда, в который вморожен осколок стекла. При этом уровень воды в сосуде поднялся на h = 11 мм, а лед остался на плаву, целиком погрузившись в воду. На сколько опустится уровень воды в сосуде после того, как весь лед растает? Плотность воды ρв = 1 г/см3, плотность льда ρл = 0,9 г/см3, стекла ρст = 2,0 г/см3

Обозначим первоначальный объем льда через Vл, а объем стекла — через Vст. Когда кусок льда полностью погрузился в воду, он вытеснил объем воды, равный

Очевидно, что этот же объем равен

где S — площадь поперечного сечения сосуда.

Теперь запишем условие плавания куска льда с вмороженным осколком стекла — суммарная сила тяжести льда и стекла равна выталкивающей силе:

Из совместного решения полученных уравнений найдем объемы льда и стекла:

Из растаявшего льда образовалась вода объемом

Поскольку кусок стекла остается в воде, понижение уровня воды в сосуде за время таяния льда будет равно

Задача 2. В вертикально расположенной трубке — с открытым верхним концом, с постоянным внутренним сечением и длиной 3L = 1080 мм — столбиком ртути длиной L заперт слой воздуха такой же длины. Какой длины столб ртути останется в трубке, если ее перевернуть открытым концом вниз? Внешнее давление p0 = 774 мм рт. ст.

Обозначим давление воздуха под ртутным столбиком в исходном положении трубки через p1. Тогда условие равновесия столбика ртути длиной L запишется в виде

где ρ – плотность ртути. Предположим, что после переворота трубки и установления первоначальной температуры часть ртути выльется. Обозначим через h длину столбика оставшейся в трубке ртути. Новое условие равновесия будет иметь вид

где p2 – новое давление воздуха над ртутным столбиком.

Условие сохранения количества изолированного воздуха позволяет записать

Подставляя сюда p1 из первого равенства, а p2 – из второго, получим уравнение относительно h:

или, если записать атмосферное давление в виде , где H0 = 774 мм:

Для данных численных значений L и H0 (в мм) получается, что

h = 270 мм.

Задача 3. U–образная трубка расположена вертикально и заполнена жидкостью. Один конец трубки открыт в атмосферу, а другой конец соединен с сосудом объемом V0 = 0,1 л, заполненным гелием (рис. 1). Объем всей трубки равен объему этого сосуда. В некоторый момент гелий начинают медленно нагревать. Какое минимальное количество теплоты необходимо подвести к гелию, чтобы вся жидкость вылилась из трубки? Атмосферное давление p0 = 105 Па; длины трех колен трубки одинаковы; давление, создаваемое столбом жидкости в вертикальном колене, равно p0/8.

Рис. 1

Обозначим полную длину трубки через 3L, а площадь внутреннего поперечного сечения трубки – S. Поскольку объем трубки V0, то длина каждого колена

Весь процесс нагрева гелия можно разбить на три участка. Первый участок — это когда жидкость еще находится в левом вертикальном колене. Рассмотрим момент времени, когда уровень жидкости в левом колене переместился на величину z, . Из условия равновесия жидкости в трубке найдем давление гелия:

где ρж – плотность жидкости. На втором участке, для которого , давление гелия

а на третьем участке, для

На рисунке 2 изображен график зависимости давления гелия от его объема V, который связан со смещением z простым соотношением:

На первых двух участках тепло необходимо подводить к гелию — это однозначно: здесь газ, расширяясь, совершает работу и одновременно нагревается. А вот третий участок неоднозначен: здесь газ также совершает работу, но при этом он может и охлаждаться. Убедимся, что и на этом участке тепло тоже подводится.

Учитывая, что , запишем уравнение процесса для третьего участка в виде

В вертикальном сосуде с прямыми

Рис. 2.

