В закрытом сосуде находится кипящей воды и пара

В закрытом сосуде находится кипящей воды и пара thumbnail

Насыщенный пар

1. Испарение и конденсация

Как вы знаете, жидкости испаряются, то есть превращаются в пар. Например, лужи после дождя высыхают. Испарение жидкости обусловлено тем, что некоторые ее молекулы благодаря толчкам своих «соседей» приобретают кинетическую энергию, достаточную для того, чтобы вырваться из жидкости.
В результате испарения над поверхностью жидкости всегда находится пар, Это газообразное состояние вещества. Водяной пар невидим, как и воздух. То, что часто называют паром, представляет собой скопление крошечных водяных капелек, образовавшихся вследствие конденсации пара.

Конденсация – это превращение пара в жидкость, то есть процесс, противоположный испарению. Вследствие конденсации содержащегося в воздухе водяного пара образуются облака (рис. 44.1) и туман (рис. 44.2). Холодное стекло запотевает, соприкасаясь с теплым воздухом (рис. 44.3). Это тоже результат конденсации водяного пара.

Динамическое равновесие

Если банку с водой плотно закрыть, уровень воды в ней остается неизменным в течение многих месяцев.

Означает ли это, что в закрытом сосуде жидкость не испаряется?

Нет, конечно: в ней всегда есть достаточно быстрые молекулы, которые непрестанно вылетают из жидкости. Однако одновременно с испарением идет конденсация: молекулы из пара влетают обратно в жидкость.

Если уровень жидкости со временем не изменяется, это означает, что процессы испарения и конденсации идут с одинаковой интенсивностью. В таком случае говорят, что жидкость и пар находятся в динамическом равновесии.

2. Насыщенный и ненасыщенный пар

Насыщенный пар

На рисунке 44.4 схематически изображены процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным.

Ненасыщенный пар

Если сосуд с жидкостью открыть, пар начнет выходить из сосуда наружу. Вследствие этого концентрация пара в сосуде уменьшится, и молекулы пара будут реже сталкиваться с поверхностью жидкости и влетать в нее. Поэтому интенсивность конденсации уменьшится.

А интенсивность испарения остается прежней. Поэтому уровень жидкости в сосуде начнет понижаться. Если процесс испарения идет быстрее, чем процесс конденсации, говорят, что над жидкостью находится ненасыщенный пар (рис. 44.5).

В воздухе всегда есть водяной пар, но обычно он является ненасыщенным, поэтому испарение преобладает над конденсацией. Поэтому лужи и высыхают.

Над поверхностью морей и океанов пар также ненасыщенный, поэтому они постепенно испаряются. Почему же уровень воды при этом не понижается?

Дело в том, что поднимающийся вверх пар охлаждается и конденсируется, образуя облака и тучи. Они превращаются в дождевые тучи и проливаются дождями. А реки несут воду обратно в моря и океаны.

3. Зависимость давления насыщенного пара от температуры

Главное свойство насыщенного пара состоит в том, что
давление насыщенного пара не зависит от объема, а зависит только от температуры.

Это свойство насыщенного пара не так легко понять, потому что оно кажется противоречащим уравнению состояния идеального газа

из которого следует, что для донной массы газа при постоянной температуре давление обратно пропорционально объему. Может быть, для насыщенного пара это уравнение неприменимо?

Ответ таков: уравнение состояния идеального газа хорошо описывает пар – как насыщенный, так и ненасыщенный. Но стоящая в правой части уравнения (1) масса насыщенного пара m при изотермическом расширении или сжатии изменяется – причем так, что давление насыщенного пара остается неизменным. Почему так происходит?

Дело в том, что при изменении объема сосуда пар может оставаться насыщенным только при условии, что в этом же сосуде находится «его» жидкость. Увеличивая изотермически объем сосуда, мы как бы «вытягиваем» из жидкости молекулы, которые становятся молекулами пара (рис. 44.6, а).

