Вода в перевернутом сосуде
М.А. Старшов
ВОДА НАД МАРЛЕЙ
Один из наиболее известных опытов по физике это, пожалуй, опрокинутый стакан или бокал с водой. Говорят, что если переворачивать умеючи, вода не выливается. В замечательной автобиографической книге «Время вспять или физик, физик, где ты был» французский учёный русского происхождения Анатоль Абрагам с юмором описывает свою первую встречу с физикой как раз на этом примере. В подаренной ему детской энциклопедии были такие простые и убедительные описания разных опытов, что он сразу налил в стакан воду и перевернул его. Влетело от папы, так как залил водой любимый инкрустированный столик. И хотя стал потом очень хорошим физиком, к эксперименту сохранил настороженное отношение навсегда.
Описаний этого впечатляющего эксперимента в книгах и статях великое множество, хотя есть подозрение, что большинство «авторов» сами его не делали. Да и зачем, всё и так очевидно. А вот для тех, кто действительно проверял опыт и добился в конце концов успеха, предложим ещё один, не очень известный вариант.
Накроем кусочком широкого бинта или марлевой салфетки какой-нибудь сосуд, например, пластиковый одноразовый бокал и закрепим марлю с помощью нитки или резинового колечка.
Нальём через марлю немного воды, положим на марлю листок бумаги, прижмём его ладонью по всей окружности сосуда и другой рукой перевернём этот прибор над раковиной или над тарелкой. Вот теперь бумагу спокойно и уверенно сдвигаем горизонтально в сторону и убираем совсем. Вода вовсе не собирается выливаться через бесчисленные дырочки. Что же удерживает воду? Когда опыт проводится традиционно с листом бумаги, в удержании этой бумаги и воды обвиняют атмосферное давление. Никогда не слышал и не читал о роли смачивания водой стекла и бумаги. А вот в этом случае все эти дырки заставляют вспомнить именно о взаимодействии воды и твёрдого тела, смачивании.
Интересно, что после демонстрации перевёрнутого сосуда с водой можно вернуть его в нормальное положение одной рукой, а самые смелые «фокусники» могут рискнуть на ещё один переворот.
Знаменитый автор «Занимательной физики» Я.И. Перельман предлагал гораздо более сложный вариант этого опыта, здесь же всё кажется простым и доступным для повторения даже ребёнком. Учитель же может придумать свой вариант. Например, легко подготовить эксперимент так, что раз и другой вода проливается сквозь марлю, как и ожидают зрители. Но тут вода «слышит ласковые слова», заклинание, и вся остаётся в сосуде над марлей. А через несколько секунд произносится другая просьба – и вода обрушивается сквозь все дырочки в марле!
И, наконец, надо же воду вылить. Для этого достаточно всего лишь наклонить бокал. Когда с обеих сторон некоторых дырочек марли окажется воздух, он войдёт внутрь, давление там станет равно атмосферному, давлению и вода польётся струйкой из бокала.
Вот это вода НАД марлей. И не выливается!
Опубликовано 03.07.17 в 12:26 в группе «Учителя физики»
Комментарии (8)
сменить сортировку
Спицына Любовь Ивановна, 03.07.17 в 13:57
2
Ответить Пожаловаться
Михаил Александрович!
Мне, как физику-самоучке, все Ваши материалы интересны! Спасибо огромное за то, что находите самые нестандартные задачи и примеры, и делитесь ими с коллегами!
Старшов Михаил Александрович, 03.07.17 в 16:20
2
Ответить Пожаловаться
Елена Викторовна, во всём виноваты молекулы воды – между ними есть притяжение. Напомню капли дождя, росы, пролитую на стол небольшую лужицу этой важнейшей для нас, для жизни на Земле жидкости. Есть и взаимодействие воды со мноими веществами, она ведь поднимается до верщин самых высоких деревьев. Вот и в каждой дырочке марли образуется плёночка воды, достаточно прочная, чтобы на ней уравновешивались силы атмосферного давления снизу, снаружи, и давления воды в сосуде плюс давление оставшегося внутри воздуха. Если Вы или Маргарита Владимировна сделаете этот несложный опыт (который я про себя называю “опытом для девочек”, извините!), полюбуетесь “арестованной” водой, а потом дотронетесь пальчиком до мокрой марли, готов поспорить, что по нему немедленно вытечет вся вода из рюмочки. Об этом знают опытные туристы: брезентовая палатка защищает от дождя тех, кто не трогает её изнутри! Надеюсь, такие рассуждения помогут всем нефизикам обратить внимание на эту науку, приучающую думать и искать простые логичные объяснения всему, что нас окружает (включая психологию и политику).
