За какое время газ наполнит сосуд с отверстием

За какое время газ наполнит сосуд с отверстием thumbnail

4.1. Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг. Плотность газа р = 7,5 кг/м3. Диаметр трубы D = 2 см.

Решение:

4.2. В дне цилиндрического сосуда диаметром D = 0,5 м име круглое отверстие диаметром d = 1см. Найти зависимость скорости понижения уровня воды в сосуде от высоты h этого уровня. Найти значение этой скорости для высоты h = 0,2 м.

Решение:

4.3. На столе стоит сосуд с водой, в боковой поверхности которого имеется малое отверстие, расположенное на рас h1 от дна сосуда и на расстоянии h2 от уровня воды. Уровень воды в сосуде поддерживается постоянным. На каком расстоянии l от сосуда ( по горизонтали) струя воды падает на стол в случае, если: a) h1 = 25 см, h2=16см ; б) h1 =16 см, h2 = 25 см?

Решение:

4.4. Сосуд, наполненный водой, сообщается с атмосферой через стеклянную трубку, закрепленную в горлышке сосуда. Кран К находится на расстоянии h2 = 2 см от дна сосуда. Найти скорость v вытекания воды из крана в случае, если расстояние между нижним концом трубки и дном сосуда: а) h1 = 2 см; б) h1 =7,5 см; в) h1 =10 см.

Решение:

4.5. Цилиндрической бак высотой h = 1 м наполнен до краев водой. За какое время t вся вода выльется через отверстие, расположенное у дна бака, если площадь S2 поперечного сечения отверстия в 400 раз меньше площади поперечного сечения бака? Сравнить это время с тем, которое понадобилось бы для вытекания того же объема воды, если бы уровень воды в баке поддерживался постоянным на высоте h = 1 м от отверстия.

Решение:

4.6. В сосуд льется вода, причем за единицу времени наливается объем воды V1 = 0,2 л/с. Каким должен быть диаметр d отверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровне h = 8,3 см?

Решение:

4.7. Какое давление р создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/с? Плотность краски р = 0,8 • 103 кг/м3.

Решение:

4.8. По горизонтальный трубе АВ течет жидкость. Разность уровней этой жидкости в трубах а и b равна dh = 10 см. Диаметры трубок а и b одинаковы. Найти скорость v течения жидкости в трубе АВ.

Решение:

4.9. Воздух продувается через трубку АВ. За единицу времени через трубку АВ протекает объем воздуха V1 = 5 л/мин. Площадь поперечного сечения широкой части трубки АВ равна S1 = 2 см2, а узкой ее части и трубки abc равна S2 = 0,5 см2. Найти разность уровней dh воды, налитой в трубку abc. Плотность воздуха р = 1,32 кг/м3.

Решение:

4.10. Шарик всплывает с постоянной скоростью v в жид, плотность р1которой в 4 раза больше плоскости мате шарика. Во сколько раз сила трения Fтр , действующая на всплывающий шарик, больше силы тяжести mg, действующей на этот шарик?

Решение:

4.11. Какой наибольшей скорости v может достичь дождевая капля диаметром d = 0,3 мм, если динамическая вязкость воз n= 1,2-10-5 Па*с?

Решение:

4.12. Стальной шарик диаметром d = 1мм падает с посто скоростью v = 0,185 см/с в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость n касторо масла.

Решение:

4.13. Смесь свинцовых дробинок с диаметрами d1 = 3 мм и d2 = 1 мм опустили в бак с глицерином высотой h = 1 м. На сколько позже упадут на дно дробинки меньшего диаметра по сравнению с дробинками большего диаметра? Динамическая вязкость глицерина n = 1,47 Па*с.

Решение:

4.14. Пробковый шарик радиусом r = 5 мм всплывает в сосуде, наполненном касторовым маслом. Найти динамическую и кинематическую вязкости касторового масла, если шарик всплывает с постоянной скоростью v = 3,5 см/с.

Решение:

4.15. В боковую поверхность цилиндрического сосуда радиусом R = 2 см вставлен горизонтальный капилляр, внутренний радиус r = 1 мм которого и длина l = 2 см. В сосуд налито касторовое масло, динамическая вязкость которого n = 1,2Па*с. Найти зависимость скорости v понижения уровня касторового масла в сосуде от высоты h этого уровня над капилляром. Найти значение этой скорости при h = 26 см.

