Водород сожгли в сосуде

Водород сожгли в сосуде thumbnail

Эта статья описывает физико-химические процессы горения водорода; о ядерном горении водорода в звёздах см. Протон-протонный цикл.

Водород считается одним из наиболее перспективных видов топлива и зарекомендовал себя как эффективный и экологически чистый энергоноситель. С практической точки зрения горение водорода связано с его использованием в энергетических установках и топливных элементах и безопасностью соответствующих технологических процессов и устройств[1]. Удельная теплота сгорания водорода составляет примерно 140 МДж/кг (верхняя) или 120 МДж/кг (нижняя), что в несколько раз превышает удельную теплоту сгорания углеводородных топлив (для метана – около 50 МДж/кг).

Смеси водорода с кислородом или воздухом взрывоопасны и называются гремучим газом (название происходит от knallgas, нем. knall – громкий хлопок, резкий звук выстрела или взрыва). При зажигании искрой или другим источником смесь водорода с воздухом небольшого объёма сгорает чрезвычайно быстро, с громким хлопком, что субъективно воспринимается как взрыв. В физике горения такой процесс считается медленным горением, или дефлаграцией, однако гремучий газ способен и к детонации, при этом действие взрыва оказывается существенно более сильным.

Наиболее взрывоопасны смеси с составом, близким к стехиометрическому, в стехиометрической смеси на один моль кислорода приходится два моля водорода, то есть, с учётом того, что в воздухе соотношение кислорода и азота и других не участвующих в горении газов по объёму составляет примерно 21 % : 79 % = 1:3,72, то объёмное соотношение водорода с воздухом в гремучем газе в стехиометрическом соотношении составляет ≈0,42[2]. Однако гремучий газ способен гореть в широком диапазоне концентраций водорода в воздухе, от 4-9 объёмных процентов в бедных смесях и до 75 % в богатых смесях. Приблизительно в этих же пределах он способен и детонировать[3].

Гремучий газ самовоспламеняется при атмосферном давлении и температуре 510 °C. При комнатной температуре в отсутствие источников зажигания (искра, открытое пламя) гремучий газ может храниться неограниченно долго, однако он способен взорваться от самого слабого источника, так как для инициирования взрыва достаточно искры с энергией 17 микроджоулей[4]. С учётом того, что водород обладает способностью проникать через стенки сосудов, в которых он хранится, например, диффундировать сквозь металлические стенки газового баллона, и не обладает никаким запахом, при работе с ним следует быть чрезвычайно осторожным.

Получение[править | править код]

В 1766 г. Генри Кавендиш получил водород в реакции металла с кислотой:

.

В лабораторных условиях гремучий газ можно получить электролизом воды в реакции:

.

Применение[править | править код]

В XIX веке для освещения в театрах использовался так называемый друммондов свет, где свечение получалось с помощью пламени кислород-водородной смеси, направленного непосредственно на цилиндр из негашёной извести, которая может нагреваться до высоких температур (белого каления) без расплавления. В пламени кислород-водородной смеси достигается высокая температура, и также в XIX веке это нашло применение в паяльных лампах для плавления тугоплавких материалов, резки и сварки металлов. Однако все эти попытки применения гремучего газа были ограничены тем, что он очень опасен в обращении, и были найдены более безопасные варианты решения этих задач.

В настоящее время водород считается перспективным топливом для водородной энергетики. При горении водорода образуется чистая вода, поэтому этот процесс считается экологически чистым. Основные проблемы связаны с тем, что затраты на производство, хранение и транспортировку водорода к месту его непосредственного применения слишком высоки, и при учёте всей совокупности факторов водород пока не может конкурировать с традиционными углеводородными топливами.

Кинетическая схема горения водорода[править | править код]

Горение водорода формально выражается суммарной реакцией:

.

Однако эта суммарная реакция не описывает разветвлённые цепные реакции, протекающие в смесях водорода с кислородом или воздухом. В реакциях участвуют восемь компонентов: H2, O2, H, O, OH, HO2, H2O, H2O2. Подробная кинетическая схема химических реакций между этими молекулами и атомами включает более 20 элементарных реакций с участием свободных радикалов в реагирующей смеси. При наличии в системе соединений азота или углерода число компонентов и элементарных реакций существенно увеличивается.