Рассмотрим малое изменение объема ΔV. Тогда работа, совершенная гелием, равна

Запишем уравнение состояния гелия как идеального газа:

где ν – количество вещества, Т – температура газа. Подставим в это уравнение выражение для давления на третьем участке процесса и получим

Читайте также:  Вертикальный сосуды высокого давления

Продифференцируем обе части этого уравнения:

Теперь найдем изменение внутренней энергии гелия при изменении объема на ΔV:

Согласно первому началу термодинамики, подведенное количество теплоты равно сумме изменения внутренней энергии газа и совершенной им работы:

Легко убедиться, что при  и

Итак, на всех участках тепло подводится, поэтому полное подведенное к гелию количество теплоты Q найдем как сумму полного изменения внутренней энергии и полной работы, которую совершил гелий:

Поскольку начальная и конечная температуры равны, соответственно,

то изменение внутренней энергии равно

Полную работу найдем как площадь под кривой на рисунке 2:

Тогда окончательно

Задача 4. «Тройник» с двумя открытыми в атмосферу вертикальными трубками и одной закрытой (горизонтальная трубка) полностью заполнен водой (рис. 3). После того, как тройник начали двигать по горизонтали в плоскости рисунка влево с некоторым постоянным ускорением, из него вылилась 1/16 массы всей воды. Чему при этом стало равно давление в жидкости у закрытого конца – в точке А? Трубки имеют одинаковые внутренние сечения. Длину L считать заданной. Диаметр трубок мал по сравнению с длиной L.

В вертикальном сосуде с прямыми

Рис. 3.

При движении тройника влево с ускорением а гидростатические давления в точках А, В и С (см. рис. 3) связаны между собой уравнением движения воды в горизонтальной трубке:

где ρ – плотность воды. Давление в точке С больше давления в точке В, поэтому вода будет выливаться из правой вертикальной трубки. Из условия неразрывности струи жидкость при этом будет отсасываться из левой вертикальной трубки. В установившемся режиме правая трубка будет полностью заполнена водой, а левая – частично. Поскольку вылилась 1/16 массы всей воды, что соответствует массе воды в части трубки длиной L/4, то в левой трубке останется столбик воды высотой 3/4L. Поэтому давления в точках В и С будут равны

где p0 – атмосферное давление.

Исключая из всех уравнений рB и рС, получим систему двух уравнений относительно рА и а:

Решая эту систему относительно рА, найдем

Задача 5. Тонкая, запаянная с одного конца и изогнутая под прямым углом трубка заполнена ртутью и закреплена на горизонтальной платформе, которая вращается с угловой скоростью ω вокруг вертикальной оси (рис. 4). При вращении платформы ртуть не выливается и полностью заполняет горизонтальное колено. Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке; атмосферное давление р0; плотность ртути ρ. Найдите давление ртути у запаянного конца трубки.

В вертикальном сосуде с прямыми

Рис. 4.

Выделим в горизонтальной части трубки небольшой элемент ртути длиной dr, расположенный на произвольном расстоянии r от оси вращения (рис. 5).

В вертикальном сосуде с прямыми

Рис. 5.

Этот элемент вращается в горизонтальной плоскости с угловой скоростью ω. Запишем уравнение движения выделенного элемента:

где S – площадь поперечного сечения трубки, dp – разность давлений между левым концом элемента ртути и правым. После сокращения на S получим связь между малыми приращениями dp и dr:

Проинтегрируем обе части этого уравнения и получим

Константу определим из условия, что при r = 3R (точка А) давление равно

и получим зависимость p(r)

Отсюда найдем давление ртути у запаянного конца трубки (r = R):

Задача 6. Стеклянный шар объемом V и плотностью ρ находится в сосуде с водой (рис. 6). Угол между стенкой сосуда и горизонтальным дном α, внутренняя поверхность сосуда гладкая, плотность воды ρ0. Найдите силу давления шара на дно сосуда в двух случаях: 1) сосуд неподвижен; 2) сосуд движется с постоянным горизонтальным ускорением а.

В вертикальном сосуде с прямыми

Рис. 6.

Сначала рассмотрим движущийся по горизонтали с постоянным ускорением а сосуд с водой. Введем систему координат XY, связанную с сосудом, как это изображено на рисунке 7.

В вертикальном сосуде с прямыми

Рис. 7.

