Вода в разных сосудах
Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.
Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.
Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:
Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.
Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.
Основное уравнение гидростатики
P = P1 + ρgh
где P1 – это среднее давление на верхний торец призмы,
P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.
ρgh – сила тяжести (вес призмы).
Звучит уравнение так:
Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.
Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости
Доказательство закона сообщающихся сосудов
Возвращаемся к разговору про сообщающиеся сосуды.
Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.
Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.
Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики
P = P1 + ρgh1
если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.
Это давление можно определить следующим образом
P = P2 + ρgh2
где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2
P1 + ρ1gh1 = P2 + ρ2gh2
В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем
ρ1h1 = ρ2h2
или
ρ1 / ρ2 = h2 / h1
т.е. закон сообщающихся сосудов состоит в следующем.
В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.
Свойства сообщающихся сосудов
Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.
Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.
Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.
В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.
Приборы основанные на законе сообщающихся сосудов
На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.
Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.
В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.
Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.
Применение сообщающихся сосудов
Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.
Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.
Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.
Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.
В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.
Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.
В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.
Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.
Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.
Видео по теме
Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.
Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:
Источник
МОУ « СОШ №61» г. Саратова
Разные состояния воды.
Определение свойств воды в разных состояниях.
Тема моего проекта «Разные состояния воды. Определение свойств воды в разных состояниях».
Обоснование темы. Вода занимает практически ¾ поверхности земного шара – это океаны, моря, реки, озера, водопады, болота. Огромный воздушный океан укутывает нашу Землю сплошной оболочкой. А ведь и в воздухе много воды: в виде облаков, пара, туч, туманов. Вода есть и под землей: вытекает ручейками, вырывается гейзерами. Белые шапки ледников покрывают высочайшие горы, плывут по океанам громадные ледяные глыбы-айсберги.
Все без исключения живые существа на Земле и растения содержат в своем организме воду – в среднем 80% веса. Обезвоживание организма на 12%-15% приводит к нарушению обмена веществ, а потеря до 25% воды – к гибели организма. Без воды человек может прожить 3 дня, в то время как без пищи 30-50 дней.
Практическая деятельность с целью установления существенных свойств воды в жидком состоянии, а также в твёрдом и газообразном.
Опыт и анализ его результатов.
Проектным продуктом будет результат исследования. Этот продукт поможет достичь целей проекта, так как будет способствовать преодолению его исходной проблемы.
Первая: предположим, что вода бывает жидкой и твёрдой (лёд).
Вторая: предположим, что вода может быть и в газообразном состоянии.
Третья: предположим, что в жидком состоянии вода бесцветная, без запаха, безвкусная, прозрачная, текучая. Лёд бесцветный, без запаха, безвкусный, прозрачный, хрупкий.
Четвёртая: допустим, что при температуре ниже нуля вода превращается в лёд.
Таким образом, подтвердились все мои гипотезы. Я достигла своих целей, узнала много нового о воде, научилась проводить эксперимент и вести дневник наблюдений (приложение 1), работать в текстовом редакторе Microsoft Word и составлять компьютерную презентацию (приложение 2).
В дальнейшем я планирую продолжить своё исследование.
Цель работы: определить в каких состояниях существует вода в природе и как может переходить из одного состояния в другое, при каких условиях вода испаряется, замерзает.
№ п/п
Ход работы
Результаты наблюдений
Вывод
1.
Взяли цветные полоски бумаги (синий, оранжевый, фиолетовый, красный, зеленый). С их помощью определим цвет воды. Приложим и сравним цвет воды и цвет каждой полоски.
Цвет воды не совпадает ни с одной из полосок.
Вода бесцветна.
2.
В стакан с водой опустим ложку.
Ложка хорошо видна.
Вода прозрачна.
3.
Налили воду в стаканы, попробовали на вкус. Добавили соль, сахар в разные стаканы. Снова попробовали.
Чистая вода безвкусна. Вода приобретает вкус растворённого в ней вещества.
Вода не имеет вкуса.
4.
Налили воду в стаканы, понюхали. Добавили в один стакан чай, в другой каплю ароматного масла апельсина.
Запах у чистой воды не ощущается. Вода с добавками пахуча.
Вода не имеет запаха.
5.
Насыпали в один стакан с водой соли в другой картофельный крахмал. Помешали воду.
Вода растворила кристаллы соли, а часть крахмала осела на дно.
Вода-растворитель, но не все вещества в ней растворяются.
