Внутренняя энергия одноатомного газа в закрытом сосуде

Внутренняя энергия одноатомного газа в закрытом сосуде thumbnail

11. МКТ и Термодинамика (объяснение явлений)

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

На рисунке показана зависимость давления газа (p) от его плотности (rho) в циклическом процессе, совершаемом 2 моль идеального газа в идеальном тепловом двигателе. Цикл состоит из двух отрезков прямых и четверти окружности.

Внутренняя энергия одноатомного газа в закрытом сосуде

На основании анализа этого циклического процесса выберите два верных утверждения.
1) В процессе 1−2 температура газа уменьшается.
2) В состоянии 3 температура газа максимальна.
3) В процессе 2−3 объём газа уменьшается.
4) Отношение максимальной температуры к минимальной температуре в цикле равно 8.
5) Работа газа в процессе 3−1 положительна.

“Демоверсия 2017”

1) По уравнению Клапейрона – Менделеева: [p=dfrac{rho}{mu}RT,] где (T) – температура, (mu) – молярная масса газа.
Давление уменьшилось в 4 раза, а плотность увеличилась в 2 раза, следовательно, температура уменьшилась в 8 раз.
Утверждение 1 – (color{green}{small text{Верно}})
2) Аналогично предыдущему пункту [p=dfrac{rho}{mu}RT] Максимальная температура будет в состоянии 1 (давление максимально, плотность минимальна)
Утверждение 2 – (color{red}{small text{Неверно}})
3) В процессе 2 – 3 плотность меньшается, а по формуле: [rho =dfrac{m}{V}] Объем увеличивается
Утверждение 3 – (color{red}{small text{Неверно}})
4) Аналогично пункту 2, минимальность температуры будет достигнута в точке с наименьшим давлением и наибольшей плотностью (т. 2), а отношение температур действительно равно 8
Утверждение 4 – (color{green}{small text{Верно}})
5) В процессе 2 – 3 плотность постоянна, следовательно, объем постоянен и газ не совершает работу.
Утверждение 5 – (color{red}{small text{Неверно}})

Ответ: 14

Сосуд разделён на две равные по объёму части пористой неподвижной перегородкой. В начальный момент времени в левой части сосуда содержится 4 моль гелия, в правой – 40 г аргона. Перегородка может пропускать молекулы гелия и является непроницаемой для молекул аргона. Температура газов одинаковая и остаётся постоянной. Выберите два верных утверждения, описывающих состояние газов после установления равновесия в системе.
1) Концентрация гелия в правой части сосуда в 2 раза меньше, чем аргона.
2) Отношение давления газов в правой части сосуда к давлению газа в левой части равно 1,5.
3) В правой части сосуда общее число молекул газов меньше, чем в левой части.
4) Внутренняя энергия гелия и аргона одинакова.
5) В результате установления равновесия давление в правой части сосуда увеличилось в 3 раза.

“Демоверсия 2020”

Перегородка проницаема только для молекул гелия, поэтому в результате установления равновесия парциальное давление гелия в левой части будет равно парциальному давлению гелия в правой части. Давление газа можно вычислить по формуле: [p=dfrac{nu R T}{V}] Парциальные давления гелия в левой и правой части одинаковы, одинаковы температуры и объёмы частей, следовательно, одинаковы и количества вещества гелия в левой и правой частях сосуда, то есть в левой и правой части сосуда будет содержаться по 2 моля гелия.

Найдём связь концентрации и количества вещества: [n=dfrac{N}{V}=dfrac{nu N_A}{V}] То есть концентрации и количества вещества зависят прямо пропорционально друг от друга, также заметим, что чем больше количество вещества, тем больше и количество молекул.