Происходит это вот почему. При увеличении объема пара его концентрация вначале уменьшается – но на очень короткий промежуток времени. Как только пар становится ненасыщенным, испарение находящейся в этом же сосуде жидкости начинает «опережать» конденсацию. В результате масса пара быстро возрастает, пока он снова не станет насыщенным. Давление пара при этом снова станет прежним.

? 1. Используя рисунок 44.6, б, объясните, почему при уменьшении объема насыщенного пара его масса уменьшается.

Итак, при расширении или сжатии насыщенного пара его масса изменяется за счет изменения массы содержащейся в этом же сосуде жидкости.

Зависимость давления насыщенного водяного пара от температуры измерена на опыте. График этой зависимости приведен на рисунке 44.7. Мы видим, что давление насыщенного пара очень быстро увеличивается с ростом температуры.

Главная причина увеличения давления насыщенного пара с ростом температуры – увеличение массы пара. Как вы сами убедитесь, выполняя следующее задание, при увеличении температуры от 0 ºС до 100 ºС масса насыщенного пара в одном и том же объеме увеличивается более чем в 100 раз!

В таблице приведены значения давления насыщенного водяного пара при некоторых значениях температуры.

Эта таблица поможет вам при выполнении следующего задания. Воспользуйтесь также формулой (1).

? 2. В герметически закрытом сосуде объемом 10 л находятся вода и насыщенный пар. Температуру содержимого сосуда повышают от 0 ºС до 100 ºС. Считайте, что объемом воды по сравнению с объемом пара можно пренебречь.
а) Во сколько раз увеличилась абсолютная температура?
б) Во сколько раз увеличилось бы давление пара, если бы он остался насыщенным?
в) Во сколько раз увеличилась бы масса пара, если бы он остался насыщенным?
г) Какой стала бы масса пара в конечном состоянии, если бы он остался насыщенным?
д) При какой минимальной массе воды в начальном состоянии пар останется насыщенным?
е) Каким будет давление пара в конечном состоянии, если начальная масса воды будет в 2 раза меньше найденной в предыдущем пункте?

? 3. Что увеличивается с ростом температуры быстрее – давление насыщенного пара или его плотность?
Подсказка. Формулу (1) можно записать в виде

? 4. Пустой герметически закрытый сосуд объемом 20 л заполнили насыщенным водяным паром при температуре 100 ºС.
а) Чему равно давление пара?
б) Чему равна масса пара?
в) Чему равна концентрация пара?
г) Каким станет давление пара, когда он остынет до 20 ºС?
д) Чему равны массы пара и воды при 20 ºС?
Подсказка. Воспользуйтесь приведенной выше таблицей и формулой (1).

4. Кипение

По приведенным выше графику (рис. 44 7) и таблице вы, наверное, заметили, что при температуре кипения воды (100 ºС) давление насыщенного водяного пара как раз равно атмосферному (пунктир на графике 44.7). Случайно ли это совпадение?

Нет, не случайно. Рассмотрим процесс кипения.

Поставим опыт
Будем нагревать воду в открытом прозрачном сосуде. Скоро на стенках сосуда появятся пузырьки. Это выделяется растворенный в воде воздух.

Внутрь этих пузырьков начинает испаряться вода, и пузырьки заполняются насыщенным паром. Но расти эти пузырьки не могут, пока давление насыщенного пара меньше давления в жидкости. В открытом неглубоком сосуде давление в жидкости практически равно атмосферному давлению.

Продолжим нагревать воду. Давление насыщенного пара в пузырьках с ростом температуры быстро увеличивается. И как только оно станет равным атмосферному давлению, начнется интенсивное испарение жидкости внутрь пузырьков.

Они будут быстро расти, подниматься вверх и лопаться на поверхности жидкости (рис. 44.8). Это и есть кипение.

