Задачи на цилиндрические сосуды
В
заданиях ЕГЭ по математике встречаются задачи, в которых речь идёт о
погружении детали в жидкость или о переливании жидкости из одного сосуда
в другой.
Вопросы
в условии связаны с нахождением объёма погружаемого в жидкость тела или
с нахождением какого-либо параметра сосуда. Форма сосуда может быть
различной: цилиндр, призма.
Что необходимо понимать?
Если
жидкость залита в цилиндрический сосуд, то она принимает форму
цилиндра. Если она залита в имеющий форму призмы, то соответственно
принимает форму призмы. Это означает, что формулы для объёмов цилиндра и
призмы работают и для объёмов жидкостей помещённых в такие сосуды.
Формула объёма (цилиндра и призмы):
Если
жидкость перливается в аналогичный сосуд с меньшим основанием, уровень
(высота) жидкости увеличивается; если в сосуд с большим основанием, то
уровень жидкости уменьшается.
Рекомендации!
В
задачах на погружение детали в жидкость следует найти объём полученный
после её погружения, далее найти разность объёмов до и после (если
данные в условии это позволяют). Можно такие задачи решать и другим
способом, используя закон Архимеда. Примеры рассмотрены ниже.
В
задачах, где идёт речь о переливании жидкости в другой сосуд (с
уменьшенной или увеличенной площадью основания) помните о том, что сам
объём жидкости остаётся неизменным. Вы можете выразить его через площадь
основания и высоту (S1 и H1) одного сосуда и площадь основания и высоту (S2 и H2) другого сосуда, далее полученные выражения приравнять.
При
дальнейших преобразованиях получите отношение соответствующих величин –
либо площадей оснований, их рёбер, либо высот. Пример такой задачи
рассмотрен ниже в статье.
В цилиндрический сосуд налили 5000 см3
воды. Уровень жидкости оказался равным 40 см. В воду полностью
погрузили деталь. При этом уровень жидкости в сосуде поднялся на 15 см.
Чему равен объем детали? Ответ выразите в см3.
Мы знаем, что объём цилиндра равна произведению площади основания на высоту:
В
жидкость погружаем деталь. Её уровень поднимается. Для того, чтобы
вычислить объём детали необходимо из полученного объёма (полученного
после погружения детали) вычесть объём жидкости, который был изначально.
Высота это есть уровень жидкости.
Итак, из имеющихся данных можем найти площадь основания:
Основание
цилиндра у нас величина неизменная, но изменилась высота жидкости (при
погружении детали) на 15 сантиметров, то есть она стала
40 +15 = 55 см.
Найдём полученный объём:
Теперь можем вычислить объём детали: 6875 – 5000 = 1875 см3
Можно решать подобные задачи более рациональным способом.
По закону Архимеда объем детали равен объему вытесненной ею жидкости. Объем вытесненной жидкости равен 15/45 исходного объема:
Ответ: 1875
Решить самостоятельно:
Посмотреть решение
В сосуд, имеющий форму правильной треугольной призмы, налили 2500 см3 воды
и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде
поднялся с отметки 20 см до отметки 24 см. Чему равен объем детали?
Ответ выразите в см3.
Принцип решения тот же самый, что и в предыдущей задаче.
Мы знаем, что объём призмы равен произведению площади основания на высоту:
В
жидкость погружаем деталь. Её уровень поднимается. Для того, чтобы
вычислить объём детали необходимо из полученного объёма (полученного
после погружения детали) вычесть объём жидкости, который был изначально.
Из имеющихся данных можем найти площадь основания призмы:
Основание призмы не изменилось, но изменилась высота жидкости (при погружении детали) она стала 24см.
Найдём полученный объём:
Теперь можем вычислить объём детали: 3000 – 2500 = 500 см3
Второй способ:
По закону Архимеда объем детали равен объему вытесненной ею жидкости. Объем вытесненной жидкости равен 4/20 исходного объема:
Ответ: 500
Решить самостоятельно:
Посмотреть решение
В
сосуд, имеющий форму правильной треугольной призмы, налили воду.
