Влажность в замкнутом сосуде
Измерение влажности
Здесь и далее мы будем говорить о влажности воздуха и газов. В отличие от температуры, с определением и физическим пониманием влажности проблем нет. Это количество воды, содержащееся в единице объёма воздуха. Но мы столкнулись в своей работе с тем, что люди, занимающиеся профессионально измерениями не чувствуют этот физический параметр и соответственно не могут провести элементарные расчёты и объяснить многие явления связанные с влажностью. Связано это во многом с тем, что в отличие от температуры мы не ощущаем влажность так явно (См. статью: Что такое температура? Как правильно измерять температуру? Что выбрать: термосопротивление или термопару? Советы по применению.). Представьте, что вы вышли зимним утром из дома. Какая температура на улице, вы сможете сказать с точностью 3…5⁰С, а вот вопрос, какая сейчас относительная влажность, поставит вас в тупик. В то же время влажность воздуха является очень важным параметром, непосредственно влияющим на самочувствие и работоспособность человека. Очень важно знать и поддерживать определённую влажность во многих отраслях промышленности и сельском хозяйстве.
Что такое влажность воздуха
Существуют несколько единиц измерения относительной влажности воздуха.
1. Абсолютная влажность – это количество воды в единице объёма воздуха, А(г/м3).
2. Для определения второй единицы измерения нужно внимательно посмотреть на рисунок, отображающий движение молекул воды в закрытом сосуде, залитом до определённого уровня водой. Через некоторое время в этом сосуде два процесса: испарения и конденсации молекул воды выровняются и мы получим насыщенный водяной пар, который создаёт давление на стенки сосуда равное давлению насыщенного водяного пара, Ps(Ра). В воздухе всегда присутствуют молекулы воды, но их концентрация ниже, чем над водной поверхностью. Они так же, как и другие молекулы воздуха создают давление. Это давление, создаваемое именно молекулами воды, называется парциальным давлением водяного пара, P(Па). Отношение парциального давления водяного пара к насыщенному давлению водяного пара, выраженное в процентах называется относительной влажностью воздуха:
Из определения вытекает, что над поверхностью воды относительная влажность воздуха равна 100 %. И обратно, при 100%-ой влажности воздуха наблюдается конденсация влаги. Давление насыщенного водяного пара растёт при увеличении температуры. Если в изолированном помещении со 100%-ой влажностью повысить температуру, то относительная влажность резко снизится.
3. Из второй единицы измерения следует третья. Если в замкнутом объёме с определённой влажностью уменьшать температуру, то будет увеличиваться относительная влажность воздуха. При определённой температуре относительная влажность станет равной 100 %. Эта температура называется температурой точки росы. Для отрицательных температур существует своя точка росы – точка инея. Само определение подсказывает один из способов определения влажности воздуха в некотором объёме. Нужно медленно охлаждать какой-то предмет, контролируя его температуру. Температура, при которой на предмете возникнет водяная плёнка сконденсировавшихся молекул воды, будет равна температуре точки росы в данном объёме.
Ниже приведены выражения для расчёта давления насыщенного водяного пара над поверхностью воды Psw и льда Psi в зависимости от температуры:
Значения давления насыщенного пара над поверхностью воды (Рsw) и льда (Рsi)
Таблица 1.