Найдём количество вещества аргона: [nu_{Ar}=dfrac{m_{Ar}}{mu_{Ar}}=dfrac{40text{ г}}{40text{ г/моль}}=1text{ моль}]

Используя полученное выше, рассмотрим данные в задании утверждения.
Концентрация гелия в два раза больше концентрации аргона в правой части сосуда
1) (color{red}{small text{Неверно}})
Концентрация гелия в два раза больше концентрации аргона в правой части сосуда
2) (color{green}{small text{Верно}})
Отношение давлений: [dfrac{p_text{ п}}{p_text{ л}}=dfrac{nu_text{ г.п}+nu_{Ar}}{nu_text{ г.л}}=dfrac{2text{ моль}+1text{ моль}}{2text{ моль}}=1,5] Где (nu_{text{ г.п.}},nu_{text{ г.л.}}) – количество вещества гелия в правой части, количество вещества гелия в левой части соответственно.
3) (color{red}{small text{Неверно}})
Количество вещества газов в правой части сосуда больше количества вещества газа в левой части сосуда, следовательно, в правой части сосуда общее число молекул газа больше, чем в левой части сосуда.
4) (color{red}{small text{Неверно}})
Внутренняя энергия одноатомного идеального газа может быть вычислена по формуле: [U=dfrac{3}{2}nu R T] Температура газов одинакова. Количество вещества гелия больше количества вещества аргона, следовательно, внутренняя энергия гелия больше внутренней энергии аргона.
5) (color{green}{small text{Верно}})
айдём отношение конечного давления в правой части сосуда к начальному давлению в правой части сосуда: [dfrac{p_{k}}{p_text{ н}}=dfrac{nu_{text{ г.п.}}+nu_{Ar}}{nu_{Ar}}=dfrac{2text{ моль}+1text{ моль}}{1text{ моль}}=3]

Ответ: 25

В цилиндрическом сосуде под поршнем находится газ. Поршень может перемещаться в сосуде без трения. На дне сосуда лежит стальной шарик (см. рисунок). Газ нагревают.
Внутренняя энергия одноатомного газа в закрытом сосуде

Выберите из предложенного перечня два верных утверждения, верно описывающие данный процесс, и укажите их номера.
1) Объём газа в этом процессе остаётся неизменным.
2) Давление газа в сосуде остаётся неизменным.
3) Плотность газа в этом процессе увеличивается.
4) Сила Архимеда, действующая на шарик, уменьшается.
5) Концентрация молекул газа в сосуде увеличивается.

Читайте также:  Где сделать уздг сосудов в самаре

1) Так как поршень подвижный (не закреплен), то процесс будет происходить при постоянном давлениии.
Уравнение состояния газа: [pV=nu RT] где (nu) — количество вещества, (T) — температура в Кельвинах, (p) — давление газа, (V) — объем, занимаемый газом, (R) — универсальная газовая постоянная. Выразим объем [V=dfrac{nu RT}{p}] При нагревании газа объем увеличивается.
Утверждение 1 — (color{red}{smalltext{Неверно }})

2) Утверждение 2 — (color{green}{smalltext{Верно }})

3) Плотность газа: [rho=dfrac{m}{V}] При нагревании объем увеличивается, значит плотность уменьшается.
Утверждение 3 — (color{red}{smalltext{Неверно }})

4) Сила Архимеда: [F_{text{Арх}}=rho gV] где (rho) — плотность газа, (V) — объем шарика, (g) — ускорение свободного падения. Плотность уменьшается, значит, сила Архимеда уменьшается.
Утверждение 4 — (color{green}{smalltext{Верно }})

5) Концентрация: [n=dfrac{N}{V}] При нагревании газа объем увеличивается, концентрация уменьшается.
Утверждение 5 — (color{red}{smalltext{Неверно }})

Ответ: 24

На (pV)—диаграмме отображена последовательность трёх процессов (1 — 2 — 3) изменения состояния 2 моль идеального газа. Внутренняя энергия одноатомного газа в закрытом сосуде

Из предложенного перечня утверждений выберите два правильных и укажите их номера.
1) В процессе 1 газ отдаёт положительное количество теплоты.
2) Процесс 2 является изотермическим.
3) В процессе 3 газ совершает работу.
4) В процессе 2 происходит расширение газа при постоянной температуре.
5) В процессе 1 происходит сжатие газа при постоянной температуре.