Уровень воды достигает 250 см. На какой высоте будет находиться уровень
воды, если ее перелить в другой такой же сосуд, у которого сторона
основания в 5 раз больше, чем у первого? Ответ выразите в см.
В
подобных задачах с переливаниями жидкости следует помнить, что объём её
остаётся прежним (он не изменен – куда бы её не перелили).
Объем
жидкости в данном случае это объём правильной треугольной призмы (в
её основании лежит правильный треугольник). Он равен произведению
площади основания призмы на высоту:
Суть
дальнейших действий сводится к тому, что мы можем выразить объёмы
жидкостей в двух призмах: первой и второй (основание которой в 4 раза
больше), а затем приравнять полученные выражения, в итоге после
преобразований получим отношение двух высот.
Естественно, что высота жидкости уменьшится, если увеличить площадь основания.
Обозначим исходную высоту жидкости Н1, полученную после переливания Н2.
Найдём площадь основания призмы, обозначив его сторону как а. Площадь правильного треугольника равна:
Таким образом, объём залитой жидкости в первую призму равен:
Площадь основания второй призмы равна:
Объём залитой жидкости во вторую призму равен:
Найдём отношение высот:
Таким образом, при том же объёме жидкости её высота уменьшится в 25 раз и будет равна 10.
Или можно сказать так:
При увеличении стороны основания а в 5 раз уровень воды уменьшится в 25 раз.
Ответ: 10
Решить самостоятельно:
Посмотреть решение
В
цилиндрический сосуд, в котором находится 14 литров воды, опущена
деталь. При этом уровень жидкости в сосуде поднялся в 1,1 раза. Чему
равен объем детали? Ответ выразите в литрах.
Объём цилиндра равна произведению площади его основания на высоту:
Жидкость в сосуде имеет цилиндрическую объёмную форму.
Уровень
жидкости поднялся в 1,1 раза – означает, что высота цилиндра
увеличилась в 1,1 раза. Исходя из формулы объёма цилиндра понятно, что
при увеличении высоты в 1,1 раза влечёт за собой увеличение объёма также
в 1,1 раза (так как зависимость величин прямопропорциональная).
Это означает, что после погружения детали объём будет равен 14∙1,1 = 15,4 литра.
Таким образом, объём детали будет равен: 15,4 – 14 = 1.4 литра.
Ответ: 1,4
Решить самостоятельно:
Посмотреть решение
Если ход решения сразу не увидели, ставьте вопрос – что можно найти исходя из условия?
Например,
если дан начальный объём и высота жидкости (в сосуде формы призмы или
цилиндра), то мы можем найти площадь основания. Затем, зная площадь
основания и высоту жидкости после погружения детали мы можем найти
полученный объём.
Далее
найти разницу между объёмами не составит труда (это относится к первым
двум задачам). В последней задаче для решения требуется немного
логики.
Источник
Задачи по геометрии в 11 классе
по теме «Цилиндр. Объём цилиндра»
Составитель: Дугиев Магомет Умарбекович
учитель математики
с.п. Южное
2015г.
Предисловие.
Предлагаемый сборник составлен в соответствии с действующей программой по геометрии. В сборник вошли задачи разной степени сложности, это задачи базового уровня на нахождение элементов цилиндра, на нахождение площади осевого сечения цилиндра и другие. Есть и задачи на комбинацию фигур.
В сборник вошли задачи прикладного характера. Цилиндрические поверхности встречаются в окружающей среде, на производстве и в других сферах жизнедеятельности человека. Такие задачи развивают умение переводить условие задачи на математический язык, оперировать с различными мерами длины, площади и объёма, способствуют развитию логического мышления. В прикладных задачах отражены межпредметные связи.
Задачи данного сборника можно использовать как на уроках, так и для домашней работы, для проведения самостоятельных работ, зачётов.
Задачи по теме «Цилиндр»
1.Радиус основания цилиндра равен 2м, высота 3м. Найти диагональ осевого сечения.
2.Осевое сечение цилиндра – квадрат, площадь которого Q. Найти площадь основания.
3.Высота цилиндра 6см, радиус основания 5см. Найти площадь сечения, проведённого параллельно оси цилиндра на расстоянии 4см от неё.