Т,°C | psw, Па | psi, Па | Т,°C | psw, Па | psi, Па | Т,°C | psw, Па | psi,Па |
-50 | 6,453 | 3,924 | -33 | 38,38 | 27,65 | -16 | 176,37 | 150,58 |
-49 | 7,225 | 4,438 | -32 | 42,26 | 30,76 | -15 | 191,59 | 165,22 |
-48 | 8,082 | 5,013 | -31 | 46,50 | 34,18 | -14 | 207,98 | 181,14 |
-47 | 9,030 | 5,657 | -30 | 51,11 | 37,94 | -13 | 225,61 | 198,45 |
-46 | 10,08 | 6,38 | -29 | 56,13 | 42,09 | -12 | 244,56 | 217,27 |
-45 | 11,24 | 7,18 | -28 | 61,59 | 46,65 | -11 | 264,93 | 237,71 |
-44 | 12,52 | 8,08 | -27 | 67,53 | 51,66 | -10 | 286,79 | 259,89 |
-43 | 13,93 | 9,08 | -26 | 73,97 | 57,16 | -9 | 310,25 | 283,94 |
-42 | 15,48 | 10,19 | -25 | 80,97 | 63,20 | -8 | 335,41 | 310,02 |
-41 | 17,19 | 11,43 | -24 | 88,56 | 69,81 | -7 | 362,37 | 338,26 |
-40 | 19,07 | 12,81 | -23 | 96,78 | 77,06 | -6 | 391,25 | 368,84 |
-39 | 21,13 | 14,34 | -22 | 105,69 | 85,00 | -5 | 422,15 | 401,92 |
-38 | 23,40 | 16,03 | -21 | 115,32 | 93,67 | -4 | 455,21 | 437,68 |
-37 | 25,88 | 17,91 | -20 | 125,74 | 103,16 | -3 | 490,55 | 476,32 |
-36 | 28,60 | 19,99 | -19 | 136,99 | 113,52 | -2 | 528,31 | 518,05 |
-35 | 31,57 | 22,30 | -18 | 149,14 | 124,82 | -1 | 568,62 | 563,09 |
-34 | 34,83 | 24,84 | -17 | 162,24 | 137,15 | 611,65 | 611,66 |
Значения давления насыщенного пара над плоской поверхностью воды (Рsw)
Таблица 2.
Т, °C | psw, Па | Т, °C | psw, Па | Т, °C | psw, Па | Т, °C | psw, Па |
611,65 | 26 | 3364,5 | 52 | 13629,5 | 78 | 43684,4 | |
1 | 657,5 | 27 | 3568,7 | 53 | 14310,3 | 79 | 45507,1 |
2 | 706,4 | 28 | 3783,7 | 54 | 15020,0 | 80 | 47393,4 |
3 | 758,5 | 29 | 4009,8 | 55 | 15759,6 | 81 | 49344,8 |
4 | 814,0 | 30 | 4247,6 | 56 | 16530,0 | 82 | 51363,3 |
5 | 873,1 | 31 | 4497,5 | 57 | 17332,4 | 83 | 53450,5 |
6 | 935,9 | 32 | 4760,1 | 58 | 18167,8 | 84 | 55608,3 |
7 | 1002,6 | 33 | 5036,0 | 59 | 19037,3 | 85 | 57838,6 |
8 | 1073,5 | 34 | 5325,6 | 60 | 19942,0 | 86 | 60143,3 |
9 | 1148,8 | 35 | 5629,5 | 61 | 20883,1 | 87 | 62524,2 |
10 | 1228,7 | 36 | 5948,3 | 62 | 21861,6 | 88 | 64983,4 |
11 | 1313,5 | 37 | 6282,6 | 63 | 22878,9 | 89 | 67522,9 |
12 | 1403,4 | 38 | 6633,1 | 64 | 23936,1 | 90 | 70144,7 |
13 | 1498,7 | 39 | 7000,4 | 65 | 25034,6 | 91 | 72850,8 |
14 | 1599,6 | 40 | 7385,1 | 66 | 26175,4 | 92 | 75643,4 |
15 | 1706,4 | 41 | 7787,9 | 67 | 27360,1 | 93 | 78524,6 |
16 | 1819,4 | 42 | 8209,5 | 68 | 28589,9 | 94 | 81496,5 |
17 | 1939,0 | 43 | 8650,7 | 69 | 29866,2 | 95 | 84561,4 |
18 | 2065,4 | 44 | 9112,1 | 70 | 31190,3 | 96 | 87721,5 |
19 | 2198,9 | 45 | 9594,6 | 71 | 32563,8 | 97 | 90979,0 |
20 | 2340,0 | 46 | 10098,9 | 72 | 33988,0 | 98 | 94336,4 |
21 | 2488,9 | 47 | 10625,8 | 73 | 35464,5 | 99 | 97795,8 |
22 | 2646,0 | 48 | 11176,2 | 74 | 36994,7 | 100 | 101359,8 |
23 | 2811,7 | 49 | 11750,9 | 75 | 38580,2 | ||
24 | 2986,4 | 50 | 12350,7 | 76 | 40222,5 | ||
25 | 3170,6 | 51 | 12976,6 | 77 | 41923,4 |
Относительная влажность при отрицательной температуре Ψi
поправочный коэффициент k = psw / psi.