В неглубоком сосуде давление в жидкости практически равно внешнему давлению. Поэтому мы можем сказать, что
кипение жидкости происходит при температуре, при которой давление pн насыщенного пара равно внешнему давлению pвнеш:

Отсюда следует, что температура кипения зависит от давления. Поэтому ее можно изменять, изменяя давление жидкости. С увеличением давления температура кипения жидкости повышается. Это используют, например, для стерилизации медицинских инструментов: воду кипятят в специальных приборах – автоклавах, где давление в 1,5–2 раза выше нормального атмосферного.

Читайте также:  От чего сосуды на ногах сужаются и чем лечить

Высоко в горах, где атмосферное давление существенно меньше нормального атмосферного, сварить мясо непросто: например, на высоте 5 км вода закипает уже при температуре 83 ºС.

? 5. Используя формулу (2) и приведенную выше таблицу, определите температуру кипения воды:
а) при давлении, равном одной пятой нормального атмосферного давления;
б) при давлении, в 2 раза большем атмосферного давления.

Кипение воды при пониженном давлении можно наблюдать в следующем опыте.

Поставим опыт
Доведем воду в колбе до кипения и плотно закроем колбу. Когда вода немного остынет, перевернем колбу и будем поливать ее дно холодной водой. Вода закипит, хотя ее температура существенно ниже 100 ºС (рис. 44.9).

? 6. Объясните этот опыт.

? 7. На какую высоту можно было бы поднять поршнем кипящую воду, если бы она при этом не остывала?

Дополнительные вопросы и задания

8. В цилиндрическом сосуде под поршнем длительное время находятся вода и водяной пар. Масса воды в 2 раза больше массы пара. Медленно перемещая поршень, объем под поршнем увеличивают от 1 л до 6 л. Температура содержимого сосуда остается все время равной 20 ºС. Считайте, что объемом воды можно пренебречь по сравнению с объемом пара.
а) Какой пар находится под поршнем вначале?
б) Объясните, почему давление в сосуде не будет изменяться до тех пор, пока объем под поршнем не станет равным З л.
в) Чему равно давление в сосуде, когда объем под поршнем равен 3 л?
г) Чему равна масса пара в сосуде, когда объем под поршнем равен 3 л?
Подсказка. При этом весь объем сосуда заполнен насыщенным паром.
д) Во сколько раз увеличилась масса пара, когда объем под поршнем увеличился от 1 л до 3 л?
е) Чему равна масса воды в начальном состоянии?
Подсказка. Воспользуйтесь тем, что в начальном состоянии масса воды в 2 раза больше массы пара.
ж) Как будет изменяться давление в сосуде при изменении объема под поршнем от 3 л до 6 л?
Подсказка. Для ненасыщенного пара справедливо уравнение состояния идеального газа с постоянной массой.
з) Чему равно давление в сосуде, когда объем под поршнем равен 6 л?
и) Начертите примерный график зависимости давления пара под поршнем от объема.

9. Две запаянные U-образные трубки наклонили, как показано на рисунке 44.10. В какой трубке над водой находится только насыщенный пар, а в какой воздух с паром? Обоснуйте свой ответ.

Источник

Источник

>>> Перейти на мобильную версию сайта >>>

Учебник для 10 класса

Физика
Термодинамика

   
   

При решении задач по этой теме надо иметь в виду, что давление и плотность насыщенного пара не зависят от объема, а зависят только от температуры.

Давление насыщенного пара считается известной величиной (сообщается в условии задачи или находится в соответствующих таблицах).

Уравнение состояния идеального газа вдали от критической температуры приближенно применимо для описания насыщенного пара. Но при сжатии или нагревании насыщенного пара его масса изменяется.

Задача 1

В замкнутом сосуде объемом V = 1 м3 находится вода массой m = 12 г и насыщенный пар; плотность и давление пара при данной температуре равны соответственно р = 8 • 10-3 кг/м3 и р = 1,1 кПа. Какое давление установится при увеличении объема в k = 5 раз? Считать, что температура при увеличении объема не изменяется.

Решение. В сосуде первоначально содержался насыщенный пар массой m1 = ρV = 8 • 10-3 кг (объемом, занимаемым водой, можно пренебречь).