6.
Приготовили стакан с мутной водой (крахмал), чистый стакан, воронку, фильтр. Осторожно вливаем в воронку мутную воду. Наблюдаем за водой, которая вытекает из воронки. Проверяем её на прозрачность.
Не растворившиеся вещества остались на фильтре, а вода прошла через него.
Вода очищается, то есть фильтруется.
7.
Приготовили бледный раствор гуаши розового цвета. Поместили в раствор несколько таблеток активированного угля, размешали.
Не растворившиеся частицы угля осели на дно. А раствор заметно побледнел.
Вода очищается при помощи адсорбентов.
8.
Открыли кран водяной, налили воду на блюдце, слегка наклонили блюдце, перелили воду из одного стакана в другой.
Вода течет.
Вода обладает свойством текучести.
9.
Налили воду в сосуды различной формы (бутылка, банка, графин, стакан, фужер и т.д.).
Вода приняла форму сосуда, в который налита.
Вода не имеет формы.
10.
Сосуд, заполненный водой (предварительно маркером отмечен уровень воды), опускаем в горячую воду.
Вода в сосуде незначительно, но поднимается.
Вода при нагревании расширяется.
11.
Сосуд, заполненный водой (предварительно маркером отмечен уровень воды), опускаем в ледяную воду.
Вода в сосуде незначительно, но опускается.
Вода при охлаждении сжимается.
12.
В чайник налили воды и довели до кипения.
У самого краешка носика чайника почти невидимый водяной пар (очень горячий). Остывая на воздухе, пар превращается в туман. А туман – это мельчайшие капельки воды. Его мы видим, когда он струёй вырывается из носика чайника.
При кипении вода превращается в прозрачный водяной пар – испаряется. Вода из жидкого состояния переходит в газообразное.
13.
Вскипятили воду в кастрюле, накрыли крышкой. Подождали некоторое время.
На крышке появились капли воды – это сконденсированный пар.
При изменении температуры окружающей среды вода переходит из одного состояния в другое. Из жидкого в газообразное, из газообразного в жидкое.
14.
Налили воду в стакан, отметили уровень воды. Перелили в кастрюлю, вскипятили, остудили. Перелили воду в стакан.
Воды в стакане стало меньше.
Вода при кипячении испаряется, её объём уменьшается.
15.
В блюдце налили небольшое количество воды и поставили в морозильную камеру.
Вода в блюдце замёрзла.
Вода из жидкого состояния перешла в твердое (лёд).
16.
Блюдце с замёрзшей водой оставили при комнатной температуре.
Через некоторое время в блюдце снова оказалась вода.
При изменении температуры окружающей среды вода из твёрдого состояния перешла в жидкое.
17.
Налили в сосуд воду. Поместили в него предварительно замороженные кубики льда.
Лёд плавает на поверхности воды.
Лёд легче воды. Плотность льда меньше, чем у жидкой воды, что является аномальным свойством воды.
18.
Налили воду в пластиковую бутылку и стеклянную банку, поместили на ночь в морозильную камеру.
Дно у пластиковой бутылки стало выпуклым. Крышка у стеклянной банки приподнялась, банка раскололась.
При замерзании воды происходит расширение её объёма, что является ещё одним аномальным свойством воды.
19.
В один сосуд налили воду, другой, такой же, заполнили кусочками льда.
Вода равномерно заполнила сосуд, между кусочками льда остались пустоты.
Вода занимает весь предоставленный объём, лед – нет.
20.
В блюдце налили воды и оставили в комнате.
На следующий день в блюдце было очень мало воды, ещё через день её не стало совсем.
Вода при комнатной температуре испаряется.
21.
Мокрое полотенце вывесили на балконе в морозный день.
Наблюдаем.
Сначала полотенце замёрзло, стало жёстким. Примерно через сутки высохло.
Вода испаряется при любой температуре.
Цель работы: определить свойства воды в разных состояниях.
Источник
ТАСС, 19 ноября. Американские ученые впервые получили переохлажденную воду, которая не замерзает при температуре –68 °С. Ее изучение позволило доказать, что вода на самом деле состоит как минимум из двух разных типов жидкости, обладающих разными физическими свойствами. Статью с описанием исследования опубликовал научный журнал Science.