Работа газа находится как площадь под графиком Внутренняя энергия одноатомного газа в закрытом сосуде
1) Первое начало термодинамики: [Q=Delta U+A] где (Delta U) — изменение внутренней энергии, (A) — работа газа, (Q) — количество теплоты, полученное газом. (Delta U=0), так как температура в процессе 1 не изменяется. При увеличении давления в изотермическом процессе объём уменьшается. (Delta V<0), следоватлеьно, (A<0). Таким образом, (Q<0), то есть газ отдает кол-во теплоты в данном процессе.
Утверждение 1 — (color{green}{smalltext{Верно }})

2) В процессе 2 температура увеличивается.
Утверждение 2 — (color{red}{smalltext{Неверно }})

3) (p=const), следовательно (Vsim T)
Температура уменьшается, то есть объем тоже уменьшается, (Delta V<0), (A<0)
Утверждение 3 — (color{red}{smalltext{Неверно }})

4) В процессе 2 температура увеличивается.
Утверждение 4 — (color{red}{smalltext{Неверно }})

5) Температура в процессе 1 не изменяется. По закону Бойля-Мариотта (p V=const) так как давление увеличивается объём уменьшается.
Утверждение 5 —(color{green}{smalltext{Верно }})

Ответ: 15

На рисунке показан график циклического процесса, проведённого с одноатомным идеальным газом, в координатах (V-T), где (V) — объём газа, (T) — абсолютная температура газа. Количество вещества газа постоянно. Внутренняя энергия одноатомного газа в закрытом сосуде
Из приведённого ниже списка выберите два правильных утверждения, характеризующие процессы на графике, и укажите их номера.
1) В состоянии (B) концентрация газа максимальна.
2) В процессе (AB) газ отдаёт некоторое количество теплоты.
3) В процессе (BC) внутренняя энергия газа увеличивается.
4) Давление газа в процессе (CD) постоянно, при этом внешние силы совершают над газом положительную работу.
5) В процессе (DA) давление газа изохорно уменьшается.

1) В точке (B) объем максимален, а концентрация минимальна:
Утверждение 1 —(color{red}{smalltext{Неверно }})

2) Первое начало термодинамики: [Q=Delta U+A] где (Delta U) — изменение внутренней энергии, (A) — работа газа, (Q) — количество теплоты, полученное газом. В процессе (AB) работа равна (0), температура увеличивается, то есть (Delta U>0), значит (Q>0), то есть газ получает тепло
Утверждение 2 — (color{red}{smalltext{Неверно }})

3) Процесс (BC) — изотермический. Внутренняя энергия не меняется.
Утверждение 3 — (color{red}{smalltext{Неверно }})

4) Процесс (СD) — изобарное сжатие. При уменьшении объема внешние силы совершают положительную работу.
Утверждение 4 — (color{green}{smalltext{Верно }})

5) Процесс (DA) — изохорное охлаждение ((psim T)). Следовательно, при уменьшении температуры давление уменьшается.
Утверждение 5 — (color{green}{smalltext{Верно }})

Ответ: 45

Идеальный газ перевели из состояния 1 в состояние 3 так, как показано на графике зависимости давления р газа от объёма V. Количество вещества газа при этом не менялось. Внутренняя энергия одноатомного газа в закрытом сосуде

Из приведённого ниже списка выберите два правильных утверждения, характеризующие процессы на графике.
1)Абсолютная температура газа минимальна в состоянии 2.
2)В процессе 1-2 абсолютная температура газа уменьшилась в 2 раза.
3)В процессе 2-3 абсолютная температура газа уменьшилась в 1,5 раза.
4)Плотность газа максимальна в состоянии 1.
5)В ходе процесса 1-2-3 средняя квадратичная скорость теплового движения молекул газа увеличилась в (sqrt{3}) раза.

