В закрытом сосуде находится смесь азота
|
|
Источник
Страница 1 из 2
46. Азот массой m = 10 г находится при температуре Т = 290 К. Определите: 1) среднюю кинетическую энергия одной молекулы азота; 2) среднюю кинетическую энергию вращательного движения всех молекул азота. Газ считайте идеальным.
47. Кислород массой m = 1 кг находится при температуре Т = 320 К. Определите: 1) кинетическую энергию вращательного движения молекул кислорода; 2) внутреннюю энергию молекул кислорода. Газ считайте идеальным.
48. В закрытом сосуде находится смесь азота массой m1= 56 г и кислорода массой m2 = 64 г. Определите изменение внутренней энергии этой смеси, если ее охладили на 20 °С.
49. Считая азот идеальным газом, определите его удельную теплоемкость: 1) для изохорного процесса; 2) для изобарного процесса.
50. Определите удельные теплоемкости сv и ср, если известно, что некоторый газ при нормальных условиях имеет удельный объем v = 0,7 м3/кг. Какой это газ?
51. Определите удельные теплоемкости сv и ср смеси углекислого газа массой m1 = 3 г и азота массой m2 = 4 г.
52. Определите показатель адиабаты γ для смеси газов, содержащей гелий массой m1 = 8 г и водород массой m2 = 2 г.
53. Применяя первое начало термодинамики и уравнение состояния идеального газа, покажите, что разность удельных теплоемкостей c = cp – cv = R/M.
54. Кислород массой 32 г находится в закрытом сосуде под давлением 0,1 МПа при температуре 290 К. После нагревания давление в сосуде повысилось в 4 раза. Определите: 1) объем сосуда; 2) температуру, до которой газ нагрели; 3) количество теплоты, сообщенное газом.
55. Определите количество теплоты, сообщенное газу, если в процессе изохорного нагревания кислорода объемом V = 20 л его давление изменилось на Δp = 100 кПа.
56. Двухатомный идеальный газ (ν = 2 моль) нагревают при постоянном объеме до температуры 289 К. Определите количество теплоты, которое необходимо сообщить газу, чтобы увеличить его давление в n= 3 раза.
57. При изобарном нагревании некоторого идеального газа (ν = 2 моль) на ΔT = 90 К ему было сообщено количество теплоты 5,25 кДж. Определите: 1) работу, совершаемую газом; 2) изменение внутренней энергии газа; 3) величину γ = cp/cV .
58. Азот массой m = 280 г расширяется в результате изобарного процесса при давлении p = 1 МПа. Определите: 1) работу расширения 2) конечный объем газа, если на расширение затрачена теплота Q = 5 кДж, а начальная температура азота T1 = 290 К.
59. Кислород объемом 1 л находится под давлением 1 МПа. Определите, какое количество теплоты необходимо сообщить газу, чтобы: 1) увеличить его объем вдвое в результате изобарного процесса; 2) увеличить его давление вдвое в результате изохорного процесса.
60. Некоторый газ массой m = 5 г расширяется изотермически от объема V1до объема V2 = 2V1. Работа расширения A= 1 кДж. Определите среднюю квадратичную скорость молекул газа.
61. Азот массой m = 14 г сжимают изотермически при температуре T = 300 К от давления p1 = 100 кПа до давления p2= 500 кПа. Определите: 1) изменение внутренней энергии газа; 2) работу сжатия; 3) количество выделившейся теплоты.
62. Некоторый газ массой 1 кг находится при температуре Т = 300 К и под давлением p1 = 0.5 МПа. В результате изотермического сжатия давление газа увеличилось в два раза. Работа, затраченная на сжатие, А = – 432 кДж. Определите: 1) какой это газ 2) чему равен первоначальный объем газа.
63. Азот массой m = 50 г находится при температуре T1 = 280 К. В результате изохорного охлаждения его давление уменьшилось в n = 2 раза, а затем в результате изобарного расширения температура газа в конечном состоянии стала равной первоначальной. Определите: 1) работу, совершенную газом; 2) изменение внутренней энергии газа.