Значения поправочного коэффициента «k» при различной температуре:
Таблица 3.
Т,⁰С | -10 | -20 | -30 | -40 | |
1 | 1,104 | 1,219 | 1,347 | 1,489 | |
-1 | 1,01 | 1,115 | 1,231 | 1,361 | 1,504 |
-2 | 1,02 | 1,126 | 1,243 | 1,374 | 1,519 |
-3 | -1,03 | 1,137 | 1,256 | 1,388 | 1,534 |
-4 | 1,04 | 1,148 | 1,269 | 1,402 | 1,549 |
-5 | 1,05 | 1,16 | 1,281 | 1,416 | 1,565 |
-6 | 1,061 | 1,171 | 1,294 | 1,43 | 1,58 |
-7 | 1,071 | 1,183 | 1,307 | 1,445 | 1,596 |
-8 | 1,082 | 1,195 | 1,32 | 1,459 | 1,612 |
-9 | 1,093 | 1,207 | 1,334 | 1,474 | 1,628 |
Значения абсолютной влажности газа с относительной влажностью по воде 100% при различной температуре
Таблица 4.
Примеры расчёта относительной влажности и точки росы
Пример 1.
Задача. Относительная влажность воздуха при температуре 20⁰С составляет 55%. Определить точку росы воздуха.
Решение. Из Таблицы 2. давление насыщенного водяного пара при температуре 20⁰С равно 2340 Па. Определяем парциальное давление водяного пара в воздухе:
p = ps (Ψ/100) = 2340 x 55 / 100 = 1287 Па
Из Таблицы 2.находим температуру: 10,5⁰С.
Пример 1.
Задача. Параметры воздуха снаружи: Т = -10⁰С, Ψ=100%; в помещении: Т = 20⁰С. Чему равна отн. влажность в помещении?
Решение. Из Таблицы 2. находим значение давления насыщенного водяного пара Рsн при температуре -10⁰С. Это давление равно парциальному давлению водяного пара в помещении. Из Таблицы 2. находим, чему равно давление насыщенного водяного пара Psп при 20⁰С в помещении.
Ψп = Рsн / Psп х 100%
Ψп = 286/ 2340 х 100 % = 12,2%
Сенсоры для измерения влажности воздуха
Для определения влажности воздуха существуют как прямые, так и косвенные методы. Из прямых можно привести метод определения температуры точки росы по конденсации на зеркале. Это очень точный метод, позволяющий измерять малые значения влажности. Однако сами приборы – достаточно дорогие. Метод требует времени и неприспособлен для контроля быстрых процессов. В основном его используют в лабораториях для определения влажности сухих газов.
Существует также спектрометрический метод прямого подсчёта молекул воды в воздухе. Но он также не подходит для промышленного применения. Наиболее популярным методом измерения является психрометрический, по разнице показаний сухого и влажного термометров. Но этот метод требует чётко задаваемой постоянной скорости обдува влажного термометра. Большинство же психрометров просто крепятся на стене и верить им, конечно же, нельзя. И из-за неконтролируемой скорости обдува и из-за недостоверного измерения температуры воздуха.
Беда в том, что люди привыкли к этим приборам и ссылаются на их показания, как единственно верные.
Для производства электронных датчиков и измерителей относительной влажности чаще всего используют емкостные полимерные чувствительные элементы. Данные сенсоры представляют собой подложку с нанесённым нижним металлическим слоем, слой полимера, легко адсорбирующего влагу, верхний пористый слой металлизации. При изменении влажности меняется как толщина полимера, так и его диэлектрические параметры, что приводит к изменению ёмкости сенсора. В последнее время внимание к этим сенсорам сильно выросло, так как появилась возможность создания датчиков с цифровым выходом с уже откалиброванным выходным сигналом.