Отредактировано 03-07-2017 16:23
Старшов Михаил Александрович, 04.07.17 в 06:39
Ответить Пожаловаться
В ответ власова Наталья Николаевна
Наталья Николаевна, обратите внимание, как охотно откликнулась на слова “Поверхностное натяжении”…гуманитарий и обшествовед! А я не могу понять, что это такое. Да, на Вашем снимке вижу воду шариками, если её мало, и блином – когда её побольше. Ну, и где оно, это “Поверхностное натяжении”? Почему распластывается вода, понять не в состоянии.
СЛОВО ничего не объясняет, хотя без слов ничего не объяснить…
И позволю себе предложить Вам новое Домашнее Задание: не хотите ли сфотографировать капельки той же воды на наклонном стекле. Или вертикальном. И мениск воды в стакане, а лучше в пробирке или тонкой трубочке? Как там-то работает Поверхностное натяжение?!
Чтобы написать комментарий необходимо авторизоваться.
Источник
Опыт. Налейте в стакан воду до самого края. Прикройте стакан листом плотной бумаги и, придерживая бумагу ладонью, быстро переверните его кверху дном. (Делать это лучше над тазиком или раковиной). Теперь уберите ладонь. Вода из стакана не выльется.
Неправильное объяснение. Опыт обычно объясняют тем, что давление атмосферного воздуха на бумажку снизу больше давления воды на нее сверху. Как-то ко мне подошла дочка с учебником и попросила объяснить ей опыт. “Школьное объяснение” уже готово было привычно сорваться с моих губ, как я вдруг понял, что это полная чушь, замолчал и задумался.
Посудите сами. Кроме давления воды в стакане, есть ещё давление атмосферного столба воздуха на дно перевёрнутого стакана. Вода как бы лишь замещает небольшую часть этой атмосферы. Поэтому давление на бумажку сверху должно быть заведомо больше давления атмосферы на неё снизу. Вода как-никак тяжелее того воздуха, который она заменила.
Размышления. Единственное объяснение, которое возникло в моей голове, состояло в том что лист бумаги прогибается под тяжестью воды, и в результате вверху над водой под самым дном перевёрнутого стакана образуется небольшая полость с разреженным воздухом (на рисунке, который я взял с одного из физических сайтов, такой прогиб не изображён). Давление на столб воды в стакане оказывается меньше давления атмосферного столба над стаканом. И в результате, как я полагал, оно даже вместе со столбом воды в стакане оказывалось меньше давление воздуха снизу на бумагу (полный столб атмосферы). Вот бумажка и держалась.
Правильное объяснение опыта я нашёл лишь в книгах Перельмана. Перельман тоже отвергал классическое объяснение, тоже считал ключевыми прогиб бумаги и образование полости. Однако, по его мнению, разрежение в этой полости достигается в точности таким, чтобы уравнять совместное давление воды и этого разреженного воздуха сверху и давление атмосферного столба снизу на лист бумаги. За счёт чего же тогда удерживается лист бумаги? Да только за счёт смачивания, то есть сил поверхностного натяжения, по краю стакана!
Вариации. Чтобы убедиться в том, что объяснение Перельмана правильно, попробуйте заменить лист бумаги плоским стеклом. Опыт не удастся. И это не удивительно, ведь прогиб образоваться не может. Попробуйте повторить опыт вообще без воды, просто смочив лист бумаги, прижав его и перевернув стакан. Лист, естественно, удержится. Две уравновешивавшие себя сверху и снизу силы исчезли, а смачивание осталось.
Советы. Многие жалуются, что опыт редко воспроизводится. Малейший перекос, и вода выливается. Исходя из описанного здесь понимания механизма явления, могу дать пару советов.
- Легче всего опыт производить, используя стакан в виде усечённого конуса, но с достаточно толстыми стенками. При узком донышке легче достигается разрежение воздуха под дном при прогибе бумаги (та же высота воздушной подушки соответствует меньшему объёму воздуха, а стало быть, меньшему прогибу бумаги). У меня есть такой стакан. Всё идёт “на ура”.