64. Работа расширения некоторого двухатомного идеального газа составляет А = 2 кДж. Найти количество подведенной к газу теплоты, если процесс протекал а) изотермически; б) изобарно.
65. При адиабатном расширении кислорода (ν = 2 моль), находящегося при нормальных условиях, его объем увеличился в n = 3 раза. Определите: 1) изменение внутренней энергии газа; 2) работу расширения газа.
66. Азот массой m = 1 кг занимает при температуре T1 = 300 К объем V1= 0,5 м3. В результате адиабатного сжатия давление газа увеличилось в 3 раза. Определите: 1) конечный объем газа; 2) его конечную температуру; 3) изменение внутренней энергии газа.
Источник
В данной работе предлагается определенный подход к классификации и способам решения задач на газовые законы. Такой подход позволит быстро сориентироваться в большом количестве задач на свойства газов и применить к ним те или иные приемы решения.
Основные теоретические сведения
Состояние газа характеризуется совокупностью трех физических величин или термодинамических параметров:объемом газа V, давлением Р и температурой Т. Состояние газа, при котором эти параметры остаются постоянными считают равновесным состоянием.В этом состоянии параметры газа связаны между собой уравнением состояния. Самый простой вид уравнение состояния имеет для идеального газа. Идеальным газом называют газ, молекулы которого не имеют размеров (материальные точки) и взаимодействуют друг с другом лишь при абсолютно упругих соударениях (отсутствует межмолекулярное притяжение и отталкивание). Реальные газы тем точнее подчиняются законам идеальных газов, чем меньше размеры их молекул (т.е. газ одноатомный), и чем больше он разряжен.
Уравнение состояния идеального газа или уравнение Менделеева-Клапейрона имеет вид:
– универсальная газовая постоянная
Из этого закона вытекает, что для двух произвольных состояний газа справедливо равенство, называемое уравнением Клапейрона:
Так же для идеальных газов имеют место следующие экспериментальные законы:
Закон Бойля — Мариотта:
Закон Гей-Люссака:
Закон Шарля:
Если в сосуде находится смесь нескольких газов, не вступающих друг с другом в химические реакции, то результирующее давление определяется по закону Дальтона: давление смеси равно сумме давлений, производимых каждым газом в отдельности, как если бы он один занимал весь сосуд.
Р = Р1 + Р2 +… + РN
Задачи, решение которых основывается на данных уравнениях, можно разделить на две группы:
§ задачи на применение уравнения Менделеева-Клапейрона.
- задачи на газовые законы.
ЗАДАЧИ НА ПРИМЕНЕНИЕ УРАВНЕНИЯ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА.
Уравнение Менделеева-Клапейрона применяют тогда, когда
I. дано только одно состояние газа изадана масса газа (или вместо массы используют количество вещества или плотность газа).
II. масса газа не задана, но она меняется, то есть утечка газа или накачка.
При решении задач на применение равнения состояния идеального газа надо помнить:
1.если дана смесь газов, то уравнение Менделеева-Клапейрона записывают для каждого компонента в отдельности.Связь между парциальными давлениями газов, входящих в смесь и результирующим давлением смеси, устанавливается законом Дальтона.
2.если газ меняет свои термодинамические параметры или массу, уравнение Менделеева-Клапейрона записывают для каждого состояния газа в отдельности и полученную систему уравнений решают относительно искомой величины.
P.S.
§ Необходимо пользоваться только абсолютной температурой и сразу же переводить значения температуры по шкале Цельсия в значения по шкале Кельвина.
§ В задачах, где рассматривается движение сосуда с газом (пузырька воздуха, воздушного шара) к уравнению газового состояния добавляют уравнения механики.
§ если между газами происходит реакция, то надо составить уравнение реакции и определить продукты реакции
ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ
Определить давление кислорода в баллоне объемом V = 1 м3 при температуре t=27 °С. Масса кислорода m = 0,2 кг.
V = 1 м3 μ = 0,032кг/моль m = 0,2 кг t=27 °С | Т=300К | Записываем уравнение Менделеева-Клапейрона и находим из него давление, производимое газом: |
Р-? |
Баллон емкостью V= 12 л содержит углекислый газ. Давление газа Р = 1 МПа, температура Т = 300 К. Определить массу газа.