4.Высота цилиндра 8дм, радиус основания 5дм. Цилиндр пересечён плоскостью параллельно оси так, что в сечении получился квадрат. Найти расстояние от этого сечения до оси цилиндра.
5.В цилиндре проведена плоскость параллельно оси, отсекающая от окружности основания дугу в 1200. Длина оси 10см, расстояние от оси до секущей плоскости 2см. Найти площадь сечения.
6.Площадь боковой поверхности цилиндра равна 24π, а его объём равен 48 π.
Найти высоту цилиндра.
7.Объём цилиндра равен 8 π√5, а высота2√5. Найти диагональ осевого сечения.
8.Диагональ осевого сечения цилиндра, равная 4√2, образует с плоскостью основания угол 45о. Найти боковую поверхность цилиндра.
9.Площадь осевого сечения цилиндра равна 6/ π. Найти площадь его боковой поверхности.
10.Площадь боковой поверхности цилиндра равна 15 π. Найти площадь осевого сечения цилиндра.
11.Диагональ осевого сечения цилиндра, равная 4√3, образует с плоскостью основания 45о. Найти боковую поверхность цилиндра.
12.Во сколько раз увеличится площадь боковой поверхности прямого кругового цилиндра, если радиус его основания увеличить в 5 раз, а высоту в 3 раза?
*13.Найти высоту цилиндра, если площадь его основания равна 1, а площадь боковой поверхности равна √ π.
*14.Площадь основания цилиндра относится к площади осевого сечения как π:4. Найти угол между диагоналями осевого сечения.
*15.Высота цилиндра равна длине окружности основания. Найти диаметр основания, если объём цилиндра равен 432 π2.
Комбинация цилиндра с другими фигурами
16.В шар, площадь поверхности которого равна 100 π, вписан цилиндр. Найти высоту цилиндра, если радиус его основания равен 4.
17.Площадь осевого сечения цилиндра равна 3, а высота цилиндра равна 1,5. Найти радиус шара, описанного около этого цилиндра.
18.Площадь поверхности шара равна 330. Найти площадь полной поверхности цилиндра, описанного около шара.
19.Объём цилиндра равен 7,5. Найти объём вписанного в этот цилиндр шара.
20.Цилиндр вписан в шар, радиус которого равен √2. Найти объём цилиндра, если высота цилиндра в два раза больше радиуса цилиндра. Ответ запишите в виде десятичной дроби с точностью до 0,01.
21.Вокруг шара описан цилиндр. Найти отношение поверхности цилиндра к поверхности шара.
Прикладные задачи. Поверхность цилиндра.
22.Цилиндрический паровой котёл имеет 0,7 м в диаметре; длина его равна 3,8 м. Как велико давление пара на полную поверхность котла, если на 1 см2 пар давит с силой в 10 кг?
23.Цилиндрическая дымовая труба с диаметром 65 см имеет высоту 18м. Сколько квадратных метров жести нужно для её изготовления, если на заклёпку уходит 10% всего требующегося количества жести?
24.Полуцилиндрический свод подвала имеет 6 м длины и 5,8м в диаметре. Определить полную поверхность подвала.
25.Из круглого листа металла выштампован цилиндрический стакан диаметром 25см и высотой 50см. Предполагая, что при штамповке площадь листа не изменилась, определите диаметр листа.
Прикладные задачи. Объём цилиндра.
26. 25 метров медной проволоки весят 100.7 г. найдите диаметр проволоки. (удельный вес меди 9,8)
27. Погонный метр пенькового каната диаметром 36 мм весит 0,96кг. Найти его удельный вес.
28.Столбик ртути в термометре длиной 15,6см весит 5,2 г (удельный вес ртути 13,6) Найти площадь поперечного сечения столбика.
29.В мензурке (цилиндрический сосуд с делениями на кубические сантиметры) расстояние между двумя соседними делениями 1,8см. Найти внутренний диаметр мензурки .
30.Насос, подающий воду в паровой котёл, имеет два водяных цилиндра. Размеры каждого цилиндра: ход поршня 150мм, диаметр 80мм. Определить часовую производительность насоса, если известно, что каждый поршень делает 50 рабочих ходов в 1 минуту.