Особенности применения измерителей влажности воздуха с емкостным чувствительным элементом
К сожалению, емкостные чувствительные элементы реагируют не только на влажность, но и на большинство неинертных газов, что приводит к дополнительной погрешности, а часто и к полной деградации сенсора. При длительном нахождении сенсора при высокой влажности его необходимо просушить при повышенной температуре по методике, предоставляемой изготовителем. Полимер не может работать при высокой температуре, ограничивая диапазон использования измерителя. Нельзя допускать конденсации влаги на чувствительном элементе, так как это приведёт к коррозии тонкоплёночной структуры сенсора. Сенсор необходимо защищать от воздействия солнечных лучей, касания руками, различных загрязнений. Именно сенсор влажности определяет технические параметры и срок службы измерителя влажности. Поэтому так важно, чтобы сенсоры были взаимозаменяемы. Именно поэтому межповерочный интервал для измерителей влажности равен всего 1-му году. Лучшее значение абсолютной погрешности для измерителя влажности промышленного применения на сегодня, это – ±2,0%.
Необходимо помнить, что относительная влажность воздуха по определению очень сильно зависит от температуры. Колебания температуры воздуха по объёму помещения в ±1⁰С могут приводить к колебаниям относительной влажности в ±5% и более. Если зимой ваш электронный гигрометр показывает отн. влажность в 7%, а психрометр – 30%, то это отнюдь не означает, что гигрометр сломался. Так и есть. Просто снимите со стены психрометр и положите подальше в шкаф.
Директор НПК “Рэлсиб” Игорь Ландочкин
Источник
На данном уроке будет введено понятие абсолютной и относительной влажности воздуха, будут обсуждаться термины и величины, связанные с этими понятиями. Также мы познакомимся со способами измерения влажности воздуха.
1. Абсолютная влажность
Попробуем сформулировать, что в физике понимается под влажностью воздуха. Прежде всего, что за вода содержится в воздухе? Ведь таковой, например, является туман, дождь, облака и прочие атмосферные явления, проходящие с участием воды в том или ином агрегатном состоянии. Если все эти явления учитывать при описании влажности, то как проводить измерения? Уже из таких простых рассуждений становится ясно, что интуитивными определениями здесь не обойтись. На самом деле речь идет, прежде всего, о парах воды, которые содержатся в нашей атмосфере.
Атмосферный воздух – это смесь газов, одним из которых и является водяной пар. Он вносит свой вклад в атмосферное давление, этот вклад называется парциальным давлением (а также упругостью) водяных паров.
Парциальное давление p водяных паров является одним из показателей влажности воздуха, который измеряется в паскалях или миллиметрах ртутного столба.
2. Закон Дальтона
Основные закономерности, которые мы с вами получали в рамках изучения молекулярно-кинетической теории, относятся к так называемым чистым газам, т. е. газам, состоящим из атомов или молекул одного сорта. Однако очень часто приходится иметь дело со смесью газов. Самым простым и распространенным примером такой смеси является атмосферный воздух, который окружает нас. Как мы знаем, он на 78 % состоит из азота, на 21 % с лишним – из кислорода, а оставшийся процент занимают водяные пары и другие газы (рис. 1).
Рис. 1. Состав атмосферного воздуха
Каждый из газов, который входит в состав воздуха или любой другой смеси газов, безусловно, вносит свой вклад в общее давление данной смеси газов. Вклад каждого отдельного такого компонента носит название парциальное давление газа, т. е. то давление, которое оказывал бы данный газ в отсутствии других компонент смеси.
Английский химик Джон Дальтон экспериментальным путем установил, что для разреженных газовых смесей общее давление есть простая сумма парциальных давлений всех компонент смеси:
P = P1 + P2 + …
Данное соотношение носит название закона Дальтона.
3. Определения
Ознакомимся с рядом понятий, неразрывно связанных с понятием влажности воздуха:
Давление водяного пара зависит от концентрации его молекул в воздухе, а также от абсолютной температуры последнего. Чаще за характеристику влажности принимают плотность ρ водяного пара, содержащегося в воздухе, она называется абсолютной влажностью.
Абсолютная влажность показывает, сколько граммов водяного пара содержится в 1м3 воздуха. Соответственно, единица измерения абсолютной влажности – 1Г/м3.
Оба упомянутых показателя влажности связаны уравнением Менделеева – Клапейрона.
М – молярная масса водяного пара;
Т – его абсолютная температура.
То есть, зная один из показателей, например плотность, мы можем легко определить другой, то есть давление.