Решение:

4.16. В боковую поверхность сосуда вставлен горизон капилляр, внутренний радиус которого r = 1 мм и длина l = 1,5 см. В сосуд налит глицерин, динамическая вязкость которого n = 1,0Па*с. Уровень глицерина в сосуде поддержи постоянным на высоте h = 0,18м выше капилляра. Какое время потребуется на то, чтобы из капилляра вытек объем глицерина V = 5 см3?

Решение:

4.17. На столе стоит сосуд, в боковую поверхность которого вставлен горизонтальный капилляр на высоте h1 = 5 см от дна сосуда. Внутренний радиус капилляра r = 1 мм и длина l = 1 см. В сосуд налито машинное масло, плотность которого р = 0,9 • 103 кг/м3 и динамическая вязкость n = 0,5 Па*с. Уровень масла в сосуде поддерживается постоянным на высоте h2 – 50 см выше капилляра. На каком расстоянии L от конца капилляра (по горизонтали) струя масла падает на стол?

Решение:

4.18. Стальной шарик падает в широком сосуде, напол трансформаторным маслом, плотность которого р – 0,9 • 103 кг/ m3 и динамическая вязкость n= 0,8Па*с. Считая, что закон Стокса имеет место при числе Рейнольдса Re < 0,5 (если при вычислении Re в качестве величины D взять диаметр шарика), найти предельное значение диаметра D шарика.

Решение:

4.19. Считая, что ламинарность движения жидкости (или газа) в цилиндрической трубе сохраняется при числе Рейнольдса Rе<3000 (если при вычислении Re в качестве величины D взять диаметр трубы), показать, что условия задачи 4.1 соответствуют ламинарному движению. Кинематическая вязкость газа v = 1,33 • 10-6 м2/с.

Решение:

4.20. Вода течет по трубе, причем за единицу времени через поперечное сечение трубы протекает объем воды V1 = 200см3/с. Динамическая вязкость воды n = 0,001 Па*с. При каком предельном значении диаметра D трубы движение воды остается ламинарным? (Смотри условие предыдущей задачи.)

Читайте также:  Античный сосуд для охлаждения

Решение:

/>

Источник

4.1. Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг. Плотность газа р = 7,5 кг/м3. Диаметр трубы D = 2 см.

Решение:

4.2. В дне цилиндрического сосуда диаметром D = 0,5 м име круглое отверстие диаметром d = 1см. Найти зависимость скорости понижения уровня воды в сосуде от высоты h этого уровня. Найти значение этой скорости для высоты h = 0,2 м.

Решение:

4.3. На столе стоит сосуд с водой, в боковой поверхности которого имеется малое отверстие, расположенное на рас h1 от дна сосуда и на расстоянии h2 от уровня воды. Уровень воды в сосуде поддерживается постоянным. На каком расстоянии l от сосуда ( по горизонтали) струя воды падает на стол в случае, если: a) h1 = 25 см, h2=16см ; б) h1 =16 см, h2 = 25 см?

Решение:

4.4. Сосуд, наполненный водой, сообщается с атмосферой через стеклянную трубку, закрепленную в горлышке сосуда. Кран К находится на расстоянии h2 = 2 см от дна сосуда. Найти скорость v вытекания воды из крана в случае, если расстояние между нижним концом трубки и дном сосуда: а) h1 = 2 см; б) h1 =7,5 см; в) h1 =10 см.

Решение:

4.5. Цилиндрической бак высотой h = 1 м наполнен до краев водой. За какое время t вся вода выльется через отверстие, расположенное у дна бака, если площадь S2 поперечного сечения отверстия в 400 раз меньше площади поперечного сечения бака? Сравнить это время с тем, которое понадобилось бы для вытекания того же объема воды, если бы уровень воды в баке поддерживался постоянным на высоте h = 1 м от отверстия.

Решение:

4.6. В сосуд льется вода, причем за единицу времени наливается объем воды V1 = 0,2 л/с. Каким должен быть диаметр d отверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровне h = 8,3 см?