Литература.
1.Рыбкин Н. Сборник задач по геометрии. Москва, «Просвещение», 1971.
2.Симонов А.Я. Система тренировочных задач и упражнений по математике. Москва, «Просвещение», 1991.
3.Журнал «Математика в школе», 1984г.
Источник
Продолжаем подготовку к олимпиадам. Тема сегодняшней статьи – сообщающиеся сосуды и сила Архимеда. Начнем, как обычно, со стартовых, более простых задач, и потом перейдем к тем, что посложнее. Интересное будет дальше…
Задача 1. В цилиндрических сообщающихся сосудах находится вода. Площадь поперечного сечения широкого сосуда в 4 раза больше площади поперечного сечения узкого сосуда. В узкий сосуд наливают керосин, который образует столб высотой 20 см. На сколько повысится уровень воды в широком сосуде и опустится в узком?
Рисунок 1
Сначала запишем условие несжимаемости:
На уровне однородной жидкости можно записать условие равенства давлений:
Тогда
Ответ: 3,2 см, 12,8 см.
Задача 2. Три одинаковых сообщающихся цилиндра частично заполнены водой. Когда в левый цилиндр налили слой керосина высотой см, а в правый высотой см, то уровень воды в среднем сосуде повысился. На сколько?
Рисунок 2
Условие несжимаемости:
Откуда
Теперь условие равновесия:
Откуда
Тогда можно подставить все в первое уравнение:
Или
Ответ: 12 см.
Задача 3. В сосуде с водой плавает деревянная дощечка с приклеенным сверху железным шариком. Изменится ли уровень воды в сосуде, если дощечку перевернуть шариком вниз?
Здесь мы познакомимся с методом решения задач такого типа серез силы, действующие на дно. Метод заключается в том, чтобы записать условие равновесия сил, действующих на дно сосуда до изменений и после них. Например, пусть в сосуде плавает кусок льда. Во-первых, полезно знать, что его масса равна массе воды, которую он вытеснил:
Рисунок 3
Сила, действующая на дно, с одной стороны:
Где – масса всего содержимого стакана (воды и льда).
С другой стороны,
Теперь лед растаял. Запишем новое условие равновесия сил, действующих на дно:
Масса содержимого не изменилась, поэтому
И
Теперь вернемся к задаче. Рассуждая таким же способом, заключаем, что после перевороте дощечки массы содержимых до переворота и после одинаковые, следовательно, уровень воды не изменится.
Задача 4. В стакане плавает кусок льда с вмороженной в него свинцовой дробинкой. Как изменится уровень воды, когда весь лед растает?
Запишем силу на дно в первом случае:
Когда лед растает, дробинка утонет, и будет давить на дно с силой
Для второго случая (масса содержимого не изменилась)
Но изменилась сила, действующая на дно:
Тогда
Так как правая часть, очевидно, положительное число, то , то есть уровень понизился.
Задача 5. В стакане с пресной водой плавает кусок дерева, к которому приклеен кусочек сахара. Как изменится уровень воды в стакане, когда сахар растворится?
Записываем силу на дно в первом случае:
Во втором случае
Масса содержимого не изменилась, следовательно,
Или
И плотность после растворения сахара стала больше, значит, уровень понизится.
Задача 6. Цилиндрическую гирю, подвешенную к динамометру, опускают в воду, пока показание динамометра не изменится на Н. На сколько изменится уровень воды в сосуде, если сечение сосуда S = 25 см?
Показания динамометра изменятся ровно на силу Архимеда:
Записываем силы на дно сначала:
После погружения гири сила давления на дно изменилась:
Тогда
Откуда
Ответ: на 4 см.
Источник
Наглядная стереометрия
В 13 задании ЕГЭ базового уровня мы будем иметь дело с задачами по стереометрии, но не абстрактными, а наглядными примерами. Это могут быть задачи на уровень жидкости в сосудах, которую я разобрал ниже, или же задачи на модификации фигуры — например, у которой отрезали вершины. Нужно быть готовым к решению простых задач по стереометрии — они обычно сводятся сразу к задачам на плоскости, необходимо только правильно посмотреть на чертеж.