В силу того, что механизм горения водорода является одним из наиболее простых по сравнению с механизмами горения прочих газообразных топлив, таких, например, как синтез-газ или углеводородные топлива, а кинетические схемы горения углеводородных топлив включают в себя все компоненты и элементарные реакции из механизма горения водорода, он изучается чрезвычайно интенсивно многими группами исследователей[5][6][7]. Однако, несмотря на более чем столетнюю историю исследований, этот механизм до сих пор изучен не полностью.

Критические явления при воспламенении[править | править код]

Полуостров самовоспламенения смеси H2 + O2. Цифрами 1, 2 и 3 помечены соответственно первый, второй и третий пределы воспламенения[8].

При комнатной температуре стехиометрическая смесь водорода и кислорода может храниться в закрытом сосуде неограниченно долго. Однако при повышении температуры сосуда выше некоторого критического значения, зависящего от давления, смесь воспламеняется и сгорает чрезвычайно быстро, со вспышкой или взрывом. Это явление нашло своё объяснение в теории цепных реакций, за которую Н. Н. Семёнов и Сирил Хиншелвуд были удостоены Нобелевской премии по химии 1956 года.

Читайте также:  Эффективные операции на сосуды

Кривая зависимости между критическими давлением и температурой, при которых происходит самовоспламенение смеси, имеет характерную Z-образную форму, как показано на рисунке. Нижняя, средняя и верхняя ветви этой кривой называются соответственно первым, вторым и третьим пределами воспламенения. Если рассматриваются только первые два предела, то кривая имеет форму полуострова, и традиционно этот рисунок называется полуостровом воспламенения.

Спорные теории[править | править код]

В 1960-е года американский инженер Уильям Роудс (William Rhodes) якобы открыл «новую форму» воды, коммерциализированную Юллом Брауном (Yull Brown), болгарским физиком, эмигрировавшим в Австралию. «Брауновский газ», то есть фактически смесь кислорода и водорода, получаемая в аппарате электролиза воды, объявлялся способным очищать радиоактивные отходы, гореть как топливо, расслаблять мышцы и стимулировать проращивание семян[9]. Впоследствии итальянский физик Руджеро Сантилли (en:Ruggero Santilli) выдвинул гипотезу, утверждающую существование новой формы воды в виде «газа HHO», то есть химической структуры вида (H × H – O), где «×» представляет гипотетическую магнекулярную связь, а «-» – обычную ковалентную связь. Статья Сантилли, опубликованная в авторитетном реферируемом журнале International Journal of Hydrogen Energy[10], вызвала жёсткую критику со стороны коллег, назвавших утверждения Сантилли псевдонаучными[11], однако некоторые другие учёные выступили в поддержку Сантилли[12][13].

Примечания[править | править код]