V = 12 л μ =0,044кг/моль Т=300К Р =1 МПа | 0,012м3 1∙106Па | Записываем уравнение Менделеева-Клапейрона и находим массу газа |
m -? |
При температуре Т = 309 К и давлении Р = 0,7 МПа плотность газа ρ = 12 кг/м3. Определить молярную массу газа.
V = 12 л Т=309К Р =0,7 МПа ρ = 12 кг/м3 | 0,012м3 0,7∙106Па | Записываем уравнение Менделеева-Клапейрона Так как масса газа может быть определена через плотность газа и его объем имеем: |
μ -? | ||
Отсюда находим молярную массу газа: |
Какова плотность водорода при нормальном атмосферном давлении и температуре 20°С.
V = 12 л t=20°C Р =105 Па μ =0,002кг/моль | 0,012м3 T=293К | Нормальное атмосферное давление – это давление, равное 105 Па. И эту информацию запишем как данные задачи. Записываем уравнение Менделеева-Клапейрона |
ρ -? | ||
Так как масса газа может быть определена через плотность газа и его объем имеем: Отсюда находим плотность газа: |
До какой температуры Т1 надо нагреть кислород, чтобы его плотность стала равна плотности водорода при том же давлении ,но при температуре Т2 = 200 К?
Т2=200К ρ1 = ρ2 μ1 =0,032кг/моль μ2 =0,002кг/моль | Записываем уравнение Менделеева-Клапейрона для кислорода и для водорода через плотности газов: Так как по условию давление у двух газов одинаковое, то можно приравнять правые части данных уравнений: Сократим на R и на плотность ρ (по условию плотности газов равны) и найдем Т1 |
Т1 -? | |
В сосуде объемом 4·10-3 м3 находится 0,012 кг газа при температуре 177°С. При какой температуре плотность этого газа будет равна 6·10-6 кг /см3, если давление газа остается неизменным.
Смесь газов
В баллоне объемом 25 литров находится 20г азота и 2 г гелия при 301К. Найдите давление в баллоне.
Определить плотность смеси, состоящей из 4 граммов водорода и 32 граммов кислорода при давлении 7°С и давлении 93кПа?
Сосуд емкостью 2V разделен пополам полупроницаемой перегородкой. В одной половине находится водород массой mВ и азот массой mА. В другой половине вакуум. Во время процесса поддерживается постоянная температура Т. Через перегородку может диффундировать только водород. Какое давление установиться в обеих частях сосуда?
μа m1 = m2 = m3 = m μв μк Т | отсек №1 отсек №2 отсек №3 Диффундирует только водород. Следовательно, после завершения установочных процессов, в отсеке I будет водород, массой на |
РI-? РII-? | |
половину меньшей, чем была, и весь азот. А во втором отсеке только половина массы водорода. Тогда для первого отсека установившееся давление равно: Для отсека II можно так же определить установившееся давление: |
Вакуумированный сосуд разделен перегородками на три равных отсека, каждый объемом V. В средний отсек ввели одинаковые массы кислорода, азота и водорода. В результате чего давление в этом отсеке стало равно Р. Перегородка I проницаема только для молекул водорода, перегородка II проницаема для молекул всех газов. Найти давления Р1 Р2 и Р3, установившиеся в каждом отсеке, если температура газа поддерживается постоянной и равной Т.
μа m1 = m2 = m3 = m μв μк Р | отсек №1 отсек №2 отсек №3 После диффундирования газов через перегородки в первом отсеке окажется треть массы водорода. Во втором и в третьем отсеках будет треть водорода, половина массы кислорода и половина всей массы азота. Тогда для первого отсека установившееся давление равно: |
Р1-? Р2-? Р3-? | |
Если до диффундирования первоначальное давление во втором отсеке было Р, то можно записать: Отсюда можно найти Находим выражение для давления во втором и в третьем отсеках | |
И тогда давление в первом отсеке равно: |
С химическими реакциями
В сосуде находится смесь азота и водорода. При температуре Т, когда азот полностью диссоциирован на атомы, давление равно Р (диссоциацией водорода можно пренебречь). При температуре 2Т, когда оба газа полностью диссоциированы, давление в сосуде 3Р. Каково отношение масс азота и водорода в смеси?