Разбор типовых вариантов заданий №13 ЕГЭ по математике базового уровня
Вариант 13МБ1
Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у данного? Ответ дайте в сантиметрах.
Алгоритм выполнения:
- Записать формулу объема цилиндра.
- Подставить значения для цилиндра с жидкостью в первом и во втором случае.
- Объем жидкости не изменялся, следовательно, можно приравнять объемы.
- Полученное уравнение решить относительно второй высоты h2.
- Подставить данные и вычислить искомую величину.
Решение:
Запишем формулу объема цилиндра.
Если вы забыли формулу объема цилиндра, то напомню, как ее можно легко вывести. Объем простых фигур, таких как куб и цилиндр, можно вычислить умножив площадь основания на высоту. Площадь основания в случае с цилиндром равна площади окружности, которую, вы, наверняка помните: π • r2.
Следовательно, объем цилиндра равен π • r2 • h
Подставим значения для цилиндра с жидкостью в первом и во втором случае. V1 = π r12 h1 V2 = π r22 h2 Объем жидкости не изменялся, следовательно, можно приравнять объемы.
V1 = V2
Левые части равны, значит можно приравнять и правые.
π r12 h1 = π r22 h2
Полученное уравнение решим относительно второй высоты h2.
h2 – неизвестный множитель. Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
h2 =( π r12 h1)/ π r22
По условию площадь основания стала в 4 раза больше, то есть r2 = 4 r1 . Подставим r2 = 4 r1 в выражение для h1. Получим: h2 =( π r12 h1)/ π (4 r1) 2 Полученную дробь сократим на π, получим h2 =( r12 h1)/ 16 r12 Полученную дробь сократим на r1, получим h2 = h1/ 16. Подставим известные данные: h2 = 80/ 16 = 5 см. Ответ: 5.
Вариант 13МБ2
Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?
Алгоритм выполнения:
- Записать формулу, для вычисления объема правильной четырехугольной призмы.
- Записать в общем виде формулу для нахождения объема в первом и втором случае.
- Найти отношение объемов.
- Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
- Сократить получившуюся дробь.
Решение:
Запишем формулу, для вычисления объема правильной четырехугольной призмы.
V = a · b · c
Запишем в общем виде формулу для нахождения объема в первом и втором случае.
V1 = a1 · b1 · c1
V2 = a2 · b2 · c2
Найдем отношение объемов.
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2)
Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы. По условию c1 = 4,5 c2 (первая коробка в четыре с половиной раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой). Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1 Подставим эти выражения в формулу отношения объемов:
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2) = (a1 · b1 · 4,5c2)/ ( 3a1 · 3b1 · c2) = (a1 · b1 · 4,5c2)/ ( 9a1 · b1 · c2)
Сократим получившуюся дробь на a1 · b1 · c2. Получим:
V1 / V2 = (a1 · b1 · 4,5c2)/ ( 9a1 · b1 · c2) = 4,5/9 = ½.
Объем первой коробочки в 2 раза меньше объема второй. Ответ: 2.
Вариант 13МБ3
Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в полтора раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?
Алгоритм выполнения:
- Записать формулу, для вычисления объема правильной четырехугольной призмы.
- Записать в общем виде формулу для нахождения объема в первом и втором случае.
- Найти отношение объемов.
- Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
- Сократить получившуюся дробь.
Решение:
Запишем формулу, для вычисления объема правильной четырехугольной призмы.
V = a · b · c
Запишем в общем виде формулу для нахождения объема в первом и втором случае.
V1 = a1 · b1 · c1
V2 = a2 · b2 · c2
Найдем отношение объемов.
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2)
Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы.
По условию c1 = 1,5 c2 (первая коробка в полтора раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой).
Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1
Подставим эти выражения в формулу отношения объемов:
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2) = (a1 · b1 · 1,5c2)/ ( 3a1 · 3b1 · c2) = (a1 · b1 · 1,5c2)/ ( 9a1 · b1 · c2)
Сократим получившуюся дробь на a1 · b1 · c2. Получим:
V1 / V2 = (a1 · b1 · 1,5c2)/ ( 9a1 · b1 · c2) = 1,5/9 = 15/(10 · 9) = 3/(2 · 9) = 1/ (2 · 3) = 1/6.
