Задачка с 3 сосудами
Сосуды с водой I
Отмерьте ровно 4 литра, если у вас есть 3-литровая банка, 5-литровая банка и неограниченный доступ к воде.
Сосуды с водой II
Дано: 8-литровый сосуд, заполненный водой, и два пустых сосуда – объёмом 3 и 5 литров.
Как разделить воду на две равные части (4 и 4 литра), используя наименьшее количество переливаний?
Сосуды с водой III
Дано: 7-литровый сосуд, заполненный водой, и два пустых – объёмом 4 и 3 литра.
Поделите воду на 2, 2 и 3 литра, используя минимальное количество переливаний.
Сосуды с водой IV
Отмерьте 6 литров воды, используя 4 и 9-литровые сосуды.
Сосуды с водой V
Отмерьте 2 литра воды, используя:
1. 4 и 5-литровые сосуды;
2. 4 и 3-литровые сосуды.
Сосуды с водой VI
Даны 3 сосуда: сосуд А (8-литровый с 5-ю литрами воды); сосуд В (5-литровый с 3-мя литрами воды); и сосуд С (3-литровый с 2-мя литрами воды).
Отмерьте 1 литр, перелив воду только два раза.
Задача на взвешивание I
У вас 10 мешков с монетами, по 1000 монет в каждом. В одном из мешков все монеты фальшивые. Настоящая монета весит 1 г., фальшивая – 1,1 г.. Имея точные весы, как определить мешок с фальшивыми монетами с помощью только одного взвешивания?
Что если неизвестно, сколько мешков было с фальшивыми монетами?
Задача на взвешивание III
А эта задача ещё чуть посложнее предыдущей.
У вас есть 8 мешков с монетами по 48 монет в каждом. В пяти мешках настоящие монеты, а в остальных – фальшивые. С помощью одного взвешивания на точных весах определите все мешки с фальшивками, используя минимальное количество монет.
Задача на взвешивание IV
Один из 12-ти биллиардных шаров бракованный. Он весит или больше, или меньше, чем стандартный. У Вас есть чашечные весы-противовесы, на которых Вы можете сравнивать вес шаров.
Какое минимальное количество взвешиваний гарантирует нахождение бракованного шара?
Задача на взвешивание V
На рождественской ёлке висят три пары шаров: два белых, два голубых и два красных. Внешне шары одинакового размера. Однако в каждой паре есть один лёгкий и один тяжёлый шар. Все лёгкие шары весят между собой одинаково, и так же все тяжёлые шары. С помощью двух взвешиваний на чашечных весах определите все лёгкие и все тяжёлые шары.
Задача на взвешивание VI
Имеется девять мешков: восемь с песком и один – с золотом. Мешок с золотом только чуть тяжелее. Вам даётся два взвешивания на чашечных весах, чтобы найти мешок с золотом.
Задача на взвешивание VII
Имеется 27 теннисных шариков. 26 весят одинаково, а 27-й чуть потяжелее.
Какое минимальное количество взвешиваний на чашечных весах гарантирует нахождение тяжёлого шарика?
Задача на взвешивание VIII
Купец уронил 40-фунтовую гирю, и она раскололась на 4 неравные части. Когда эти части взвесили, то оказалось, что вес каждой из них (в фунтах) – целое число. Более того, с помощью этих частей можно было взвесить на чашечных весах любой вес (представляющий собой целое число) до 40 фунтов.
Сколько весила каждая часть?
Песочные часы I
Как отмерить 9 минут с помощью 7-минутных и 4-минутных песочных часов?
Песочные часы II
Учитель математики использовал необычный метод измерения времени, отведённого на экзамен. У него были 7-минутные и 11-минутные песочные часы. И чтобы отмерить 15 минут, он переворачивал часы только 3 раза. Объясните как.
(Примечание: одновременное переворачивание обоих часов можно считать за одно переворачивание.)
Бикфордовы шнуры
Имеется два огнепроводных шнура, каждый из которых сгорает ровно за час. Однако шнуры горят неравномерно – некоторые их части горят быстрее, а некоторые медленнее.