  1. ↑ Sánchez, Williams – review, 2014.
  2. ↑ Уравнение горения стехиометрической водородно-воздушной смеси: 0,21·2Н2 + 0,21О2 + 0,79(N2 + …) → 0,42H2O + 0,79(N2+…).
  3. ↑ Гельфанд и др., Водород: параметры горения и взрыва, 2008, с. 85,196.
  4. ↑ Корольченко, Пожаровзрывоопасность веществ, 2004, с. 311.
  5. ↑ Konnov A. A. Remaining uncertainties in the kinetic mechanism of hydrogen combustion // Combustion and Flame. – Elsevier, 2008. – Vol. 152, № 4. – P. 507-528. – doi:10.1016/j.combustflame.2007.10.024.
  6. ↑ Shimizu K., Hibi A., Koshi M., Morii Y., Tsuboi N. Upd Kinetic Mechanism for High-Pressure Hydrogen Combustion // Journal of Propulsion and Power. – American Institute of Aeronautics and Astronautics, 2011. – Vol. 27, № 2. – P. 383-395. – doi:10.2514/1.48553.
  7. ↑ Burke M. P., Chaos M., Ju Y., Dryer F. L., Klippenstein S. J. Comprehensive H2/O2 kinetic model for high-pressure combustion // International Journal of Chemical Kinetics. – Wiley Periodicals, 2012. – Vol. 44, № 7. – P. 444-474. – doi:10.1002/kin.20603.
  8. ↑ Льюис, Эльбе, Горение, пламя и взрывы в газах, 1968, с. 35.
  9. ↑ Ball, Philip. Nuclear waste gets star attention (англ.) // Nature : journal. – 2006. – ISSN 1744-7933. – doi:10.1038/news060731-13.
  10. ↑ Ruggero Maria Santilli. A new gaseous and combustible form of water (англ.) // International Journal of Hydrogen Energy : journal. – 2006. – Vol. 31, no. 9. – P. 1113-1128. – doi:10.1016/j.ijhydene.2005.11.006.
  11. ↑ J. M. Calo. s on “A new gaseous and combustible form of water” by R.M. Santilli (Int. J. Hydrogen Energy 2006: 31(9), 1113-1128) (англ.) // International Journal of Hydrogen Energy : journal. – 2006. – 3 November (vol. 32, no. 9). – P. 1309-1312. – doi:10.1016/j.ijhydene.2006.11.004. Архивировано 1 августа 2013 года.
  12. ↑ Martin O. Cloonan. A chemist’s view of J.M. Calo’s s on: “A new gaseous and combustible form of water” by R.M. Santilli (Int. J. Hydrogen Energy 2006:31(9), 1113-1128) (англ.) // International Journal of Hydrogen Energy : journal. – 2008. – Vol. 33, no. 2. – P. 922-926. – doi:10.1016/j.ijhydene.2007.11.009. Архивировано 20 марта 2012 года.
  13. ↑ J.V. Kadeisvili. Rebuttal of J.M. Calo’s s on R.M. Santilli’s HHO paper (англ.) // International Journal of Hydrogen Energy : journal. – 2008. – Vol. 33, no. 2. – P. 918-921. – doi:10.1016/j.ijhydene.2007.10.030. Архивировано 20 марта 2012 года.

Литература[править | править код]

  • Льюис Б., Эльбе Г. Горение, пламя и взрывы в газах. 2-е изд. Пер. с англ. под ред. К. И. Щёлкина и А. А. Борисова. – М.: Мир, 1968. – 592 с.
  • Гельфанд Б. Е., Попов О. Е., Чайванов Б. Б. Водород: параметры горения и взрыва. – М.: Физматлит, 2008. – 288 с. – 700 экз. – ISBN 9785922108980.
  • Корольченко А. Я., Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х частях. Часть 1. – М.: Ассоциация «Пожнаука», 2004. – 713 с. – ISBN 5-901283-02-3.

Обзоры[править | править код]

  • Miller J. A., Pilling M. J., Troe J. Unravelling combustion mechanisms through a quantitative understanding of elementary reactions // Proceedings of the Combustion Institute. – Elsevier, 2005. – Vol. 30, № 1. – P. 43-88. – doi:10.1016/j.proci.2004.08.281.
  • Sánchez A. L., Williams F. A. Recent advances in understanding of flammability characteristics of hydrogen // Progress in Energy and Combustion Science. – Elsevier, 2014. – Vol. 41, № 1. – P. 1-55. – doi:10.1016/j.pecs.2013.10.002.
Читайте также:  Капли для лечения сосудов ног

Ссылки[править | править код]

  • Опыты с гремучим газом

Источник

1. К нерастворимой в воде соли белого цвета, которая встречается в природе в виде широко используемого в строительстве и архитектуре минерала, прилили раствор соляной кислоты, в результате соль растворилась, и выделился газ, при пропускании которого через известковую воду выпал осадок белого цвета; осадок растворился при дальнейшем пропускании газа. При кипячении полученного раствора выпадает осадок. Напишите уравнения описанных реакций.

СаСО3 + 2HCl = CaCl2 + CO2↑ + H2O

Ca(OH)2 + CO2 = CaCO3↓ + H2O

CaCO3 + CO2 + H2O = Ca(HCO3)2

2. Кальций растворили в воде. При пропускании через полученный раствор сернистого газа образуется осадок белого цвета, который растворяется при пропускании избытка газа. Добавление к полученному раствору щелочи приводит к образованию осадка белого цвета. Напишите уравнения описанных реакций.

Ca + 2H2O = Ca(OH)2 + H2↑

Ca(OH)2 + SO2 = CaSO3↓ + H2O

CaSO3 + SO2 + H2O = Ca(HSO3)2

Ca(HSO3)2 + Ca(OH)2 = 2CaSO3↓ + 2H2O

3. Раствор, полученный при пропускании сернистого газа через бромную воду, нейтрализовали гидроксидом бария. Выпавший осадок отделили, смешали с коксом и прокалили. При обработке продукта прокаливания хлороводородной кислотой выделился газ с запахом тухлых яиц. Напишите уравнения описанных реакций.