Объем первой коробочки в 6 раза меньше объема второй. Ответ: 6.
Вариант 13МБ4
От деревянного кубика отпилили все его вершины (см. рис.). Сколько граней у получившегося многогранника (невидимые ребра на рисунке не изображены)?
Сначала вспомним сколько всего граней и вершин у куба: шесть граней и восемь вершин. Теперь на месте каждой вершины образуется новая грань после отпила, значит у модифицированного в задании куба шесть родных граней и восемь новых (после отпила). Итого получаем: 6 + 8 = 14 граней.
Ответ: 14.
Если бы нас спросили, а сколько вершин у нового «куба». Очевидно, если вместо одной становится три, а их всего восемь, то получаем: 8 • 3 = 24
Вариант 13МБ5
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго – 6 и 4. Во сколько раз объем второго цилиндра больше объема первого?
Алгоритм выполнения
- Записываем ф-лу для вычисления объема цилиндра.
- Вводим обозначения для радиуса основания и высоты 1-го цилиндра. Выражаем подобным образом аналогичные параметры 2-го цилиндра.
- Формируем формулы для объема 1-го и 2-го цилиндров.
- Вычисляем отношение объемов.
Решение:
Объем цилиндра равен: V=πR2H. Обозначим радиус основания 1-го цилиндра через R1, а его высоту – через Н1. Соответственно, радиус основания 2-го цилиндра обозначим через R2, а высоту – через Н2. Отсюда получим: V1=πR12H1, V2=πR22H2. Запишем искомое отношение объемов:
. Подставляем в полученное отношение числовые данные:
. Вывод: объем 2-го цилиндра больше объема 1-го в 6 раз.
Вариант 13МБ6
В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды в баке поднялся в 1,4 раза. Найдите объем детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.
Алгоритм выполнения
- Вводим обозначения для объема до погружения детали и после. Пусть это будет соответственно V1 и V2.
- Фиксируем значение для V1. Выражаем V2 через V1. Находим значение V2.
- Переводим результат, полученный в литрах, в куб.см.
Решение:
Объем бака до погружения V1=5 (л). Т.к. после погружения детали объем стал равным V2. Согласно условию, увеличение составило 1,4 раза, поэтому V2=1,4V1. Отсюда получаем: V2=1,4·5=7 (л). Т.о., разница объемов, которая и составляет объем детали, равна:
V2–V1=7–5=2 (л).
2 л=2·1000=2000 (куб.см).
Вариант 13МБ7
Вода в сосуде цилиндрической формы находится на уровне h=80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.
Алгоритм выполнения
- Записываем ф-лу для расчета объема цилиндра.
- На основании этой формулы записываем 2 уравнения – для вычисления объема воды в 1-м и 2-м сосудах. Для этого используем в формуле соответствующие индексы 1 и 2.
- Поскольку воду просто переливают их одного сосуда в другой, то ее объем не изменяется. Поэтому приравниваем полученные уравнения. Из полученного единственного уравнения находим уровень воды во 2-м сосуде, выраженный высотой h2.
Решение:
Объем цилиндра равен: V=Sоснh=πR2h. Объем воды в 1-м сосуде: V1=πR12h1. Объем во 2-м сосуде: V2=πR22h2. Приравниваем V1 и V2: πR12h1=πR22h2. Сокращаем на π, выражаем h2:
. По условию R2=2R1. Отсюда:
.
Вариант 13МБ8
От деревянной правильной треугольной призмы отпилили все ее вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые ребра на рисунке не изображены)?
Алгоритм выполнения
- Определяем количество вершин у треугольной призмы.
- Анализируем изменения, которые произойдут при отпиливании всех вершин. Подсчитываем кол-во вершин у нового многогранника.
Решение:
Вершины призмы формируют вершины оснований (верхнего и нижнего). Поскольку основаниями правильной треугольной призмы являются правильные треугольники, то вершин у такой призмы 3·2=6 штук.
Спилив вершины призмы, получим вместо них небольшие (по сравнению с размерами самой призмы) треугольники. Это отображено и на рисунке. То есть вместо каждой вершины образуется 3 новых. Следовательно, их кол-во станет равным: 6·3=18.