μа μв Т1 =Т Т2 =2Т Р1=Р Р2=3Р | mв μвmа При температуре Т параметры газов в сосуде следующие: И результирующее давление в сосуде по закону Дальтона равно: |
2Т 2Т При температуре 2Т параметры газов в сосуде следующие: И результирующее давление в сосуде по закону Дальтона равно: |
В герметично закрытом сосуде находится 1 моль неона и 2 моля водорода. При температуре Т1=300К, когда весь водород молекулярный, атмосферное давление в сосуде Р1=105 Па. При температуре Т2=3000К давление возросло до Р2=1,5∙105 Па. Какая часть молекул водорода диссоциировала на атомы?
ν1=1 моль ν2=2 моль Т1 =300К Т2 =3000К Р1=105 Па Р2=1,5∙105 Па | При температуре Т1 давление газа в сосуде складывается из парциальных давлений двух газов и равно: При температуре Т2 давление газа равно: |
Из уравнения (1): Из первого находим объем V: | |
В закрытом баллоне находится смесь из m1= 0,50 г водорода и m2 = 8,0 г кислорода при давлении Р1= 2,35∙105 Па. Между газами происходит реакция с образованием водяного пара. Какое давление Р установится в баллоне после охлаждения до первоначальной температуры? Конденсации пара не происходит.
V = 25 л μ1 = 2г/моль m1 = 0,5 г μ2 = 32г/моль m2 = 8 г | В сосуде будет происходить реакция водорода с кислородом с образованием воды:
|
Р-? | Из уравнения реакции видно, что если в реакцию вступит весь водород, то кислорода только половина |
В результате образуется ν3=0,25 молей водяного пара и останется ν4= 0,125молей кислорода. По закону Дальтона результирующее давление в сосуде равно сумме парциальных давлений Так как известно, что до реакции давление в сосуде было Р1, то для этого момента можно так же применить закон Дальтона: Решаем полученные уравнение в системе относительно неизвестного: Дата добавления: 2018-04-04; просмотров: 3917; |
Источник
Примеры решения задач. Задача 1. Смесь кислорода и азота при температуре t=270С находится под давлением Р=2,3·102 Па
Задача 1. Смесь кислорода и азота при температуре t=27 0 С находится под давлением Р=2,3·10 2 Па. Масса кислорода составляет 75% от общей массы смеси. Определите концентрацию молекул каждого из газов.
азота,
– постоянная Больцмана.
Из выражений (1) и (2) имеем:
.
(3)
Выразим концентрацию n1 через концентрацию n2. По условию задачи масса кислорода
где m – масса смеси.
Массу кислорода можно выразить также через концентрацию n1 и объем газа:
m1 = , (5)
где М1– молярная масса кислорода, NA – число Авогадро, V – объем газа.
Приравняв правые части выражений (4) и (5), получим
. (6)
Масса азота m2=0,25m, или иначе
. Приравняв значения m2 из последних двух формул, найдем
. (7)
Из выражений (6) и (7) имеем:
. (8)
Подставив в формулу (3) значение n2 из последнего выражения, получим n1=
. После подстановки значений и вычисления n1= 0,40·10 23 1/м 3 , n2= 0,15·10 23 (1/м 3 ).
Задача 2. В закрытом сосуде объемом V=1 м 3 находится m1=1кг азота и m2=1,5 кг воды. Определите давление в сосуде при температуре t=600 0 С, зная, что при этой температуре вся вода превратится в пар.
, (3)
где M2 – молярная масса водяного пара.
Из уравнений (2) и (3) имеем:
, . После подстановки давлений Р1и Р2в выражение (1) имеем Используя числовые значения, получим: Р = 8,62·10 5 Па.
Ответ: Р = 8,62·10 5 Па.
Задача 3.Определите число молекул воздуха в аудитории объемом V=180 м 3 при температуре t=22 0 С и давлении Р=0,98·10 5 Па. Какова концентрация молекул воздуха при этих условиях?