- Можно также попробовать подсластить воду. Сахар увеличивает поверхностное натяжение воды. И наоборот, если растворить мыло (оно снижает поверхностное натяжение), воспроизводимость опыта должна ухудшиться.
Источник
А так ли хорошо знакома вам гидроаэростатика? // Квант. — 2011. — № 3. — C. 32
По специальной договоренности с редколлегией и редакцией журнала “Квант”
• …доказано, что более легкие, чем жидкость, тела, будучи
насильно погружены в эту жидкость, движутся вверх с
силой, равной тому весу, на который жидкость, имеющая
объем, равный этому телу, будет тяжелее последнего.
Архимед
Мы погружены на дно безбрежного моря воздушной
стихии, которая, как известно из неоспоримых опытов,
имеет вес, причем он наибольший вблизи поверхности
Земли…
Эванджелиста Торричелли
Сосуд, наполненный водой, является новым принципом
механики и новой машиной для увеличения сил в
желаемой степени…
Блез Паскаль
…Полет на свободном аэростате представляет нечто
совершенно исключительное.
Камиль Фламмарион
Это и есть уравнение гидростатики. В общем случае оно
не имеет решения.
Ричард Фейнман
Безбрежное небо и неведомые глубины океана всегда влекли человека, побуждая его подняться как можно выше в воздух и опуститься как можно глубже под воду. Более двух тысяч лет назад был установлен один из самых древних законов, с которым вы знакомитесь одним из самых первых в курсе школьной физики, — закон Архимеда. С тех пор можно отсчитывать начало научного освоения двух стихий и рождение гидроаэростатики.
Мысли выдающихся ученых — как верстовые столбы на пути понимания и применения этого закона. Полеты на огромные высоты и глубоководные погружения совершаются сегодня на аппаратах, оснащенных современнейшим оборудованием, не только ради рекордов. Исследования атмосферы, в том числе последствий глобального потепления, разведка с воздуха, доставка грузов в труднодоступные места, совершенствование надводного и подводного флота, изучение морской фауны и флоры, поиски полезных ископаемых под океанским дном — вот неполный список задач, для решения которых необходимы аэростаты и дирижабли, научные суда и батискафы и… лежащий в основе их работы добрый старый закон Архимеда.
Но и в более простых задачах можно обнаружить неожиданные «подводные камни». Однако, не боясь предупреждения Фейнмана, беритесь за них — решения обязательно найдутся!
Вопросы и задачи
- Что изображено на приведенном здесь рисунке? А если его перевернуть?
- Два сплошных цилиндра одинаковой массы и равного диаметра, но один алюминиевый, а другой свинцовый, плавают в вертикальном положении в ртути. Какой из них погружен глубже?
- В двух одинаковых сосудах с водой плавают плоская широкая и высокая узкая коробочки. Когда в каждую из них положили по одинаковому тяжелому грузику, они остались на плаву. В каком из сосудов уровень воды при этом поднялся выше?
- Стакан с наклонными стенками, наполненный водой до краев, взвешивают на весах. Затем взвешивают этот же стакан с опущенным в него деревянным бруском, плавающим так, что вода доходит до краев стакана. Отличаются ли показания весов?
- В ведре, наполненном доверху водой, плавает дырявая кастрюля. Выльется ли часть воды из ведра, когда кастрюля утонет?
- Купаясь в речке с илистым дном, можно заметить, что ноги больше вязнут в иле на мелких местах, чем на глубоких. Как это можно объяснить?
- Для погружения на 10 метров подводная лодка набирает в себя 100 тонн воды. А сколько воды ей надо набрать, чтобы погрузиться на 100 метров?
- Стальной шарик плавает в ртути. Увеличится или уменьшится глубина его погружения, если повысить температуру?
- Вес жидкости, налитой в сосуд, равен 3 Н. В жидкость погружают тело. Может ли архимедова сила, действующая на тело, равняться 10 Н?
- В двух одинаковых сосудах на поверхности воды плавают одинаковые пробковые цилиндры, к которым снизу на тонких нитях привязаны одинаковые грузы, причем один груз находится в воде, а другой лежит на дне сосуда. Одинаков ли вес сосудов со всем, что в них находится?
- В сосуде с водой плавает кусок льда, удерживаемый натянутой нитью, прикрепленной к дну сосуда. Как изменится уровень воды в сосуде, когда лед растает?