SO2 + Br2 + 2H2O = 2HBr + H2SO4

H2SO4 + Ba(OH)2 = BaSO4↓ + 2H2O

BaS + 2HCl = ВaCl2 + H2S↑

4. Кальций нагрели в атмосфере водорода. Продукт реакции обработали водой, выделяющийся газ пропустили над нагретым оксидом цинка, а в раствор добавили кальцинированную соду. Напишите уравнения описанных реакций.

СаH2 + 2H2O = Ca(OH)2 + H2↑

Ca(OH)2 + Na2CO3 = CaCO3↓ + 2NaOH

5. Через баритовую воду пропускали углекислый газ. В полученный раствор добавили гидроксид бария, продукт реакции отделили и растворили в ортофосфорной кислоте.

Напишите уравнения описанных реакций.

Ba(OH)2 + CO2 = BaCO3 + H2O

BaСО3 + CO2 + H2O = Вa(HCO3)2

Вa(HCO3)2 + Ba(OH)2 = 2BaCO3↓ + 2H2O

BaCO3 + 2Н3РО4 = СО2 + H2O + Ba(Н2РО4)

6. Через раствор, полученный при гашении извести, пропустили газ, который образуется при получении негашеной извести из известняка; в результате выделяется белый осадок. При действии уксусной кислоты на полученный осадок выделяется тот же газ, который образуется при прокаливании карбоната кальция. Напишите уравнения описанных реакций.

СаО + Н2О = Са(ОН)2

Ca(OH)2 + CO2 = CaCO3↓ + H2O

CaCO3 + 2СН3СООН = (СН3СОО)2Са + СО2 ↑ + H2O

7. Негашеную известь «погасили» водой. В полученный раствор пропустили газ, который выделяется при кальцинировании гидрокарбоната натрия, при этом наблюдали образование и последующее растворение осадка. Напишите уравнения описанных реакций.

CaO + H2O = Ca(OH)2

Ca(OH)2 + CO2 = CaCO3↓ + H2O

CaCO3 + CO2 + H2O = Ca(HCO3)

8. Вещество, образующееся при сплавлении магния с кремнием, обработали водой, в результате образовался осадок и выделился бесцветный газ. Осадок растворили в соляной кислоте, а газ пропустили через раствор перманганата калия, при этом образовались два нерастворимых в воде бинарных вещества. Напишите уравнения описанных реакций.

Mg2Si + 4H2O = 2Mg(OH)2↓ + SiH4↑

Mg(OH)2 + 2HCl = MgCl2 + 2H2O

3SiH4 + 8KMnO4 = 8MnO2 ↓ + 3SiO2 ↓ + 8KOH + 2H2O

9. Магниевую стружку нагрели в атмосфере азота и продукт реакции последовательно обработали кипящей водой, растворами серной кислоты и нитрата бария. Напишите уравнения описанных реакций

Mg3N2 + 6H2O(гор.) = 3Mg(OH)2↓ + 2NH3↑

Mg(OH)2 + H2SO4 = MgSO4 + 2H2O

MgSO4 + Ba(NO3)2 = BaSO4↓ + Mg(NO3)2

10. Негашеную известь прокалили с избытком кокса. Продукт реакции после обработки водой используется для поглощения сернистого и углекислого газов. Напишите уравнения описанных реакций.

CaO + 3C = CaC2 + CO

CaC2 + 2H2O = Ca(OH)2 + C2H2↑

Ca(OH)2 + CO2 = CaCO3↓ + H2O

или Ca(OH)2 + 2CO2 = Ca(HCO3)2

Ca(OH)2 + SO2 = CaSO3↓ + H2O

или Ca(OH)2 + 2SO2 = Ca(HSO3)2

11. Магний нагрели в сосуде, наполненном газообразным аммиаком. Образовавшееся вещество растворили в концентрированном растворе бромоводородной кислоты, раствор выпарили и остаток нагрели до появления запаха, после чего добавили раствор щелочи. Напишите уравнения описанных реакций.