Вариант 13МБ9
Даны две коробки, имеющие форму правильной четырехугольной призмы, стоящей на основании. Первая коробка в четыре с половиной раза ниже второй, а вторая второе уже первой. Во сколько раз объем первой коробки больше объема второй?
Алгоритм выполнения
- Вводим обозначения для линейных параметров коробок и их объемов.
- Определяем зависимость линейных параметров согласно условию.
- Записываем формулу для вычисления объема призмы.
- Адаптируем эту формулу для объемов коробок.
- Находим отношение объемов.
Решение:
Т.к. форма коробок – правильная призма, то в их основании лежат квадраты. Поэтому можем обозначить длину и ширину каждой коробки одинаково. Пусть для первой коробки это а1, а для второй а2. Высоты коробок обозначим соответственно h1 и h2. Объемы – V1 и V2.
Согласно условию, h2=4,5h1, а1=3а2. Объем призмы равен: V=Sоснh. Т.к. в основании коробок лежит квадрат, то Sосн=а2. Отсюда: V=a2h. Для 1-й коробки имеем: V1=a12h1. Для 2-й коробки: V2=a22h2. Тогда получаем отношение: Ответ: 2
Вариант 13МБ10
В сосуде, имеющем форму конуса, уровень жидкости достигает ½ высоты. Объем сосуда 1600 мл. Чему равен объем налитой жидкости? Ответ дайте в миллилитрах.
Алгоритм выполнения
- Доказываем, что данные в условии конусы подобны.
- Определяем коэффициент подобия.
- Используя свойство для объемов подобных тел, находим объем жидкости.
Решение:
Если рассматривать сечение конуса по двум его противоположно расположенным образующим (осевое сечение), то видим, что полученные таким способом треугольники большого конуса и малого (образованного жидкостью) подобны. Это следует из равенства их углов. Т.е. имеем: у конусов подобны высоты и радиусы основания. Отсюда делаем вывод: т.к. линейные параметры конусов подобны, то и конусы подобны.
По условию высота малого конуса (жидкости) составляет ½ высоты конуса. Значит, коэффициент подобия малого и большого конусов равен ½.
Применяем св-во подобия тел, которое заключается в том, их объемы относятся как коэффициет подобия в кубе. Обозначим объем большого конуса V1, малого – V2. Получим:
. Поскольку по условию V1=1600 мл, то V2=1600/8=200 мл.
Вариант 13МБ11
Даны два шара с радиусами 4 и 1. Во сколько раз объем большего шара больше объема меньшего?
Алгоритм выполнения
- Записываем формулу для вычисления объема шара.
- Адаптируем формулу для каждого из шаров. Для этого используем индексы 1 и 2.
- Записываем отношение объемов, вычисляем его, подставив числовые данные из условия.
Решение:
Объем шара вычисляется по ф-ле: . Отсюда объем 1-го (большего) шара равен , 2-го (меньшего) шара – . Составим отношение объемов:
Подставляем в полученную формулу числовые данные из условия:
Вывод: объем большего шара в 64 раза больше.
Вариант 13МБ12
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 18, а второго – 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?
Алгоритм выполнения
- Записываем формулу для определения площади бок.поверхности цилиндра.
- Переписываем ее дважды с использованием соответствующих индексов – для 1-го (большего) и 2-го (меньшего) цилиндров.
- Находим отношение площадей. Вычисляем отношения, используя числовые данные из условия.
Решение:
Площадь бок.поверхности цилиндра вычисляется так: S=2πRH. Для 1-го цилиндра имеем: S1=2πR1H1. Для 2-го цилиндра: S2=2πR2H2. Составим отношение этих площадей:
Найдем числовое значение полученного отношения:
Вывод: площадь боковой поверхности 1-го цилиндра больше в 12 раз.
Вариант 13МБ13
Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?
Алгоритм выполнения
- Записываем формулу для определения массы большего шаров через плотность и объем.
- Объем в этой формуле расписываем через ф-лу объема шара (через его радиус).
- Записываем ф-лу для массы меньшего шара