“Пытаясь объяснить некоторые аномальные свойства воды при помощи расчетов на суперкомпьютерах, теоретики еще 30 лет назад предположили, что жидкая вода может существовать в двух разных состояниях. Эта противоречивая гипотеза была одним из самых важных вопросов в химии и физике воды, который не удавалось долго решить”, – рассказал один из авторов исследования, профессор Городского университета Нью-Йорка (США) Николас Джовамбаттиста.
Долгое время ученые считали, что у воды есть лишь одно жидкое состояние. Эти представления начали меняться на рубеже веков, когда ученые обнаружили, что пространственная структура и некоторые физические свойства молекул воды зависят от того, в какую стороны “повернуты спины атомов водорода”, а также раскрыли различия в химических свойствах двух подобных пространственных форм молекул воды, параводы и ортводы.
Аналогичным образом ученые при проведении экспериментов с водой, охлажденной до сверхнизких температур, предположили, что вода может существовать в жидком виде в двух разных формах, фазовых состояниях, обладающих сравнительно низкой и высокой плотностью. Трудности с их отделением друг от друга породили массу споров о том, существуют ли эти состояния в реальности или только в теории.
Скрытое многообразие форм воды
Эти проблемы, как объясняет профессор Джовамбаттиста, связаны с тем, что теория предсказывает, что вода будет находиться в двух четко отделимых фазовых формах только при сверхнизких температурах (около –60 °С), при которых она находится в так называемом переохлажденном виде.
Как правило, воду можно удерживать в жидком состоянии при температурах, не превышающих –48 °С, если удалить из нее все примеси и охлаждать ее очень быстро. В теории вода может оставаться жидкостью и при более низких температурах, составляющих около минус 70 градусов Цельсия, однако добиться этого крайне сложно.
Американские физики решили эту проблему, не охлаждая воду, а особым образом нагревая аморфный лед высокой плотности при помощи инфракрасного лазера, способного вырабатывать очень мощные, но при этом сверхкороткие импульсы теплового излучения.
Данные вспышки света были настолько непродолжительными, что плотность образца воды не менялась при таянии льда, что впервые позволило ученым увидеть то, как формируется вода высокой плотности и проследить за ее превращением – фазовым переходом – в воду легкой плотности, подсвечивая растаявший лед при помощи рентгеновского лазера.
Эти наблюдения подтвердили, что оба типа жидкостей обладают разными свойствами, а также показали, что плотная вода была примерно на 20% тяжелее, чем ее легкая разновидность. При определенных условиях, как показывают расчеты Джовамбаттисты и его коллег, обе формы переохлажденной воды не будут смешиваться друг с другом. Иными словами они будут взаимодействовать примерно так же, как обычная вода и масло, формирующие два четких слоя, если их налить в один и тот же сосуд.
“Пока не понятно, как присутствие двух типов воды будет влиять на поведение различных растворов и реакций между ними, в том числе и внутри живых организмов. Это толкает нас на проведение новых экспериментов с этими фазовыми состояниями жидкой воды”, – подытожил профессор.
Источник
Статьи
Основное общее образование
Линия УМК А.В. Перышкина. Физика (7-9)
Физика
Все мы ежедневно пользуемся сообщающимися сосудами – это чайник, лейка, в общем, это любая система ёмкостей, в которых жидкость, к примеру, вода, может свободно перетекать из одной ёмкости в другую. В чайнике, например, такими ёмкостями являются корпус и носик или корпус чайника и специальная ёмкость для определения уровня воды в нём. Что особенного в сообщающихся сосудах? Каким свойством или свойствами они обладают? Чем заслуживают наше внимание?
26 апреля 2019
Закон сообщающихся сосудов
Сосуды соединенные между собой, жидкость в которых может свободно перетекать, имеющие общее дно, называются сообщающимися. В соответствии с законом Паскаля, жидкость передаёт оказываемое на неё давление во всех направлениях одинаково. В открытых сосудах, атмосферное давление над каждым из них одинаково, значит, и давление жидкости на стенки сосудов будет одинаковым на любом уровне. Так как давление жидкости прямо пропорционально её плотности и глубине, в случае одинаковой жидкости в сообщающихся сосудах на одинаковой глубине будет одинаковое давление, что и объясняет выравнивание уровней жидкости в них. В случае разных жидкостей, чтобы на одинаковой глубине было одинаковое давление, жидкость с меньшей плотностью должна иметь больший уровень в сравнении с жидкостью большей плотности. Т.е.