Число молей воздуха в аудитории можно выразить, используя уравнение Менделеева — Клапейрона
откуда После подстановки из последней формулы в выражение (2) получим:
. (3)
Используя числовые значения, определим N = 0,43·10 28 . Проверим единицы измерения правой части выражения (3)
. Концентрацию (число молекул в единице объема) определим по формуле: . После подстановки: n=0,24·10 26 .
Ответ: N = 0,43·10 28 , n=0,24·10 26
.
Задача 4.Определите среднюю квадратичную скорость молекул некоторого газа, плотность которого при давлении Р=1,1·10 5 Па равна ρ=0,024
. Какова масса одного моля этого газа, если значение плотности дано для температуры 27 0 С?
в таком виде:
, откуда ,после подстановки числовых значений и вычисления получим:
.
Для определения массы одного моля газа используем уравнение Клапейрона-Менделеева —
откуда . Так как , то , или . После подстановки числовых значений и вычисления:
.
Ответ:
,
Дата добавления: 2014-10-31 ; просмотров: 11 ; Нарушение авторских прав
Источник
Смесь кислорода и азота находится в сосуде под давлением
Решение задач по гидравлике запись закреплена
3.12. Какова стоимость энергии, необходимой для того, чтобы поднять 1 т оборудования на вершину телевизионной башни высотой 516 м, если цена электроэнергии составляет 2 коп/(кВт · ч), а к.п.д. подъемного механизма η = 0,85?
3.13. В процессе расширения давление и объем идеального газа связаны соотношением рνk = const, где k = 1,4. Показать, что работа расширения от р1, ν1 до р2, ν2 определяется уравнением l = (р1ν1 – р2ν2), и вычислить ее, если р1 = 1,2 МПа, ν1 = 0,1 м3/кг и р2 = 0,2 МПа, ν2 = 0,360 м3/кг.
3.14. В канале произвольной формы (рис. П.1.11) течет воздух в количестве 5 кг/с. На входе в канал энтальпия газа, скорость потока и высота входного сечения над произвольной горизонтальной плоскостью соответственно равны h1 = 293 кДж/кг, ω1 = 30 м/с х1 = 30 м, на выходе из канала h2 = 300 кДж/кг, ω2 = 15 м/с, х2 = 10 м. Протекая в канале, газ получает извне энергию в форме теплоты в количестве 30 кДж/с. Какую техническую работу совершает поток газа?
3.15. Воздушный компрессор сжимает 129 кг/ч воздуха. Установлено, что при сжатии энтальпия воздуха увеличивается на 17 МДж/ч, а энтальпия охлаждающей компрессор воды – на 10 МДж/ч. Пренебрегая потерями и изменением кинетической и потенциальной энергии найти мощность привода компрессора.
3.16. Газ, состояние которого определяется на р, ν – диаграмме (рис. П.1.12) точкой l, переводится в состояние 2 по пути 1 с 2. При этом к газу подводится 8 кДж энергии в виде теплоты и от газа получается 30 кДж работы. Затем этот же газ возвращается в исходное состояние в процессе, который описывается кривой 2 а 1. Сколько энергии нужно подвести в некотором другой процессе 1 d 2, чтобы от газа получить 10 кДж работы? Сколько нужно подвести или отвести теплоты в процессе 2 а 1, если на сжатие расходуется 50 кДж энергии в форме работы?
3.17. Газ, имеющий массу m = 1 кг, находится под поршнем цилиндра в состоянии (рис. П.13) с параметрами р1 = 0,5 МПа и ν1 = 0,100 кг/м3. Он может перейти в состояние 2 с параметрами р2 = 0,1 МПа и ν2 = 0,262 кг/м3 посредством процесса 1 а 2 или 1 b 2. Процесс 1 а 2 протекает без теплообмена, его уравнение р = сν-5/3. Процесс 1 b 2 характерен тем, что при его осуществлении теплота сначала подводится к газу, а затем отводится от него. В процессе 1 b 2 давление зависит от объема линейно. Определить работу, которую совершает газ, если происходит процесс 1 а 2. Какое количество теплоты, подведенное к газу в процессе 1 b 2 или отведенное, больше по своему абсолютному значению и насколько?