Как с помощью этих шнуров отмерить ровно 45 минут?
Девиз
Я не знаю каким оружием будут сражаться в 3-й мировой войне, но в 4-й мировой войне будут сражаться палками и камнями.
Альберт Эйнштейн
Источник
ТЕМА № 6 «Задачи на переливание»
Задачи на переливание — один из видов старинных задач. Они возникли много веков назад, но до сих пор вызывают интерес у любителей математики и их часто можно встретить в олимпиадных заданиях для 5–6-х классов. Однако данный вид логических задач целесообразно рассматривать и с учащимися среднего звена (7-8 классы).
Суть этих задач сводится к следующему: имея несколько сосудов разного объема, один из которых наполнен жидкостью, требуется разделить ее в каком-либо отношении или отлить какую-либо ее часть при помощи других сосудов за наименьшее число переливаний.
В задачах на переливания требуется указать последовательность действий, при которой осуществляется требуемое переливание и выполнены все условия задачи. Если не сказано ничего другого, считается, что
– все сосуды без делений,
– нельзя переливать жидкости “на глаз”
– невозможно ниоткуда добавлять жидкости и никуда сливать.
Мы можем точно сказать, сколько жидкости в сосуде, только в следующих случаях:
Ø знаем, что сосуд пуст,
Ø знаем, что сосуд полон, а в задаче дана его вместимость,
Ø в задаче дано, сколько жидкости в сосуде, а переливания с использованием этого сосуда не проводились
Ø в переливании участвовали два сосуда, в каждом из которых известно, сколько было жидкости, и после переливания вся жидкость поместилась в один из них
Ø в переливании участвовали два сосуда, в каждом из которых известно, сколько было жидкости, известна вместимость того сосуда, в который переливали, и известно, что вся жидкость в него не поместилась: мы можем найти, сколько ее осталось в другом сосуде.
Чаще всего используются словесный способ решения (т. е. описание последовательности действий) и способ решения с помощью таблиц, где в первом столбце (или строке) указываются объемы данных сосудов, а в каждом следующем — результат очередного переливания. Таким образом, количество столбцов (кроме первого) показывает количество необходимых переливаний.
Рассмотрим задачи.
Задача № 1. Отмерить 3 л, имея сосуд 5 л.
Какое наименьшее число переливаний потребуется для того, чтобы в четырехлитровую кастрюлю с помощью крана и пятилитровой банки налить 3 литра воды?
Наливаем кастрюлю.
Переливаем воду из кастрюли в банку.
Наливаем кастрюлю.
Доливаем полную банку, и в кастрюле остается 3 литра.
Задача № 2. Винни-Пух и пчелы.
Однажды Винни-Пух захотел полакомиться медом и пошел к пчелам в гости. По дороге нарвал букет цветов, чтобы подарить труженицам пчелкам. Пчелки очень обрадовались, увидев мишку с букетом цветов, и сказали: «У нас есть большая бочка с медом. Мы дадим тебе меда, если ты сможешь с помощью двух сосудов вместимостью 3 л и 5 л налить себе 4 л!» Винни-Пух долго думал, но все-таки смог решить задачку. Как он это сделал?
Как в результате можно получить 4 л? Нужно из 5-литрового сосуда отлить 1 л. А как это сделать? Нужно в 3-литровом сосуде иметь ровно 2 л. Как их получить? – Из 5-литрового сосуда отлить 3 л.
Решение лучше и удобнее оформить в виде таблицы:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 |
5 л | 5 | 2 | 2 | – | 5 | 4 |
3 л | – | 3 | – | 2 | 2 | 3 |
Наполняем из бочки 5-литровый сосуд медом (1 шаг). Из 5-литрового сосуда отливаем 3 л в 3-литровый сосуд (2 шаг). Теперь в 5-литровом сосуде осталось 2 литра меда. Выливаем из 3-литрового сосуда мед назад в бочку (3 шаг). Теперь из 5-литрового сосуда выливаем те 2 литра меда в 3-литровый сосуд (4 шаг). Наполняем из бочки 5-литровый сосуд медом (5 шаг). И из 5-литрового сосуда дополняем медом 3-литровый сосуд. Получаем 4 литра меда в 5-литровом сосуде (6 шаг). Задача решена.