Масса воды и пара была равна m + m1 = 2 • 10-2 кг. Для насыщения объема, равного kV, необходим пар массой m2 = ρkV = 4 • 10-2 кг. Так как m + m1 < m2, то после увеличения объема пар станет ненасыщенным. Его плотность .

Давление пара при данной температуре прямо пропорционально плотности. Поэтому

Задача 2

В закрытом сосуде объемом V1 = 0,5 м3 находится вода массой m = 0,5 кг. Сосуд нагрели до температуры t = 147 °С. На какую величину AV следует изменить объем сосуда, чтобы в нем содержался только насыщенный пар? Давление насыщенного пара при температуре t = 147 °С равно р0 = 4,7 • 105 Па.

Решение. Насыщенный пар при давлении р0 занимает объем

где М = 0,018 кг/моль — молярная масса воды. Объем сосуда V1 > V и пар не является насыщенным. Чтобы пар стал насыщенным, объем сосуда следует изменить на

Объем сосуда должен быть уменьшен на 0,3 м3.

Задача 3

Кусок алюминия массой m1 = 537 г, нагретый до температуры t1 = 200 °С, опустили в воду массой m2 = 400 г при температуре t2 = 16 °С. Вода нагрелась до температуры t = 50 °С и частично испарилась. Определите массу испарившейся воды. Удельная теплоемкость алюминия с1 = 920 Дж/(кг • К). Удельная теплоемкость воды с1 = 4200 Дж/(кг • К), а удельная теплота парообразования воды при температуре кипения (tK = 100 °С) равна г = 2,26 МДж/кг. Тепловыми потерями пренебречь.

Решение. Количество теплоты, отданное куском алюминия:

Количество теплоты, полученное водой, складывается из количества теплоты, полученного всей водой при нагревании от t2 до t:

и количества теплоты, израсходованного для нагревания части воды массой m3 от t до tK и ее испарения при этой температуре:

Пренебрегая тепловыми потерями, запишем уравнение теплового баланса:

или

Откуда

Задача 4

Пористое тело было помещено для просушки под колокол вакуумного насоса. Давление под колоколом держалось на уровне 6,5 мм рт. ст. в течение 1 ч, после чего резко упало. Подача насоса 60 л/мин. Установившаяся под колоколом насоса температура t = 5 °С. Сколько воды содержало тело?

Решение. Давление р = 6,5 мм рт. ст. — это давление насыщенных водяных паров при t = 5 °С. Резкое падение давления свидетельствует о том, что вся вода превратилась в пар. Объем пара, откачанного насосом до полного испарения воды, V = 3600 л. Пользуясь уравнением состояния Менделеева— Клапейрона, находим искомую массу воды

Задача 5

В сосуде находится воздух, относительная влажность которого при температуре t1 = 10 °С равна (φ1 = 60%. Какой будет относительная влажность φ2 после уменьшения объема сосуда в n раз (n = 3) и нагревания газа до температуры t2 = 100 °С? Плотность насыщенных водяных паров при температуре t1 равна ρ = 9,4 • 10-3 кг/м3.

Решение. При температуре t1 абсолютная влажность (до сжатия) равна ρ1 = φ1ρ. После сжатия масса влаги, приходящаяся на единицу объема сосуда (не только в виде паров, но и в виде сконденсировавшейся жидкости, если возникли условия для конденсации), будет равна ρ2 = nφ1ρ = 1,69 • 10-2 кг/м3.

При температуре t2 = 100 °С давление насыщенных водяных паров равно нормальному атмосферному давлению р0 = 105 Па, и их плотность

Так как ρ3 > ρ2. то в сосуде будет ненасыщенный пар с относительной влажностью

Упражнение 5

  1. Почему капельки воды на разогретой сковородке «крутятся» на ней более минуты, прежде чем исчезнуть?
  2. В колбе кипятят воду. Затем колбу снимают с огня и закупоривают резиновой пробкой. Если теперь охладить колбу, облив ее холодной водой, то вода в колбе закипает. Почему?
  3. Два полых, герметически запаянных шара, в одном из которых вода, соединены трубкой (рис. 6.20). Воздух из шаров откачан. Если пустой шар поместить в сосуд с жидким воздухом, то вода в другом шаре быстро замерзнет. Объясните явление.