Mg3N2 + 8HBr = 3MgBr2 + 2NH4Br

MgBr2 + 2NaOH = Mg(OH)2↓ + 2NaB

12. Магниевый порошок смешали с кремнием и нагрели. Продукт реакции обработали холодной водой и выделяющийся газ пропустили через горячую воду. Образовавшийся осадок отделили, смешали с едким натром и нагрели до плавления. Напишите уравнения описанных реакций.

Mg2Si + 4H2O(хол.) = 2Mg(OH)2↓ + SiH4↑

SiH4+ 2H2O(гор.) = SiO2 + 4Н2

13. Простое вещество, полученное при нагревании фосфата кальция с коксом и оксидом кремния, сплавили с металлическим кальцием. Продукт реакции обработали водой, а выделяющийся газ собрали и сожгли в избытке кислорода. Напишите уравнения описанных реакций.

Ca3P2 + 6H2O = 3Ca(OH)2↓ + 2PH3↑

2PH3 + 4O2 = P2O5 + 3H2O

Читайте также:  Сужение сосудов при психическом расстройстве

14. Фосфат кальция прокалили с углём в присутствии речного песка. Образовавшееся простое вещество прореагировало с избытком хлора. Полученный продукт внесли в избыток раствора гидроксида калия. На образовавшийся раствор подействовали известковой водой. Напишите уравнения описанных реакций.

2P + 5Cl2 = 2PCl5

PCl5 + 8KOH = K3PO4 + 5KCl + 4H2O

2K3PO4 + 3Ca(OH)2 = Ca3(PO4)2↓ + 6KOH

15) Металлический кальций прокалили в атмосфере азота. Продукт реакции обработали водой, выделившийся при этом газ пропустили в раствор нитрата хрома (III). Выпавший в ходе процесса серо-зеленый осадок обработали щелочным раствором пероксида водорода. Напишите уравнения описанных реакций.

3Ca + N2 = Ca3N2

Ca3N2 + 6H2O = 3Ca(OH)2 + 2NH3↑

3NH3 + 3H2O + Cr(NO3)3 = Cr(OH)3↓ + 3NH4NO3

2Cr(OH)3 + 3H2O2 + 4KOH = 2K2CrO4 + 8H2O

16) Смесь порошков нитрита калия и хлорида аммония растворили в воде и раствор осторожно нагрели. Выделившийся газ прореагировал с магнием. Продукт реакции внесли в избыток раствора соляной кислоты, при этом выделение газа не наблюдалось. Полученную магниевую соль в растворе обработали карбонатом натрия. Напишите уравнения описанных реакций.

3Mg + N2 = Mg3N2

Mg3N2 + 8HCl = 3MgCl2 + 2NH4Cl

2MgCl2 + 2Na2CO3 + H2O = (MgOH)2CO3↓ + CO2↑ + 4NaCl

17) Магний растворили в разбавленной азотной кислоте, причем выделение газа не наблюдалось. получившийся раствор обработали избытком раствора гидроксида калия при нагревании. Выделившийся при этом газ сожгли в кислороде. Напишите уравнения описанных реакций.

4Mg + 10HNO3(оч. разб.) = 4Mg(NO3)2 + NH4NO3 + 3H2O

Mg(NO3)2 + 2KOH = Mg(OH)2↓ + 2KNO3

4NH3 + 3O2 = 2N2 + 6H2O

18) Нитрат натрия сплавили с оксидом хрома (III) в присутствии карбоната натрия. Выделившийся при этом газ прореагировал с избытком гидроксида кальция с выпадением осадка белого цвета. Осадок растворили в избытке раствора бромоводородной кислоты и в полученный раствор добавили раствор нитрата серебра до прекращения выпадения осад-ка. Напишите уравнения описанных реакций.

3NaNO3 + Cr2O3 + 2Na2CO3 = 2Na2CrO4 + 2CO2↑ + 3NaNO2

CO2 + Ca(OH)2 = CaCO3↓ + H2O

CaCO3 + 2HBr = CaBr2 + CO2↑ + H2O

CaBr2 + 2AgNO3 = 2AgBr↓ + Ca(NO3)2

19) Фосфид кальция обработали соляной кислотой. Выделившийся газ сожгли в закрытом сосуде, продукт горения полностью нейтрализовали раствором гидроксида калия. К полученному раствору прилили раствор нитрата серебра. Напишите уравнения описанных реакций.