- Порожнюю закрытую бутылку (с плоским дном) погружают в воду один раз горлышком вниз, а другой раз горлышком вверх на одну и ту же глубину, равную половине высоты бутылки. В каком случае совершается большая работа?
- Вес любого тела на экваторе примерно на полпроцента меньше, чем в северных широтах. Изменяются ли осадка судна и его грузоподъемность при переходе из Северного Ледовитого океана в экваториальные воды? Плотность морской воды считайте везде одинаковой.
- Со дна высокого стеклянного сосуда, наполненного водой, поднимается небольшой пузырек воздуха. Как изменяется выталкивающая его сила? Каков характер движения пузырька?
- Из какого материала надо сделать гири, чтобы при точном взвешивании можно было не вводить поправки на уменьшение веса в воздухе?
- Одинаковые по массе оболочки двух шаров сделаны из разных материалов: одна — из эластичной резины, другая — из прорезиненной ткани. Оболочки шаров наполнили водородом одного и того же объема и отпустили в воздухе. Какой из шаров поднимется на большую высоту?
- Как зависит подъемная сила аэростата или дирижабля от температуры, при которой производится полет?
- Чтобы дирижабль мог взлететь, его наполняют газом, более легким, чем воздух. Не лучше ли совсем выкачать из него газ?
- Почему воздушный шар с закрытым выпускным клапаном, поднявшись на большую высоту, может лопнуть?
- На дне сосуда с газом лежит тело, плотность которого немного больше плотности газа. Можно ли, повышая давление газа, заставить тело подняться вверх?
Микроопыт
В аквариум прямоугольной формы, наполненный водой, поместите любое тело, которое будет в нем плавать. Можно ли определить массу этого тела без взвешивания?
Любопытно, что…
…хотя Архимед считал себя прежде всего теоретиком, а работу над практическими приложениями относил к деятельности второго сорта, с его именем связывают около 40 изобретений.
…утверждение, получившее в науке имя Паскаля и ставшее одним из основных законов гидростатики, возможно, не в столь явной форме обнаруживается в трудах и Леонардо да Винчи, и Стевина, и Галилея, и Торричелли.
…несмотря на свою историческую важность, закон Архимеда не относится к фундаментальным законам природы. Так, его можно считать прямым следствием закона Паскаля; Стевин довольно просто обосновал его, исходя из принципов равновесия с помощью так называемого метода отвердевания жидкости; закон Архимеда выводится также из закона сохранения энергии.
…чтобы доказать, что пространство над столбиком ртути — в знаменитом опыте с заполненной ею стеклянной трубкой — остается пустым, Торричелли впускал туда воду, которая под действием атмосферного давления врывалась в него «со страшным напором» и целиком его заполняла.
…неосознанно, не пользуясь расчетами, люди издревле опирались на закон Архимеда, когда, например, необходимо было преодолевать водные преграды. И лишь в 1666 году английский корабел Энтони Дин, к удивлению современников, теоретически определил осадку корабля и прорезал в его бортах отверстия для пушек до его спуска на воду, в то время как раньше это проделывали, когда корабль был уже на плаву.
…к основоположникам аэростатики справедливо причисляют и Роберта Бойля, именем которого назван известный газовый закон. Так, после усовершенствования им насоса для откачки воздуха из резервуаров большого объема тут же возникли проекты по созданию летательных аппаратов, «более легких, чем воздух», причем сразу же предусматривались военные применения таких машин.
…полет людей на воздушном шаре, заполненном горячим дымом, долго не позволял совершить братьям Монгольфье сам французский король, опасаясь за жизнь аэронавтов. Первый полет был осуществлен лишь в 1783 году. И в том же 1783 году (в год своей смерти) великий математик Леонард Эйлер подробно рассчитал подъемную силу аэростата, словно завещал разумно рисковать, опираясь на знания законов физики.
…в 1932 году швейцарский физик Огюст Пикар поднялся на аэростате собственной конструкции в стратосферу на высоту почти 17 километров, а позднее на разработанном им же батискафе погрузился в самую глубокую точку Средиземного моря. В 1960 году его сын Жак на батискафе «Триест» погрузился в Марианскую впадину на рекордную глубину около 11 тысяч метров. Семейную традицию поддержал внук Огюста Пикара — Бертран, совершивший в 1999 году кругосветное путешествие на воздушном шаре «Орбитер» за двадцать дней без промежуточной посадки.