1) Уравнение состояния газа: [pV=nu RT] где (p) — давление газа, (V) — объем, занимаемый газом, (nu) — количество вещеста, (R) — универасальная газовая постоянная, (T) — температура. Температура максимальна там, где максимально произведение (pV), поэтому из графика видно, что (T_1 – min), (T_3 – max), (T_1<T_2<T_3)
Утверждение 1 — (color{red}{smalltext{Неверно }})

2) Процесс 1-2 — изобарное расширение ((Vsim T)). Объем увеличился в 2 раза, то есть температура тоже увеличилась в 2 раза.
Утверждение 2 — (color{red}{smalltext{Неверно }})

Читайте также:  Допплерография сосудов дуги аорты

3) Процесс 2-3 — изохорное нагревание. (V=const), следовательно (psim T) Давление увеличивается в 1,5 раза, то есть температура тоже увеличивается в 1,5 раза.
Утверждение 3 — (color{red}{smalltext{Неверно }})

4) В точке 1 — объем минимален, следовательно, плотность там максимальна.
Утверждение 4 — (color{green}{smalltext{Верно }})

5) [E_{k}=dfrac{3}{2}kT] [dfrac{m_0 v^2}{2}=dfrac{3}{2}kT] где (m_0) — масса газа, (v^2) средняя квадратичная скорость [v^2sim T] [vsim sqrt{T}] Температура в процессе 1-2-3 увеличилась в 3 раза, значит средняя квадратичная скорость увеличилась в (sqrt{3}) раз
Утверждение 5 — (color{green}{smalltext{Верно }})

Ответ: 45

Сосуд разделён на две равные по объёму части пористой неподвижной перегородкой. В левой части сосуда содержится 40 г неона, в правой — 2 моль гелия. Перегородка может пропускать молекулы гелия и является непроницаемой для молекул неона. Температура газов одинакова и остаётся постоянной.

Выберите два верных утверждения, описывающих состояние газов после установления равновесия в системе.
1) Внутренняя энергия гелия в сосуде меньше, чем внутренняя энергия неона.
2) Концентрация гелия в левой части сосуда в 2 раза больше концентрации неона.
3) В левой части сосуда общее число молекул газов в 3 раза больше, чем в правой части.
4) Внутренняя энергия гелия в сосуде в конечном состоянии меньше, чем в начальном.
5) В конечном состоянии давление в левой части сосуда в 3 раза больше, чем в правой.

1) Молярная масса неона (M=20) г/моль. Количество неона: [nu=dfrac{m}{M}=dfrac{40text{ г}}{20text{ г/моль}}=2 text{ моль}] Гелий займет все пространство сосуда, значит в левой части будет 3 моля вещества (1 моль гелия и 2 моль неона).
В правой части будет тоже 1 моль гелия.
Внутренняя энергия газа: [U=dfrac{i}{2}nu RT] Газы находятся при одинаковой температуре, количество гелия равно количеству неона. Внутренняя энергия гелия равна внутренней энергии неона
Утверждение 1 — (color{red}{smalltext{Неверно }})

2) В левой части сосуда количество гелия в два раза меньше количества неона. Следовательно, концентрация гелия в два раза меньше концентрации неона.
Утверждение 2 — (color{red}{smalltext{Неверно }})

3) Так как количество вещества в левой части сосуда больше в 3 раза, чем в правой, то и количество молекул также больше в 3 раза.
Утверждение 3 — (color{green}{smalltext{Верно }})

4) Так как температура гелия и общее количество гелия в сосуде не изменилось, то и внутреннняяя энергия не поменялась.
Утверждение 4 — (color{red}{smalltext{Неверно }})

5) Давление газа: [p=nkT] Так как кол-во вещества в левой части сосуда больше в 3 раза, чем в правой, температуры одинаковые, то давление в конечном состоянии больше в левой части в 3 раза, чем в правой.
Утверждение 5 — (color{green}{smalltext{Верно }})