ρ1 / ρ2 = h2 / h1
Физика. 7 класс. Учебник
Учебник соответствует Федеральному государственному образовательному стандарту основного общего образования. Большое количество красочных иллюстраций, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.
Купить
Свойство сообщающихся сосудов
Возьмем несколько различных по размеру и форме открытых сосудов, проделаем в каждом из них отверстие и соединим отверстия в сосудах трубками, чтобы жидкость, которую мы будем наливать в один из них, могла свободно перетекать из одного сосуда в другой. Для большего эффекта, пожмем трубки, которые их соединяют и наполним один из сообщающихся сосудов водой. Теперь откроем трубки и увидим, что когда жидкость перестанет перетекать, то, вне зависимости от формы и размера сосудов, уровни жидкости в каждом будут совершенно одинаковыми. Или проведём иной опыт – возьмём пластиковую бутыль и срежем донышко, а крышку плотно прикрутим, проделаем в ней небольшое отверстие и вставим в него небольшой шланг, место соединения шланга и крышки бутыли сделаем герметичным с помощью пластилина. Теперь закрепим бутыль вверх дном, а шланг расположим параллельно бутыли открытым концом чуть выше её срезанного дна. Заполним бутыль жидкостью, например, подкрашенной водой. И вновь мы увидим, что вне зависимости от высоты сообщающихся сосудов, уровень воды в бутыли будет точно таким же, как и уровень воды в шланге. В этом и заключается первое и основное свойство сообщающихся сосудов: в открытых сообщающихся сосудах уровни одинаковой жидкости будут одинаковыми. Это замечательное свойство нашло широкое применение в практике, но об этом поговорим чуть позже. А теперь возьмём U-образную стеклянную трубку. Это тоже сообщающиеся сосуды, их, в данном случае, называют коленами трубки. В правое колено нальём воду и она, конечно же, перетечёт в левое колено так, что уровни воды в обоих коленах будут одинаковыми – мы уже знаем, что так и должно быть, хоть пока что и не знаем, почему. А теперь в левое колено, очень аккуратно, чтобы жидкости не смешивались, нальём керосин или подкрашенный спирт. И мы увидим, что теперь верхние уровни каждой жидкости в коленах будут отличаться. Уровень спирта или керосина будет выше уровня воды. Заглянем заодно в таблицу плотности жидкостей и увидим, что плотность керосина или спирта меньше плотности воды, а уровень, наоборот, выше. Из этого эксперимента можно сделать вывод – если в открытых сообщающихся сосудах налиты две разные жидкости, то уровень будет выше у той, чья плотность меньше. Иными словами, плотности жидкостей и их уровни будут обратно пропорциональными. Настала пора объяснить, почему так получается.
Читайте также:
Проекты на уроках физики: плюсы и минусы
Что такое радуга?
Почему море соленое?
Почему небо голубого цвета?
Применение на практике
Благодаря своим свойствам, сообщающиеся сосуды нашли широкое применение в различных технических и бытовых устройствах. Перечислим некоторые из них:
- измерители плотности,
- жидкостные манометры,
- определители уровня жидкости (водомерное стекло, к примеру),
- домкраты,
- гидравлические прессы,
- шлюзы,
- фонтаны,
- водопроводные башни и т.д.
Свойство сообщающихся сосудов реализуется не только в физике. Такая известная поговорка «Если где-то прибыло, значит где-то убыло» фактически напрямую связана со свойством сообщающихся сосудов и означает, что в окружающем нас мире всё взаимосвязано, а значит – стремится к равновесию. Когда человек смещает это равновесие в одну сторону, это немедленно сказывается в чём-то другом. Над этим стоит задуматься, не так ли?
Материал по физике на тему «Сообщающиеся сосуды» для 7 класса.
Методические советы учителям
- При изучении этой темы обязательно необходима демонстрация. Описанные в статье эксперименты обязательно нужно показать детям в живом исполнении.
- Желательно продемонстрировать принцип действия фонтана (это также довольно не сложно сделать своими руками).
- Обратите внимание учащихся на формулу для двух жидкостей – это обратная пропорция. На нескольких примерах поясните смысл обратной пропорциональности.
- Рассмотрите ситуацию с тремя жидкостями (решите соответствующую задачу).
- А вот действие шлюзов лучше всего продемонстрировать с помощью видео.
#ADVERTISING_INSERT#
Источник