    В закрытом сосуде находится кипящей воды и пара

    Рис. 6.20

  4. На улице целый день моросит холодный осенний дождь. В комнате развешено выстиранное белье. Высохнет ли белье быстрее, если открыть форточку?
  5. На рисунке 6.21 изображен прибор, называемый кипятильником Франклина. Этот прибор состоит из двух полых стеклянных шаров, соединенных трубкой. В прибор налито некоторое количество спирта и откачан воздух. Если прибор слегка наклонить, то спирт соберется в одном (левом) шаре (см. рисунок). Обхватив этот шар ладонью, мы увидим, что спирт быстро перейдет в другой (правый) шар, хотя он расположен немного выше, и будет в нем бурлить, подобно кипящей воде. Объясните явление.

    В закрытом сосуде находится кипящей воды и пара

    Рис. 6.21

  6. Можно ли газ, имеющий температуру ниже критической, перевести непрерывным путем (минуя состояние равновесия между жидкостью и газом) в жидкость той же температуры?
  7. Два сосуда, соединенных трубками с кранами, наполнены водой до разных уровней (рис. 6.22). Воздух из сосудов откачан. Что произойдет, если соединить сосуды, открыв кран: 1) в нижней трубке; 2) в верхней трубке?

    В закрытом сосуде находится кипящей воды и пара

    Рис. 6.22

  8. Опишите, что будет происходить с веществом, если его нагревать при постоянных объемах сосудов VQ, VK и V1 (рис. 6.23).

    В закрытом сосуде находится кипящей воды и пара

    Рис. 6.23

  9. Сравните качественно температуру кипения и удельную теплоту парообразования воды в глубокой шахте и на поверхности Земли.
  10. Почему в момент выключения газовой горелки из кипящего чайника сразу же вырывается струя пара, хотя до этого пара не было видно?
  11. В котел объемом V = 5 м3 накачали воду массой m1 = 20 кг и нагрели содержимое котла до температуры t = 180 °С. Найдите массу m2 и давление р пара в котле. Плотность насыщенного водяного пара при температуре Т = 453 К равна р = 5,05 кг/м3. Молярная масса воды М = 0,018 кг/моль.
  12. В цилиндре под поршнем в объеме V1 = 1 м3 при температуре t = 30 °С находится смесь азота и насыщенного пара воды. Масса смеси m0 = 286 г. Какая масса пара сконденсируется, если объем уменьшить в n раз (n = 3) при постоянной температуре? Какое давление р было у смеси до сжатия? Давление насыщенного водяного пара при температуре 30 °С равно р1 = 4,2 кПа. Молярные массы воды и азота равны соответственно М1 = 0,018 кг/моль и М2 = 0,028 кг/моль.
  13. До какой температуры нагреется вода объемом 0,8 л, находящаяся в медном калориметре массой 0,7 кг и имеющая температуру 285 К, если ввести в калориметр пар массой 0,05 кг при температуре 373 К? Удельная теплоемкость воды 4,2 кДж/(кг • К); удельная теплоемкость меди 0,38 кДж/(кг • К); удельная теплота парообразования воды 2,26 МДж/кг.