…автор модели расширяющейся Вселенной Александр Фридман занимался еще и метеорологией и в 1925году принял участие в рекордном по тому времени полете на воздушном шаре до высоты 7400 метров. А Огюст Пикар, научным руководителем которого был автор теории относительности Альберт Эйнштейн, поднимался в небо на аэростате в том числе и для проведения эксперимента, подтвердившего эту теорию.
…на смену людям, совершающим глубоководные погружения в батискафах, приходят роботы, «одетые» в специальную керамическую оболочку, позволяющую выдерживать чудовищное давление. Так, в 2009 году американский робот «Нерей» провел на дне Марианского желоба десять часов, выполняя различные измерения.
Ответы
- Равновесие воздушных шаров. На перевернутом рисунке -равновесие сосудов с жидкостью.
- Имея равный вес, цилиндры вытесняют одинаковые объемы ртути, а так как диаметры их равны, то одинаковы и глубины погружения.
- Объем погруженной в воду части каждой коробочки меняется на одну и ту же величину. Поскольку сосуды одинаковы, то и уровень воды в каждом из них повысится одинаково.
- Нет, так как вес вытесненной бруском воды равен весу бруска.
- Нет, не выльется. Плотность материала кастрюли больше плотности воды, поэтому когда кастрюля утонет, она будет вытеснять меньший объем, нежели когда она плавала. Значит, уровень воды в ведре понизится.
- На мелководье меньше действующая на человека выталкивающая сила.
- Практически столько же, так как воду при погружении на такие глубины можно считать несжимаемой.
- При нагревании ртуть расширяется сильнее, чем сталь, поэтому выталкивающая сила уменьшится, и шарик опустится глубже.
- Да, может, если размеры тела близки к размерам сосуда.
- Во втором сосуде пробковый цилиндр погрузился меньше, чем в первом, т.е. вытеснил меньше воды. Следовательно, второй сосуд тяжелее первого.
- Допустим, что нить оборвалась. Тогда лед всплывет, и уровень воды в сосуде понизится. При дальнейшем таянии льда уровень воды уже меняться не будет.
- Во втором, так как у бутылки внешний объем нижней части всегда больше объема верхней части.
- Не изменяются, поскольку в весе одновременно теряют и судно, и вытесняемая им вода.
- По мере поднятия увеличивается объем пузырька. Выталкивающая сила, пропорциональная объему пузырька, будет расти. На пузырек также будет действовать сила сопротивления, но она пропорциональна площади сечения пузырька и поэтому будет возрастать медленнее. Значит, движение пузырька будет ускоренным.
- Гири нужно сделать из того же материала, что и взвешиваемое тело.
- На одной и той же высоте над землей у шара из эластичной резины объем будет больше, чем у шара из прорезиненной ткани. Значит, выталкивающая сила, действующая на него, будет больше, и он поднимется выше.
- Чем больше разница в плотностях воздуха и газа, заполняющего аэростат или дирижабль, тем больше подъемная сила. Следовательно, она возрастает при понижении температуры воздуха, когда он становится плотнее.
- Дирижабль без газа внутри, конечно, стал бы легче, но его раздавило бы давление наружного воздуха.
- Оболочка шара может не выдержать разности внутреннего и уменьшившегося внешнего давлений.
- В принципе, можно – если сжимаемость газа больше сжимаемости тела.
Микроопыт
Можно. Для этого достаточно найти объем вытесненной телом воды, измерив сечение аквариума и изменение уровня воды при опускании в нее тела, и затем умножить этот объем на плотность воды.
Что читать в «Кванте» о гидроаэростатике
(публикации последних лет)
- «Как попасть на Таинственный остров» — 2004, №1, с. 25;
- «Путешествие на воздушном шаре» — 2004, №3, с.31;
- «Задачи с жидкостями» — 2006, №1, с.40;
- «Вверх и вниз через атмосферу» — 2007, №1, с.9;
- «Гидростатика в стакане» — 2008, №3, с.47;
- «Устоит ли наш кораблик?» — 2008, №4, с.42;
- «Силы сопротивления в задачах динамики» — 2009, №1, с.50;
- «Подводные камни» силы Архимеда» — 2009, №2, с.46;
- «О плавании одномерных объектов» — 2010, №4, с.36.
Материал подготовил А.Леонович
Источник