Ответ: 35

Источник

Опубликовано чт, 07/18/2019 – 11:01 пользователем fizportal.ru

Внутренняя энергия одноатомного газа в закрытом сосуде     Внутренняя энергия одноатомного газа в закрытом сосуде     Внутренняя энергия одноатомного газа в закрытом сосуде

ОСНОВЫ ТЕРМОДИНАМИКИ. Внутренняя энергия идеального газа. Работа идеального газа. Тема 14-5

14.53. Газ, имевший объем V1 = 10 л и давление p = 2,0 × 105 Па, расширился изобарно до объема V2 = 28 л. Какова работа A, совершенная газом?

14.54. Кислород массы m = 10 г находится под давлением p = 3,0 × 105 Па при температуре t = 10 °С. После изобарного нагревания газ занял объем V2 = 10 л. Найдите изменение внутренней энергии газа и совершенную им работу A.

Ответ

14.55. Гелий массы m = 2,8 г нагревают: а) при постоянном давлении; б) при постоянном объеме. Подведенное к газу количество теплоты в обоих случаях равно ΔQ = 600 Дж. Найдите изменение температуры газа в обоих случаях.

14.56. Для нагревания m = 1 кг неизвестного газа на ΔT = 1 K при постоянном давлении требуется количество теплоты ΔQp = 912 Дж, а при постоянном объеме ΔQV = 649 Дж. Определите молярную массу μ этого газа.

14.57. В сосуде объема V = 10 л находится гелий под давлением p1 = 1,0 × 105 Па. Стенки сосуда могут выдержать Внутреннее давление p2 = 1,0 × 106 Па. Какое максимальное количество теплоты можно сообщить газу в этом сосуде?

14.58. График процесса, происходящего в идеальном газе, представляет собой отрезок прямой. Состояние 1 характеризуется объемом Vo, и давлением 2po, состояние 2 – объемом Vo, и давлением po. Найдите количество теплоты, которое было сообщено газу.

14.59. Определите давление po идеального одноатомного газа, занимающего объем V = 2,0 л, если его внутренняя энергия U = 300Дж.

14.60. Идеальный одноатомный газ массы m нагревают при постоянном давлении так, что значение средней квадратичной скорости молекул изменяется от v1 до v2. Определите количество теплоты ΔQ сообщенное газу.

Ответ

ΔQ = ((i + 2)/2i) × m(v22 − v12), i = 3

14.61. Идеальный одноатомный газ, взятый в количестве ν моль, нагревают при постоянном давлении. Какое количество теплоты следует сообщить газу, чтобы средняя квадратичная скорость его молекул увеличилась в n раз? Начальная температура газа равна To.

Читайте также:  Лазерное удаление сосудов на лице в ростове

Ответ

ΔQ = ((i + 2)/2) × (n2 − 1)νRTo, i = 3

14.62. Масса m идеального газа, находящегося при температуре To, охлаждается изохорно так, что давление падает в n раз. Затем газ расширяется при постоянном давлении. В конечном состоянии его температура достигает первоначального значения. Определите совершенную газом работу A. Молярная масса газа равна ν.

Ответ

A = ((n − 1)/n) × (m/μ) × RTo

14.63. В вертикальном цилиндре с площадью основания S = 100 см2 находится воздух при температуре T = 290 К. На высоте H = 0,6 м от основания цилиндра расположен легкий поршень, на котором лежит груз массы m = 100 кг. Какую работу совершит газ при расширении, если его нагреть на ΔT = 50 K? Атмосферное давление po = 1,0 × 105 Па.

14.64. Некоторое количество газа занимает объем V1 = 0,01 м3 при давлении p1 = 1,0 × 105 Па и температуре T1 = 300 К. Сначала газ нагревают без изменения объема до температуры T2 = 320 К, а затем при постоянном давлении до температуры T3 = 350 К. Найдите совершенную газом работу A.