    1

  14. Через змеевик нагревателя, содержащего 12 л воды при температуре 12 °С, пропускают стоградусный водяной пар. Вытекающая из змеевика вода (конденсат) имеет температуру 60 °С. Какое количество пара нужно пропустить через змеевик, чтобы температура воды в нагревателе повысилась до 50 °С?
  15. Определите абсолютную влажность воздуха, если парциальное давление пара в нем р = 14 кПа, а температура t = 60 °С.
  16. В комнате, объем которой V = 100 м3, температура воздуха понизилась от t1 = 25 °С до t2 = 15 °С. Сколько водяных паров при этом сконденсировалось из воздуха, первоначально находившегося в комнате, если плотность насыщенного водяного пара при 25 °С равна р1 = 23 г/м3, а при 15 °С — р2 = 12,8 г/м3? Относительная влажность воздуха вначале была равна φ = 90%.
  17. В здание необходимо подать 100 000 м3 воздуха при температуре 20 °С и относительной влажности 70%. Воздух забирают с улицы, где он имеет температуру -5 °С и относительную влажность 90%. Давление насыщенных водяных паров при -5 °С равно 400 Па, а при 20 °С — 2,33 кПа. Сколько воды надо дополнительно испарить в подаваемый воздух?
  18. После понижения температуры от 27 до 10 °С оказалось, что из каждого кубического метра воздуха выделилось 8 г воды. Какова была относительная влажность воздуха при 27 °С? Давление насыщенного водяного пара при 27 °С равно 3,56 кПа, а при 10 °С — 1,23 кПа.

Источник

В закрытом сосуде находится кипящей воды и пара

1. Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарения и кипения.

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре.

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Иапример, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

2. Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным.

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

3. В воздухе всегда содержится водяной пар, являющийся продуктом испарения воды. Содержание водяного пара в воздухе характеризует его влажность.

Абсолютной влажностью воздуха ​( (rho) )​ называют массу водяного пара, содержащегося в 1 м3 воздуха, или плотность водяного пара, содержащегося в воздухе.

Если относительная влажность равна 9,41·10-3 кг/м3, то это означает, что в 1 м3 содержится 9,41·10-3 кг водяного пара.

Для того чтобы судить о степени влажности воздуха, вводят величину, называемую относительной влажностью.

Относительной влажностью воздуха ​( (varphi) )​ называют величину, равную отношению плотности водяного пара ​( (rho) )​, содержащегося в воздухе (абсолютной влажности), к плотности насыщенного водяного пара ​( (rho_0) )​ при этой температуре:

[ varphi=frac{rho}{rho_0}100% ]

​Обычно относительную влажность выражают в процентах.

При понижении температуры ненасыщенный нар может превратиться в насыщенный. Примером такого превращения является выпадение росы и образование тумана. Так, летним днём при температуре 30 °С плотность водяного пара равна 12,8·10-3 кг/м3. Этот водяной пар является ненасыщенным. При понижении вечером температуры до 15 °С он уже будет насыщенным, и выпадет роса.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы.

Для измерения влажности воздуха используют прибор, называемый психрометром.

Психрометр состоит из двух термометров, один из которых сухой, а другой — влажный (рис. 74). Термометры прикреплены к таблице, в которой по вертикали указана температура, которую показывает сухой термометр, а по горизонтали — разность показаний сухого и влажного термометров. Определив показания термометров, по таблице находят значение относительной влажности воздуха.

Например, температура, которую показывает сухой термометр, 20 °С, показание влажного термометра — 15 °С. Разность показаний 5 °С. По таблице находим значение относительной влажности ​( varphi )​ = 59%.

4. Второй процесс парообразования — кипение. Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.

Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением. Температуру, при которой жидкость кипит, называют температурой кипения.

Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.

Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.

На рисунке 75 приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АБ), кипения (БВ), нагревания пара (ВГ), охлаждения пара (ГД), конденсации (ДЕ) и последующего охлаждения (ЕЖ).

5. Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования.

Удельной теплотой парообразования ​( (L) )​ называют величину, равную отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.

Единица удельной теплоты парообразования — ​( [L] )​ = Дж/кг.

Чтобы рассчитать количество теплоты ​( Q )​, которое необходимо сообщить веществу массой ​( m )​ для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования ​( (L) )​ умножить на массу вещества: ​( Q=Lm )​.