3.18. Центробежный компрессор сжимает 100 кг/ч азота. При сжатии энтальпия азота увеличится на 200 кДж/кг. Какова должна быть мощность привода компрессора, если теплообменом с окружающей средой и изменением кинетической и потенциальной энергии сжимаемого азота пренебречь?
4. Газовые смеси. Процессы изменения состояния газа
4.1. В закрытом сосуде емкостью V = 2 м3 находится m1 = 2,7 кг воды и m2 = 3,2 кг кислорода. Найти давление в сосуде при температуре t = 527ºС, зная что в этих условиях вся вода превращается в пар (считать, что пар в данном случае подчиняется законам идеального газа).
4.2. Найти плотность воздуха при давлении р0 = 1 · 105 Па и температуре t = 13ºС, считая что в воздухе содержится 23,6 вес. % кислорода (О2) и 76,4 вес. % азота (N2). Найти парциальные давления кислорода и азота при этих условиях.
4.3. В сосуде находится смесь азота и водорода. При температуре Т, когда азот полностью диссоциирован на атомы, давление равно р (диссоциацией водорода пренебречь). При температуре 3Т, когда оба газа полностью диссоциированы, давление в сосуде равно 4р. Каково отношение масс водорода и азота в смеси?
4.4. Газ с массой m1 и молекулярным весом μ1 смешали с газом, масса которого равна m2, а молекулярный вес – μ2. Найти кажущийся молекулярный вес смеси.
4.5. Определить плотность смеси газа и кажущийся вес смеси, состоящей из m1 кислорода, m2 водорода и m3 углекислого газа, при температуре Т и давлении р.
4.6. Газ массой m = 15 кг, молекулы которого состоят из атомов водорода и углерода, содержит N = 5,64 · 1026 молекул. Определить массу атомов углерода и водорода, входящих в молекулу этого газа.
4.7. Найти отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах.
4.8. Какое число молекул двихатомного газа содержится в сосуде объемом V = 20 см3 при давлении р = 1,05 · 104 Па и температуре t = 27ºС? Какой энергией теплового движения обладают эти молекулы?
4.9. Определить число молекул в 1 мм3 воды; массу молекулы воды; диаметр молекулы воды, считая условно, что молекулы воды шарообразны и соприкасаются.
4.10. Найти отношение ср/сν смеси газов, состоящей из m1 = 20 г гелия и m2 = 8 г водорода.
4.11. Разность удельных теплоемкостей некоторого двухатомного газа ср – сν = 260 Дж/(кг · К). Найти массу одного киломоля газа и его удельные теплоемкости.
4.12. Плотность смеси азота и водорода при температуре t = 47ºС и давлении р = 2,03 · 105 Па равна ρ = 0,3 кг/м3. Какова концентрация молекул водорода в смеси?
4.13. Смесь идеальных газов состоит из m1 кг газа 1, m2 кг газа 2 и m2 кг газа 3. Определить чему равно давление смеси, если объем смеси газов равен Vсм, а температура смеси Тсм.
4.14. Смесь 10 кг кислорода и 15 кг азота имеет давление ,3 МПа и температуру 27ºС. Определить, мольные доли z1 каждого газа в смеси, кажущуюся молекулярную массу смеси, удельную газовую постоянную, общий объем смеси, парциальные давления и объемы.
4.15. В сосуде находится смесь состоящая из одного киломоля кислорода и двух киломолей азота при р1 = 0,1 МПа и t1 = 30ºС. Эта смесь охлаждается при постоянном объеме до температуры t2 = 10ºС. Определить изменение внутренней энергии смеси.
4.16. Воздух, если считать, что он является смесью только азота и кислорода, имеет следующий объемный состав: = 79,0%; = 21,0%. Определить массовые доли азота и кислорода в воздухе, вычислить газовую постоянную воздуха.
4.17. Воздух объемом 0,3 м3 смешивается с 0,5 кг углекислого газа. Оба газа до смешения имели параметры р = 0,5 МПа и t = 45ºС. Определить парциальное давление углекислого газа.