14.65. В цилиндре под поршнем находится газ. Поршень соединен с дном цилиндра пружиной. При нагревании газа его объем изменяется от V1 до V2, а давление – от p1 до p2. Пренебрегая трением и массой поршня, определите совершенную при этом работу A.

Ответ

A = (1/2)(p1 + p2)(V2 − V1)

14.66. В изотермическом процессе газ совершает работу ΔA = 1000 Дж. Чему будет равно изменение внутренней энергии газа ΔU, если ему сообщить количество теплоты вдвое большее, чем в первом случае, а процесс проводить при постоянном объеме?

14.67. Какова внутренняя энергия одноатомного газа, занимающего при температуре T объем V, если концентрация молекул n?

14.68. Давление ν молей идеального газа связано с температурой по закону: Т = $alpha$p2 ($alpha$ = const). Найти работу газа при увеличении объема от значения V1 до значения V2. Выделяется или поглощается при этом тепло?

Ответ

A = (V22 − V12)/(2$alpha nu$R); тепло поглощается

14.69. Для нагревания некоторого количества газа с молярной массой M = 28 г/моль на ΔT = 14 K при p = const требуется количество теплоты Q = 10 Дж. Чтобы охладить его на ту же ΔT при V = const требуется отнять Q = 8 Дж. Определить массу газа.

14.70. В цилиндре под поршнем находится ν = 0,5 молей воздуха при температуре T = 300 K. Во сколько раз увеличится объем воздуха при сообщении ему количества теплоты Q = 13,2 кДж? Молярная теплоемкость воздуха при постоянном объеме CV = 21 Дж/(моль·К).

14.71. Моль идеального газа совершает цикл из двух изохор и двух изобар. Работа газа за цикл A = 200 Дж. Максимальная и минимальная температуры в цикле отличаются на ΔT = 60 К. Отношение давлений на изобарах равно 2. Найти отношение объемов на изохорах.

14.72. Сосуд, содержащий некоторое количество азота, движется со скоростью v = 100 м/с. На сколько изменится температура азота, если сосуд внезапно остановить?

14.73. При нагревании газа его внутренняя энергия увеличилась от 300 до 700 Дж. Какая работа была совершена газом, если на его нагревание было затрачено 1000 Дж теплоты?

14.74. При изохорном нагревании газа его внутренняя энергия увеличилась от 200 до 300 Дж. Какое количество теплоты было затрачено на нагревание газа?

14.75. При изобарном расширении газ совершил работу 100 Дж, а его внутренняя энергия увеличилась при этом на 150 Дж. Затем газу в изохорном процессе сообщили такое же количество теплоты, как и в первом процессе. На сколько увеличилась внутренняя энергия газа в результате этих двух процессов?

14.76. В изотермическом процессе газ получил 200 Дж теплоты. После этого в адиабатическом процессе газ совершил работу в два раза большую, чем в первом процессе. На сколько уменьшилась внутренняя энергия газа в результате этих двух процессов?

14.77. Моль идеального газа нагревается при постоянном давлении, а затем при постоянном объеме переводится в состояние с температурой, равной первоначальной температуре 300 К. Оказалось, что в итоге газу передано количество теплоты 12,45 кДж. Во сколько раз изменился объем, занимаемый газом? Универсальная газовая постоянная 8,31Дж/(моль × К).

14.78. Один моль идеального газа охладили изохорно так, что его давление уменьшилось в 1,5 раза, а затем изобарно нагрели до прежней температуры. При этом газ совершил работу 8300 Дж. Найдите начальную температуру (в Кельвинах) газа. Универсальная газовая постоянная 8,31 Дж/(моль × К).

14.79. Температура идеального газа массой 10 кг меняется по закону $T = alpha V$ ($alpha$ = 2 К/м3). Определите работу (в мДж), совершенную газом при увеличении объема от 2 л до 4 л. Молярная масса газа 12 кг/кмоль, универсальная газовая постоянная 8,31 Дж/(моль·К).

Источник