Решение:

4.7. Какое давление р создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/с? Плотность краски р = 0,8 • 103 кг/м3.

Решение:

4.8. По горизонтальный трубе АВ течет жидкость. Разность уровней этой жидкости в трубах а и b равна dh = 10 см. Диаметры трубок а и b одинаковы. Найти скорость v течения жидкости в трубе АВ.

Решение:

4.9. Воздух продувается через трубку АВ. За единицу времени через трубку АВ протекает объем воздуха V1 = 5 л/мин. Площадь поперечного сечения широкой части трубки АВ равна S1 = 2 см2, а узкой ее части и трубки abc равна S2 = 0,5 см2. Найти разность уровней dh воды, налитой в трубку abc. Плотность воздуха р = 1,32 кг/м3.

Решение:

4.10. Шарик всплывает с постоянной скоростью v в жид, плотность р1которой в 4 раза больше плоскости мате шарика. Во сколько раз сила трения Fтр , действующая на всплывающий шарик, больше силы тяжести mg, действующей на этот шарик?

Решение:

4.11. Какой наибольшей скорости v может достичь дождевая капля диаметром d = 0,3 мм, если динамическая вязкость воз n= 1,2-10-5 Па*с?

Решение:

4.12. Стальной шарик диаметром d = 1мм падает с посто скоростью v = 0,185 см/с в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость n касторо масла.

Решение:

4.13. Смесь свинцовых дробинок с диаметрами d1 = 3 мм и d2 = 1 мм опустили в бак с глицерином высотой h = 1 м. На сколько позже упадут на дно дробинки меньшего диаметра по сравнению с дробинками большего диаметра? Динамическая вязкость глицерина n = 1,47 Па*с.

Решение:

4.14. Пробковый шарик радиусом r = 5 мм всплывает в сосуде, наполненном касторовым маслом. Найти динамическую и кинематическую вязкости касторового масла, если шарик всплывает с постоянной скоростью v = 3,5 см/с.

Решение:

4.15. В боковую поверхность цилиндрического сосуда радиусом R = 2 см вставлен горизонтальный капилляр, внутренний радиус r = 1 мм которого и длина l = 2 см. В сосуд налито касторовое масло, динамическая вязкость которого n = 1,2Па*с. Найти зависимость скорости v понижения уровня касторового масла в сосуде от высоты h этого уровня над капилляром. Найти значение этой скорости при h = 26 см.

Решение:

4.16. В боковую поверхность сосуда вставлен горизон капилляр, внутренний радиус которого r = 1 мм и длина l = 1,5 см. В сосуд налит глицерин, динамическая вязкость которого n = 1,0Па*с. Уровень глицерина в сосуде поддержи постоянным на высоте h = 0,18м выше капилляра. Какое время потребуется на то, чтобы из капилляра вытек объем глицерина V = 5 см3?

Решение:

4.17. На столе стоит сосуд, в боковую поверхность которого вставлен горизонтальный капилляр на высоте h1 = 5 см от дна сосуда. Внутренний радиус капилляра r = 1 мм и длина l = 1 см. В сосуд налито машинное масло, плотность которого р = 0,9 • 103 кг/м3 и динамическая вязкость n = 0,5 Па*с. Уровень масла в сосуде поддерживается постоянным на высоте h2 – 50 см выше капилляра. На каком расстоянии L от конца капилляра (по горизонтали) струя масла падает на стол?

Решение:

4.18. Стальной шарик падает в широком сосуде, напол трансформаторным маслом, плотность которого р – 0,9 • 103 кг/ m3 и динамическая вязкость n= 0,8Па*с. Считая, что закон Стокса имеет место при числе Рейнольдса Re < 0,5 (если при вычислении Re в качестве величины D взять диаметр шарика), найти предельное значение диаметра D шарика.

Решение:

4.19. Считая, что ламинарность движения жидкости (или газа) в цилиндрической трубе сохраняется при числе Рейнольдса Rе<3000 (если при вычислении Re в качестве величины D взять диаметр трубы), показать, что условия задачи 4.1 соответствуют ламинарному движению. Кинематическая вязкость газа v = 1,33 • 10-6 м2/с.