4. Влияние интенсивности испарения и конденсации воды на живые организмы.
Мы с вами знаем, что водяной пар может быть как ненасыщенным, так и насыщенным. В целом водяной пар в атмосфере, несмотря на наличие большого количества водоемов (океаны, моря, реки, озера и так далее), является ненасыщенным, ведь наша атмосфера не является закрытым сосудом. Однако перемещение воздушных масс (ветра, ураганы и так далее) приводят к тому, что в разных точках Земли в каждый момент времени наблюдается разное соотношение между скоростями конденсации и испарением воды, вследствие чего в отдельных местах пар может достигать насыщения. К чему это приводит? К тому, что в такой местности пар начинает конденсироваться, ведь мы помним, что насыщенный пар всегда контактирует со своей жидкостью. Как результат, может образоваться туман или облака, выпасть роса.
Температура, при которой пар становится насыщенным, называется точкой росы.
5. Значение влажности
Люди восприимчивы к значению относительной влажности, от нее зависит интенсивность испарения влаги с поверхности кожи. При высокой влажности, особенно в жаркий день, это испарение уменьшается, вследствие чего нарушается нормальный теплообмен организма с окружающей средой. В сухом воздухе, наоборот, происходит быстрое испарение влаги с поверхности кожи, от чего высыхают, например, слизистые оболочки дыхательных путей. Наиболее благоприятной для человека является относительная влажность в интервале 40–60 %.
Важна также роль водяного пара в формировании погодных условий. Конденсация водяного пара приводит к образованию облаков и к последующему выпадению осадков, что, безусловно, имеет значение для любых аспектов нашей жизни и для народного хозяйства. Во многих производственных процессах поддерживаются искусственные режимы влажности. Примером таких процессов являются ткацкие, кондитерские, фармацевтические цеха и многие другие. В библиотеках и музеях для сохранения книг и экспонатов также важно поддерживать определенное значение относительной влажности, поэтому в таких учреждениях во всех помещениях обязательно на стене висит психрометр.
6. Относительная влажность
Чтобы охарактеризовать удаленность состояния пара от насыщения, ввели специальную величину, называемую относительной влажностью.
Относительной влажностью воздуха называют выраженное в процентах отношение давления P водяного пара, содержащегося в воздухе, к давлению P0 насыщенного пара при той же температуре:
Теперь ясно, что чем меньше относительная влажность, тем дальше тот или иной пар от насыщения. Так, например, если значение относительной влажности равно 0, то фактически водяного пара в воздухе нет. Т. е. у нас невозможна конденсация, а при значении относительной влажности 100 % весь водяной пар, который находится в воздухе, является насыщенным, т. к. его давление равно давлению насыщенного водяного пара при данной температуре. Таким способом мы теперь точно определи, что такое та влажность, значение которой нам каждый раз сообщают в прогнозах погоды.
Воспользовавшись уравнением Менделеева – Клапейрона, мы можем получить для относительной влажности альтернативную формулу, в которую входит теперь значение плотности водяного пара, содержавшегося в воздухе, и плотность насыщенного пара при той же температуре.
7. Формула относительной влажности
– плотность водяного пара, содержавшегося в воздухе;
– плотность насыщенного пара при той же температуре.
Для расчета относительной влажности, как мы только что убедились, нам необходимо знать значение давления или плотности насыщенного пара при данной температуре.
8. Зависимость влажности от температуры
Теперь рассмотрим изменение относительной влажности с температурой. Чем выше температура, тем меньше является относительная влажность. Почему и как – рассмотрим на примере задачи.
В некотором сосуде пар становится насыщенным при 0oC. Какова будет его относительная влажность при 10oC, 20oC, 50oC?
Ответить на поставленный вопрос легко, если учесть, что речь идет о паре в сосуде, то объем пара остается неизменным при изменении температуры. Кроме этого, нам необходима таблица зависимости давления и плотности насыщенного пара от температуры, которая представлена на рис. 2.
Рис. 2. Зависимости давления и плотности насыщенного пара от температуры
Решение
Из текста вопроса ясно, что при t = 0oC, = 100oC, ведь именно при этом значении пар становится насыщенным, т. е. из определения относительной влажности мы имеем:
Эту же плотность пар будет иметь и при всех остальных температурах. Следовательно, из вычисления влажности нам будет достаточно знать значение плотности насыщенного пара при всех заданных температурах и мы сразу можем получить ответы. Значение плотности насыщенного пара возьмем из таблицы.