При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Испарение и кипение — два процесса превращения вещества из одного агрегатного состояния в другое. Общей характеристикой этих процессов является то, что оба они

А. Представляют собой процесс превращения вещества из жидкого состояния в газообразное
Б. Происходят при определённой температуре

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. Испарение и кипение — два процесса перехода вещества из одного агрегатного состояния в другое. Различие между ними заключается в том, что

А. Кипение происходит при определённой температуре, а испарение — при любой температуре.
Б. Испарение происходит с поверхности жидкости, а кипение — во всём объёме жидкости.

Правильным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. При нагревании вода превращается в пар той же температуры. При этом

1) увеличивается среднее расстояние между молекулами
2) уменьшается средний модуль скорости движения молекул
3) увеличивается средний модуль скорости движения молекул
4) уменьшается среднее расстояние между молекулами

4. В процессе конденсации водяного пара при неизменной его температуре выделилось некоторое количество теплоты. Что произошло с энергией молекул водяного пара?

1) изменилась как потенциальная, так и кинетическая энергия молекул пара
2) изменилась только потенциальная энергия молекул пара
3) изменилась только кинетическая энергия молекул пара
4) внутренняя энергия молекул пара не изменилась

5. На рисунке приведён график зависимости температуры воды от времени при её охлаждении и последующем нагревании. Первоначально вода находилась в газообразном состоянии. Какой участок графика соответствует процессу конденсации воды?

1) АВ
2) ВС
3) CD
4) DE

6. На рисунке приведён график зависимости температуры воды от времени. В начальный момент времени вода находилась в газообразном состоянии. В каком состоянии находится вода в момент времени ​( tau_1 )​?

1) только в газообразном
2) только в жидком
3) часть воды в жидком состоянии, часть — в газообразном
4) часть воды в жидком состоянии, часть — в кристаллическом

7. На рисунке приведён график зависимости температуры спирта от времени при его нагревании и последующем охлаждении. Первоначально спирт находился в жидком состоянии. Какой участок графика соответствует процессу кипения спирта?

1) АВ
2) ВС
3) CD
4) DE

8. Какое количество теплоты необходимо затратить, чтобы превратить в газообразное состояние 0,1 кг спирта при температуре кипения?

1) 240 Дж
2) 90 кДж
3) 230 кДж
4) 4500 кДж

9. В понедельник абсолютная влажность воздуха днём при температуре 20 °С была равной 12,8 г/см3. Во вторник она увеличилась и стала равной 15,4 г/см3. Выпала ли роса при понижении температуры до 16 °С, если плотность насыщенного пара при этой температуре 13,6 г/см3?

1) не выпала ни в понедельник, ни во вторник
2) выпала и в понедельник, и во вторник
3) в понедельник выпала, во вторник не выпала
4) в понедельник не выпала, во вторник выпала

10. Чему равна относительная влажность воздуха, если при температуре 30 °С абсолютная влажность воздуха равна 18·10-3 кг/м3, а плотность насыщенного пара при этой температуре 30·10-3 кг/м3?

1) 60%
2) 30%
3) 18 %
4) 1,7 %

11. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ
A) физическая величина
Б) единица физической величины
B) прибор для измерения физической величины

ПРИМЕРЫ
1) кристаллизация
2) джоуль
3) кипение
4) температура
5) мензурка

12. На рисунке приведены графики зависимости от времени температуры двух веществ одинаковой массы, находившихся первоначально в жидком состоянии, получающих одинаковое количество теплоты в единицу времени. Из приведённых ниже утверждений выберите правильные и запишите их номера.

1) Вещество 1 полностью переходит в газообразное состояние, когда начинается кипение вещества 2
2) Удельная теплоёмкость вещества 1 больше, чем вещества 2
3) Удельная теплота парообразования вещества 1 больше, чем вещества 2
4) Температура кипения вещества 1 выше, чем вещества 2
5) В течение промежутка времени ​( 0-t_1 )​ оба вещества находились в жидком состоянии

Часть 2

13. Какое количество теплоты необходимо для превращения в стоградусный пар 200 г воды, взятой при температуре 40 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

Ответы

Испарение и конденсация. Кипение жидкости

1 (20%) 1 vote

Источник