Решение:

4.20. Вода течет по трубе, причем за единицу времени через поперечное сечение трубы протекает объем воды V1 = 200см3/с. Динамическая вязкость воды n = 0,001 Па*с. При каком предельном значении диаметра D трубы движение воды остается ламинарным? (Смотри условие предыдущей задачи.)

Решение:

Читайте также:  Если под глазами видны сосуды

Источник

4.1. Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг. Плотность газа р = 7,5 кг/м3. Диаметр трубы D = 2 см.

Решение:

4.2. В дне цилиндрического сосуда диаметром D = 0,5 м име круглое отверстие диаметром d = 1см. Найти зависимость скорости понижения уровня воды в сосуде от высоты h этого уровня. Найти значение этой скорости для высоты h = 0,2 м.

Решение:

4.3. На столе стоит сосуд с водой, в боковой поверхности которого имеется малое отверстие, расположенное на рас h1 от дна сосуда и на расстоянии h2 от уровня воды. Уровень воды в сосуде поддерживается постоянным. На каком расстоянии l от сосуда ( по горизонтали) струя воды падает на стол в случае, если: a) h1 = 25 см, h2=16см ; б) h1 =16 см, h2 = 25 см?

Решение:

4.4. Сосуд, наполненный водой, сообщается с атмосферой через стеклянную трубку, закрепленную в горлышке сосуда. Кран К находится на расстоянии h2 = 2 см от дна сосуда. Найти скорость v вытекания воды из крана в случае, если расстояние между нижним концом трубки и дном сосуда: а) h1 = 2 см; б) h1 =7,5 см; в) h1 =10 см.

Решение:

4.5. Цилиндрической бак высотой h = 1 м наполнен до краев водой. За какое время t вся вода выльется через отверстие, расположенное у дна бака, если площадь S2 поперечного сечения отверстия в 400 раз меньше площади поперечного сечения бака? Сравнить это время с тем, которое понадобилось бы для вытекания того же объема воды, если бы уровень воды в баке поддерживался постоянным на высоте h = 1 м от отверстия.

Решение:

4.6. В сосуд льется вода, причем за единицу времени наливается объем воды V1 = 0,2 л/с. Каким должен быть диаметр d отверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровне h = 8,3 см?

Решение:

4.7. Какое давление р создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/с? Плотность краски р = 0,8 • 103 кг/м3.

Решение:

4.8. По горизонтальный трубе АВ течет жидкость. Разность уровней этой жидкости в трубах а и b равна dh = 10 см. Диаметры трубок а и b одинаковы. Найти скорость v течения жидкости в трубе АВ.

Решение:

4.9. Воздух продувается через трубку АВ. За единицу времени через трубку АВ протекает объем воздуха V1 = 5 л/мин. Площадь поперечного сечения широкой части трубки АВ равна S1 = 2 см2, а узкой ее части и трубки abc равна S2 = 0,5 см2. Найти разность уровней dh воды, налитой в трубку abc. Плотность воздуха р = 1,32 кг/м3.

Решение:

4.10. Шарик всплывает с постоянной скоростью v в жид, плотность р1которой в 4 раза больше плоскости мате шарика. Во сколько раз сила трения Fтр , действующая на всплывающий шарик, больше силы тяжести mg, действующей на этот шарик?

Решение:

4.11. Какой наибольшей скорости v может достичь дождевая капля диаметром d = 0,3 мм, если динамическая вязкость воз n= 1,2-10-5 Па*с?

Решение:

4.12. Стальной шарик диаметром d = 1мм падает с посто скоростью v = 0,185 см/с в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость n касторо масла.

Решение:

4.13. Смесь свинцовых дробинок с диаметрами d1 = 3 мм и d2 = 1 мм опустили в бак с глицерином высотой h = 1 м. На сколько позже упадут на дно дробинки меньшего диаметра по сравнению с дробинками большего диаметра? Динамическая вязкость глицерина n = 1,47 Па*с.

Решение:

4.14. Пробковый шарик радиусом r = 5 мм всплывает в сосуде, наполненном касторовым маслом. Найти динамическую и кинематическую вязкости касторового масла, если шарик всплывает с постоянной скоростью v = 3,5 см/с.