Подставляя поочередно данные значения в формулу для влажности, получим такие ответы.
9. Измерения относительной влажности
А теперь поговорим не только о том, что такое влажность, но и о том, как эту самую влажность можно измерять. Наиболее распространенным инструментом для таких измерений служит так называемый гигрометрический психрометр, который представлен на рис. 3.
Рис. 3. Гигрометрический психрометр
На стойке закреплены два термометра с одинаковыми шкалами. Ртутный резервуар одного из них обернут влажной тряпочкой (рис. 4).
Рис. 4. Термометры гигрометрического психрометра
Вода с этой тряпочки испаряется, благодаря чему сам термометр охлаждается, соответственно, термометры носят название сухой и влажный (рис. 5).
Рис. 5. Сухой и влажный термометр гигрометрического психрометра
Чем больше относительная влажность окружающего воздуха, тем менее интенсивно, слабее идет испарение воды с влажной тряпочки, тем меньше разность в показаниях сухого и влажного термометров. Т. е. при = 100 % вода не будет испаряться, т. к. весь водяной пар является насыщенным и показания обоих термометров будут совпадать. При = 0% разность показаний термометров будет максимальной. Таким образом, по разности показаний термометров с помощью специальных психометрических таблиц (чаще всего такая таблица сразу размещена на корпусе самого прибора) и определяют значение относительной влажности.
10. Итоги
Как мы знаем, большая часть поверхности нашей планеты покрыта мировым океаном, поэтому вода и все процессы, происходящие с ней, в частности испарение и конденсация, играют важнейшую роль во всех процессах нашей жизнедеятельности. Мы с вами дали строгое определение понятий «абсолютная влажность» и «относительная влажность». Фактически, это физическая величина, относительная влажность показывает, на сколько атмосферный пар отличается от насыщенного.
11. Пример решения типичной задачи на определение относительной влажности
В замкнутом сосуде объёмом V = 1 м3 находится вода массой m = 12 г и насыщенный пар; плотность и давление пара при данной температуре равны соответственно л = 8 * 10–3 кг/м3 и p = 1,1 кПа. Какое давление установится при увеличении объема в k = 5 раз? Считать, что температура при увеличении объёма не изменяется.
Решение: в сосуде первоначально содержался насыщенный пар массой m1 = лV = 8 * 10–3 кг (объёмом, занимаемым водой, можно пренебречь).
Масса воды и пара была равна m + m1 = 2 * 10–2 кг. Для насыщения объёма, равного kV, необходим пар массой m2 = лkV = 4 * 10–2 кг. Так как m + m1 < m2, то после увеличения объёма пар станет ненасыщенным. Его плотность л1= m + m1/kV . Давление пара при данной температуре прямо пропорционально плотности. Поэтому 1 = * л1 / л = (m + m1)/лkV = 550 Па.
12. Тест
1 вопрос:
Определить, какова была относительная влажность воздуха в баллоне емкостью 10 л при температуре 20oC, если для осушки воздуха в баллоне в него ввели кусок хлористого калия, который поглотил 0,13 г воды:
Варианты ответа:
2 вопрос:
Укажите соотношение, которое описывает Закон Дальтона
Варианты ответа:
3 вопрос:
В запаянном сосуде емкостью 1000 л находится 10 г ненасыщенного водяного пара. Укажите давление, при котором пар становится насыщенным:
Варианты ответа:
л = m/v = 10г / 1м3 (1000л = 1м3) = 10г/м3 по таблице
4 вопрос:
Определите объем помещения, если при относительной влажности 50 % и температуре 11oC масса водяного пара в этом помещении составляет 400 г:
Варианты ответа:
5 вопрос:
На улице моросит осенний холодный дождь, в кухне для просушки вывесили белье. Быстрее ли это белье высохнет и высохнет ли вообще, если открыть форточку?
Варианты ответа:
- Ничего не изменится;
- Медленнее;
- Не высохнет полностью;
- Быстрее.
Приложение 1
Приложение 2
Источник