4.18. Дымовые газы имеют следующий массовый состав: = 16,1%; = 7,5%; = 76,4%. Рассчитать энтальпию kсм этих газов, отнесенную к 1 кг смеси при t = 800ºС и отсчитанную от 0ºС.
4.19. Рассчитать истинную теплоемкость ср смеси паров двуокиси углерода и воды. Массовая доля двуокиси углерода = 0,9383. Расчет произвести, пользуясь таблицами приложения 2 для температур 200º и 400ºС.
4.20. Энергетические установки, работающие по парогазовому циклу, в качестве рабочего тела используют смесь водяного пара и горячих продуктов сгорания топлива. Массовая доля продуктов сгорания топлива g = 0,7. Принять, что продукты сгорания обладают свойствами воздуха. Определить теплоемкость ср смеси при температурах 500 и 800ºС, а также удельный объем смеси при р = 0,1 МПа и t = 500ºС (таблицы приложения 2).
4.21. В сосуде находится смесь газов, образовавшаяся в результате смешения 10 кг азота, 3 кг аргона и 27 кг двуокиси углерода. Определить мольный состав смеси, ее удельный объем при нормальных условиях, кажущуюся мольную массу смеси газовую постоянную, отнесенную к одному кубическому метру при нормальных условиях.
4.22. Влажный воздух представляет собой смесь сухого воздуха и водяного пара. Известно, что на каждый килограмм сухого воздуха во влажном воздухе содержится d г водяного пара. Определить массовые и объемные доли сухого воздуха и водяного пара, плотность при нормальных условиях, газовую постоянную, отнесенную к 1 кг, и кажущуюся мольную массу смеси, если d = 10 г/кг сухого воздуха.
4.23. Объемный состав горючего газа: = 10%; = 45%; = 35%; = 4%; = 3%; = 3%. Определить кажущуюся мольную массу, плотность, удельный объем при нормальных условиях, массовую газовую постоянную R, парциальное давление метана в процентах и массовые доли содержания компонентов.
4.24. Смесь газов, образовавшихся при сжигании 1 кг мазута в топке парового котла, имеет состав, определенный парциальными объемами составляющих: = 1,85 м3; = 0,77 м3; = 12,78 м3. Определить массовые доли и парциальные давления составляющих, если общее давление р = 0,1 МПа.
4.25. Сосуд разделен перегородкой на две части, объемы которых V1 = 1,5 м3 и V2 = 1,0 м3. В части объемом V1 содержится двуокись углерода при р1 = 0,5 МПа и t1 = 30,0ºС, а в части объемом V2 – кислород при р2 = 0,2 МПа и t2 = 57ºС. Определить массовые и объемные доли двуокиси углерода и кислорода, кажущуюся молекулярную массу смеси и ее газовую постоянную после того, как перегородка будет убрана и процесс смешения закончится (рис. П.1.14).
4.26. Имеются два сосуда, соединенных между собой трубкой, на которой установлен кран, разобщающий их. В первом сосуде, емкость которого V1 = 2 м3, находится воздух при р1 = 1,0 МПа и t1 = 27ºС. Второй (V2 = 1 м) содержит также воздух при р2 = 0,2 МПа и t2 = 57ºС. Кран при этом закрыт. Затем кран открывается и система приходит в равновесное состояние. Определить давление и температуру образовавшейся смеси. Теплоемкость считать не зависящей от температуры.
4.27. Образование смеси двух газов – азота и гелия – происходит так же, как и в задаче 4.25. Состояние газов до смешения.
Наименование N2 He2
Масса m, кг 10 5
Объем V, м3 1,5 1,0
Температура t, ºС 120 860
Найти давление и температуру смеси, объемные доли компонентов, а также парциальные давления азота и гелия после окончания процесса смешения. Предполагается, что теплоемкости не зависят от температуры; их следует рассчитать по формуле молекулярно-кинетической теории. Теплообмен со средой отсутствует.
4.28. При температуре t = 207ºС m = 2,5 кг некоторого газа занимает объем V = 0,3 м3. Определить давление газа, если удельная теплоемкость ср = 519 Дж/(кг · К) и γ = 1,67.