Решение:

4.15. В боковую поверхность цилиндрического сосуда радиусом R = 2 см вставлен горизонтальный капилляр, внутренний радиус r = 1 мм которого и длина l = 2 см. В сосуд налито касторовое масло, динамическая вязкость которого n = 1,2Па*с. Найти зависимость скорости v понижения уровня касторового масла в сосуде от высоты h этого уровня над капилляром. Найти значение этой скорости при h = 26 см.

Решение:

4.16. В боковую поверхность сосуда вставлен горизон капилляр, внутренний радиус которого r = 1 мм и длина l = 1,5 см. В сосуд налит глицерин, динамическая вязкость которого n = 1,0Па*с. Уровень глицерина в сосуде поддержи постоянным на высоте h = 0,18м выше капилляра. Какое время потребуется на то, чтобы из капилляра вытек объем глицерина V = 5 см3?

Решение:

4.17. На столе стоит сосуд, в боковую поверхность которого вставлен горизонтальный капилляр на высоте h1 = 5 см от дна сосуда. Внутренний радиус капилляра r = 1 мм и длина l = 1 см. В сосуд налито машинное масло, плотность которого р = 0,9 • 103 кг/м3 и динамическая вязкость n = 0,5 Па*с. Уровень масла в сосуде поддерживается постоянным на высоте h2 – 50 см выше капилляра. На каком расстоянии L от конца капилляра (по горизонтали) струя масла падает на стол?

Решение:

4.18. Стальной шарик падает в широком сосуде, напол трансформаторным маслом, плотность которого р – 0,9 • 103 кг/ m3 и динамическая вязкость n= 0,8Па*с. Считая, что закон Стокса имеет место при числе Рейнольдса Re < 0,5 (если при вычислении Re в качестве величины D взять диаметр шарика), найти предельное значение диаметра D шарика.

Решение:

4.19. Считая, что ламинарность движения жидкости (или газа) в цилиндрической трубе сохраняется при числе Рейнольдса Rе<3000 (если при вычислении Re в качестве величины D взять диаметр трубы), показать, что условия задачи 4.1 соответствуют ламинарному движению. Кинематическая вязкость газа v = 1,33 • 10-6 м2/с.

Читайте также:  Косметические процедуры для лица для укрепления сосудов

Решение:

4.20. Вода течет по трубе, причем за единицу времени через поперечное сечение трубы протекает объем воды V1 = 200см3/с. Динамическая вязкость воды n = 0,001 Па*с. При каком предельном значении диаметра D трубы движение воды остается ламинарным? (Смотри условие предыдущей задачи.)

Решение:

/>

Источник

VIT 1124 14

Сен 10 #1

al36 пишет:

Привет! Помогите с расчетом (книгами, справочниками, идеями). Необходимо рассчитать время заполнения сосуда объема V газом. Начальное давление в сосуде известно (атмосферное). На входе в сосуд через управляемый вентиль подается газ с давлением p. Нужно рассчитать время заполнения в зависимости от величины открытия вентиля.

В задаче не хватает данных, а имеено дебит газа. Если дебит постоянен то задача тривиальна. Если меняется по определенному закону, то в общем случае надо построить дифференциальное уравнение и его решить.

Аватар пользователя pevgen

pevgen 428 11

Сен 10 #2

al36 пишет:

Привет! Помогите с расчетом (книгами, справочниками, идеями). Необходимо рассчитать время заполнения сосуда объема V газом. Начальное давление в сосуде известно (атмосферное). На входе в сосуд через управляемый вентиль подается газ с давлением p. Нужно рассчитать время заполнения в зависимости от величины открытия вентиля.

Из общего курса физики – мгновенно, т.к. газ занимает весь предоставленный ему объем. Другое дело, если вам необходимо рассчитать время полного замещения воздуха в сосуде или достижение определенного давления, но это уже друие условия задачи, вами никак не озвученные.