Ca3P2 + 6HCl = 3CaCl2 + 2PH3↑

2PH3 + 4O2 = P2O5 + 3H2O

P2O5 + 6KOH = 2K3PO4 + 3H2O

K3PO4 + 3AgNO3 = Ag3PO4↓ + 3KNO

20) Оксид кремния прокалили с большим избытком магния. Полученную смесь веществ обработали водой. При этом выделился газ, который сожгли в кислороде. Твердый продукт сжигания растворили в концентрированном растворе гидроксида цезия. Напишите уравнения описанных реакций.

SiO2 + 2Mg = 2MgO + Si

2Mg + Si = Mg2Si или

SiO2 + 4Mg = 2MgO + Mg2Si

Mg2Si + 4H2O = 2Mg(OH)2↓ + SiH4↑

SiH4 + 2O2 = SiO2 + 2H2O

SiO2 + 2CsOH = Cs2SiO3 + H2O

21) Магний нагрели в атмосфере азота. При добавлении к полученному веществу воды выделился газ, который пропустили над нагретым оксидом свинца (II). Полученное твердое вещество темного цвета растворили в разбавленной азотной кислоте. Напишите уравнения описанных реакций.

3Mg + N2 = Mg3N2

Mg3N2 + 6H2O = 3Mg(OH)2 + 2NH3

2NH3 + 3PbO = 3Pb + N2 + 3H2O

3Pb + 8HNO3 = 3Pb(NO3)2 + 2NO + 4H2O

22) Щавелевую кислоту нагрели с небольшим количеством концентрированной серной кислоты. Выделившийся газ сначала пропустили над нагретым оксидом меди (II), а полученный газ пропустили через раствор гидроксида кальция до тех пор, пока первоначально выпавший осадок не растворился. Напишите уравнения описанных реакций.

CO + CuO = Cu + CO2

CO2 + Ca(OH)2 = CaCO3 + H2O

CaCO3 + CO2 + H2O = Ca(HCO3)2

23) Барий растворили в воде. К полученному раствору добавили сульфат калия, выпавший осадок отфильтровали, после чего через горячий фильтрат пропустили газообразный хлор. Реакционную массу выпарили, а затем прокалили до образования одной соли. Напишите уравнения описанных реакций.

Ba + 2HCl = BaCl2 + H2

BaCl2 + Na2SO4 = BaSO4↓ + 2NaCl

BaSO4 + 4C → BaS + 4CO

3CO + Fe2O3 → 2Fe + 3CO2

24) Магний растворили в разбавленной азотной кислоте. К полученному раствору последовательно добавили гидроксид натрия, бромоводородную кислоту, фосфат натрия. Напишите уравнения описанных реакций.

4Mg + 10HNO3(разб.) = 4Mg(NO3)2 + N2O + 5H2O

Mg(NO3)2 + 2NaOH = Mg(OH)2↓ + 2NaNO3

Mg(OH)2 + 2HBr = MgBr2 + 2H2O

3MgBr2 + 2Na3PO4 = Mg3(PO4)2↓ + 6NaBr

25) Барий растворили в разбавленной азотной кислоте, при этом выделился бесцветный газ – несолеобразующий оксид. Полученный раствор разделили на три части. Первую выпарили досуха, полученный осадок прокалили. Ко второй части добавили раствор сульфата натрия до прекращения выделения осадка; к третьей добавили раствор карбоната натрия. Напишите уравнения описанных реакций.

4Ba + 10HNO3(разб.) = Ba(NO3)2 + N2O + 5H2O

Ba(NO3)2 → Ba(NO2)2 + O2

Ba(NO3)2 + Na2SO4 = BaSO4↓ + 2NaNO3

Ba(NO3)2 + Na2CO3 = BaCO3↓ + 2NaNO3

26) Сульфат бария сплавили с коксом. Твердый остаток растворили в соляной кислоте, выделившийся газ вступил в реакцию оксидом серы (IV), а раствор – с сульфитом натрия. Напишите уравнения описанных реакций.

BaSO4 + 4C → BaS + 4CO

BaS + 2HCl = ВaCl2 + H2S↑

H2S + SO2 = 2H2O + 3S↓

BaCl2 + Na2SO3 = BaSO3↓ + 2NaCl

Источник