4.29. Некоторый газ при нормальных условиях имеет плотность ρ = 0,0894 кг/м3. Определить его удельные теплоемкости ср сμ а также найти, какой это газ.
4.30. На рис. П.1.15 изображен график изменения состояния идеального газа в координата рV. Представить этот круговой процесс в координатах рТ и VТ, обозначив соответствующие точки.
4.31. Некоторое количество идеального газа совершает замкнутый процесс 1 – 2 – 3 – 1, который изображен на графике зависимости объема от температуры (рис. П.1.16). Изобразить этот процесс в координатах РV и указать, на каких стадиях процесса газ получал, а на каких – отдавал тепло.
4.32. При нагревании газа были получены графики зависимости давления (рис. П.1.17 а) и объема (рис. П.1.7 б) от абсолютной температуры. Как изменились в первом случае объем, а во втором – давление?
4.33. Два сосуда, содержащие одинаковые массы одного газа, соединены трубкой с краном. В первом сосуде давление р1 = 5 · 103 Н/м2, во втором – р2 = 8 · 103 Н/м2. Какое давление установится после открытия крана, если температура останется неизменной?
5. 2-й закон термодинамики
5.1. Количество азота, находящегося в сосуде под поршнем равно m. Вес поршня – Р, площадь его поперечного сечения – S. Атмосферное давление – р0. Сколько теплоты нужно тратить, чтобы нагреть газ на Δt? Насколько при этом поднимется поршень?
5.2. При изобарическом расширении двухатомного газа была совершена работа А. Какое количество теплоты сообщено газу?
5.3. Масса m идеального газа, находящегося при температуре Т, охлаждается изохорически так, что его давление уменьшается в n раз. Затем газ расширяется при постоянном давлении. Температура газа в конечном состоянии равна первоначальной. Определить совершенную газом работу. Молекулярная масса газа μ.
5.4. Один моль идеального газа совершает замкнутый процесс, состоящий из двух изохор и двух изобар (рис. П.1.18). Температура в точке 1 равна Т1, в точке 3 – Т3. Определить работу, совершаемую газом за цикл, если точки 2 и 4 лежат на одной изотерме.
5.5. При адиабатическом расширении азота с массой m совершается работа А. Насколько уменьшилась внутренняя энергия и понизилась температура азота, если его удельная теплоемкость при постоянном объеме равна сγ?
5.6. Каковы были начальные объем и температура массы m гелия, заключенного под поршнем в цилиндр, если при охлаждении его до 0ºС потенциальная энергия груза весом Р, лежащего на поршне, уменьшилась на ΔЕ. Площадь поршня – S, атмосферное давление – р0.
5.7. В закрытом сосуде находятся массы m1 азота и m2 кислорода. Найти изменение внутренней энергии смеси при охлаждении ее на ΔТ.
5.8. Двухатомный газ с массой m, имеющий молекулярную массу μ, находится в закрытом сосуде под давлением р при температуре Т. После нагревания давление в сосуде стало равно р1. Какое количество теплоты было сообщено газу при нагревании?
5.9. Найти молекулярную массу и первоначальный удельный объем газа подвергшегося изотермическому сжатию, если в конце сжатия давление массы m газа увеличилось в n раз и произведенная работа равна А. До сжатия газ находится под давлением р1 при температуре Т1.
5.10. Атомарный кислород О, молекулярный кислород О2, и озон О3 отдельно друг от друга расширяются изобарически. При этом расходуется количество ΔQ теплоты. Определить доли теплоты, расходуемые на расширение и изменение внутренней энергии для О, О2, О3.
5.11. Масса m = 2 г гелия, находящегося при t = 0ºС и давления р = 2 · 105 Н/м2, изотермически расширяется за счет полученного извне тепла до объема ν = 2 л. Найти работу, совершенную газом при расширении; количество сообщенной газу теплоты.
5.12. Определить изменение энтропии 3 кг азота в политропном процессе при изменении температуры от t1 = 100ºС до t2 = 300ºС. Показатель политропы n = 1,2. Теплоемкости принять по молекулярно-кинетической теории. ?