Аватар пользователя Док

Док 181 10

Сен 10 #3

pevgen пишет:

Из общего курса физики – мгновенно, т.к. газ занимает весь предоставленный ему объем. Другое дело, если вам необходимо рассчитать время полного замещения воздуха в сосуде или достижение определенного давления, но это уже друие условия задачи, вами никак не озвученные.

Ну ни как не мгновенно, а по крайней мере не быстрее чем со скоростю 1Мах ))) То-есть, не ясена область решения задачи. диапазон. Ему скорее всего нужна зависимость времени выравнивания давления в ограниченом объеме от сечения дросселя.

Аватар пользователя al36

al36 3 10

Сен 10 #4

Док, pevgen, абсолютно верно. Есть пропорциональный клапан, величиной открытия которого могу управлять. Нужно определить время за которое давление в сосуде примет опр. величину в зависимости от степени открытия клапана. Давление на входе клапана можно считать неизменным. Может есть книги, где подобные задачи разобраны или программы для расчета ( а еще лучше для симуляции)?

Аватар пользователя Док

Док 181 10

Сен 10 #5

al36 пишет:

Док, pevgen, абсолютно верно. Есть пропорциональный клапан, величиной открытия которого могу управлять. Нужно определить время за которое давление в сосуде примет опр. величину в зависимости от степени открытия клапана. Давление на входе клапана можно считать неизменным. Может есть книги, где подобные задачи разобраны или программы для расчета ( а еще лучше для симуляции)?

Дык диапазоны определите? Время – расплывчатое понятие: микросекунды…секунды, какие давления ожидаются, температуры, объем примерно какой? это для того, что бы к примеру знать, что учитывать, а чем можно пренебречь(например, охлаждение газа за счет дросселирования).

SABUR 47 13

Сен 10 #6

al36 пишет:

Док, pevgen, абсолютно верно. Есть пропорциональный клапан, величиной открытия которого могу управлять. Нужно определить время за которое давление в сосуде примет опр. величину в зависимости от степени открытия клапана. Давление на входе клапана можно считать неизменным. Может есть книги, где подобные задачи разобраны или программы для расчета ( а еще лучше для симуляции)?

Зная скорость потока газа при открытом полностью вентиле, можно экспериментально замерить время заполнения сосуда (достижения определенной величины давления, на которое рассчитан сосуд). В данном случае максимальную пропускную способность вентиля можно посмотреть в документации или замерить экспериментально при помощи счетчика газа, прогоняя через вентиль обычный воздух. Желательно отвакуумировать сосуд предназначенный для заполнения для чистоты эксперимента. Советую поискать формулу расчета скорости потока, так как изучение данной простейшей тематики “прольет свет” на Вашу проблему пускай и частично.

Аватар пользователя al36

al36 3 10

Сен 10 #7

SABUR, экспериментально все проверить конечно можно, но у меня ситуация сложнее – измерить время это одно дело. Допустим мне нужно будет изменить объем сосуда или клапан (его макс. пропускную способность) так, чтобы уложиться в заданное время заполнения. Т.е. у меня больше задача конструирования, чем просто измерения. Неужели нет литературы по этому поводу, справочников, формул – хотя бы оценить?

erilin_sa 456 11

Сен 10 #8

al36 пишет:

SABUR, экспериментально все проверить конечно можно, но у меня ситуация сложнее – измерить время это одно дело. Допустим мне нужно будет изменить объем сосуда или клапан (его макс. пропускную способность) так, чтобы уложиться в заданное время заполнения. Т.е. у меня больше задача конструирования, чем просто измерения. Неужели нет литературы по этому поводу, справочников, формул – хотя бы оценить?

Делайте клапан с широким диапазоном управления . Расчет даст +/- 10 % точности – оно Вам надо ?

Аватар пользователя Док

Док 181 10

Сен 10 #9

al36 пишет:

SABUR, экспериментально все проверить конечно можно, но у меня ситуация сложнее – измерить время это одно дело. Допустим мне нужно будет изменить объем сосуда или клапан (его макс. пропускную способность) так, чтобы уложиться в заданное время заполнения. Т.е. у меня больше задача конструирования, чем просто измерения. Неужели нет литературы по этому поводу, справочников, формул – хотя бы оценить?

Извиняюсь за возможно не скромный вопрос. А что конструируете?

Источник