Наша задача – найти уравнение свободной поверхности жидкости  в сосуде, который движется с горизонтальным ускорением а. Для этого выделим маленький элемент жидкости на оси Х, длина которого dx, а площадь поперечного сечения равна единице. С левого торца этого элемента давление равно

Читайте также:  За день сосуд и из него

а с правого торца оно равно

где у – высота столба жидкости в точке х, а  – аналогичная высота в точке . Так как наш элемент жидкости движется с ускорением а, его уравнение движения имеет вид

Отсюда получаем

или в интегральном виде —

Поскольку при х = 0 у = 0, константа тоже равна нулю, а уравнение свободной поверхности жидкости выглядит так:

Линии, параллельные свободной поверхности, внутри жидкости являются линиями постоянного давления. Таким образом, жидкость, движущаяся с горизонтальным ускорением а, эквивалентна неподвижной жидкости, находящейся в новом поле тяжести с эффективным «ускорением свободного падения», равным  и направленным под углом  к вертикали (рис. 8). Вертикальная составляющая этого эффективного ускорения равна обычному ускорению свободного падения g, а горизонтальная составляющая численно равна ускорению сосуда и направлена в противоположную сторону.

В вертикальном сосуде с прямыми

Рис. 8.

В том случае, когда сосуд неподвижен (а = 0), эффективное ускорение равно g и направлено по вертикали. Силы, действующие на стеклянный шар в этом случае, показаны на рисунке 9.

В вертикальном сосуде с прямыми

Рис. 9.

Здесь  – вес (точнее – сила тяжести) шара,  – выталкивающая сила, а N1 – сила реакции дна сосуда на шар. Из условия равновесия шара найдем, что

Очевидно, что сила давления шара на дно численно равна силе реакции дна и направлена в противоположную сторону.

В случае движущейся с горизонтальным ускорением a жидкости или неподвижной жидкости, но находящейся в поле с новым «ускорением свободного падения» gЭ, на шар будут действовать следующие силы (рис.10): вертикальная составляющая нового веса шара , горизонтальная составляющая этого веса , вертикальная составляющая выталкивающей силы , ее горизонтальная составляющая , реакция опоры Т со стороны боковой стенки и, наконец, сила N2 – сила реакции на шар со стороны дна сосуда. Запишем условие равновесия шара, т.е. равенство нулю всех сил, действующих на шар по вертикали:

и по горизонтали:

В вертикальном сосуде с прямыми

Рис. 10.

Исключая из этих уравнений Т, найдем искомую силу N2:

Разумеется, и в этом случае сила давления шара на дно сосуда численно равна силе реакции дна, но направлена в противоположную сторону.

Упражнения.

1. В цилиндрическом сосуде с водой плавает деревянная дощечка. Если на нее сверху положить стеклянную пластинку, то дощечка с пластинкой останутся на плаву, а уровень воды в сосуде повысится на Δh1. На сколько изменится уровень воды в сосуде с плавающей дощечкой, если ту же стеклянную пластинку бросить на дно сосуда? Плотность стекла ρст, плотность воды ρв.

2. U–образная трубка состоит из трех одинаковых колен, расположена вертикально и заполнена жидкостью (см. рис. 1). Один конец трубки соединен с баллоном, заполненным водородом, другой конец открыт в атмосферу. Водород в баллоне медленно нагревают, и он постепенно вытесняет жидкость из трубки. К моменту, когда из трубки вылилось 2/3 всей массы жидкости, водород получил количество теплоты Q = 30 Дж. Найдите объем баллона. Известно, что объем всей трубки равен объему баллона; атмосферное давление p0 = 105 Па; давление, создаваемое столбом жидкости в вертикальном колене трубки, равно p0/9.

3. «Тройник» из трех вертикальных открытых в атмосферу трубок полностью заполнен водой (рис. 11). После того, как тройник начали двигать в горизонтальном направлении в плоскости рисунка с некоторым ускорением, из него вылилось 9/32 всей массы воды. Чему равно ускорение тройника? Внутренние сечения трубок одинаковы, длина каждой трубки L.

В вертикальном сосуде с прямыми

Рис. 11

4. Тонкая, запаянная с одного конца и изогнутая под прямым углом трубка заполнена жидкостью и закреплена на горизонтальной платформе, вращающейся с угловой скоростью ω вокруг вертикальной оси (рис. 12). Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке; атмосферное давление p0; плотность жидкости ρ. Найдите давление жидкости у запаянного конца трубки.

В вертикальном сосуде с прямыми

Рис. 12

Ответы.

1.

2.

3. .

4.

Источник