Поиск решения можно было начать с такого действия: к трем литрам добавить 1 литр. Но тогда решение будет выглядеть следующим образом:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
5 л | – | 3 | 3 | 5 | – | 1 | 1 | 4 |
3 л | 3 | – | 3 | 1 | 1 | – | 3 | – |
Задача № 3. Бэтмен и Человек-Паук.
Бэтмен и Человек-Паук никак не могли определить, кто из них самый главный супергерой. Что только они не делали: отжимались, бегали 100 метровку, подтягивались – то один победит, то другой. Так и не разрешив свой спор, отправились они к мудрецу. Мудрец подумал и сказал: «Самый главный супергерой – это не тот, кто сильнее, а тот, кто сообразительнее! Вот, кто решит первым задачу, тот и будет самым-самым! Слушайте: имеются два сосуда вместимостью 8 л и 5 л. Как с помощью этих сосудов налить из источника 7 л живой воды?» Помогите вашему любимому герою решить эту задачу.
Ход рассуждений таков:
Как в результате получить 7 литров? – Нужно к 5 литрам долить 2 л. А где их взять? – Из 5-литрового сосуда отлить 3 л. А как их получить? В 8-литровый перелить из 5-литрового 5 литров, потом еще три.
Решение задачи показано в таблице:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 л | – | 5 | 5 | 8 | – | 2 | 7 |
5 л | 5 | – | 5 | 2 | 2 | 5 | – |
Задача № 4. Парное молоко.
Бидон емкостью 10 л наполнен парным молоком. Требуется перелить из этого бидона 5 л молока в семилитровый бидон, используя при этом трехлитровый бидон.
Решение:
Будем “шаги” переливаний записывать в виде строки из трех чисел.
При этом сосуды размещены слева направо по мере убывания их вместимости:
Шаги | Бидон | ||
10 л | 7 л | 3 л | |
1-й | 3 | 7 | |
2-й | 3 | 4 | 3 |
3-й | 6 | 4 | |
4-й | 6 | 1 | 3 |
5-й | 9 | 1 | |
6-й | 9 | 1 | |
7-й | 2 | 7 | 1 |
8-й | 2 | 5 | 3 |
Задача № 5. Деление 10 л поровну, имея сосуды 3, 6 и 7 л.
Разделить на 2 равные части воду, находящуюся в 6-литровом сосуде (4 л) и в 7-литровом (6 л), пользуясь этими и 3-литровым сосудами. Какое наименьшее количество переливаний потребуется?
В скобках – второй вариант решения.
Сосуд 6 л | Сосуд 3 л | Сосуд 7 л | |
До переливания | 4 | 6 | |
Первое переливание | 1 (4) | 3 (3) | 6 (3) |
Второе переливание | 1 (6) | 2 (1) | 7 (3) |
Третье переливание | 6 (2) | 2 (1) | 2 (7) |
Четвертое переливание | 5 (2) | 3 (3) | 2 (5) |
Пятое переливание | 5 (5) | 0 (0) | 5 (5) |
Задача № 6. Молоко из Простоквашино.
Дядя Федор собрался ехать к родителям в гости и попросил у кота Матроскина 4 л простоквашинского молока. А у Матроскина только 2 пустых бидона: трехлитровый и пятилитровый. И восьмилитровое ведро, наполненное молоком. Как Матроскину отлить 4 литра молока с помощью имеющихся сосудов?
Переливаем из 8-литрового ведра 5 литров молока в 5-литровое. Переливаем из 5-литрового бидона 3 литра в 3-литровый бидон.
Переливаем их теперь в 8-литровое ведро. Итак, теперь 3-литровое ведро пусто, в 8-литровом 6 литров молока, а в 5-литровом – 2 литра молока.
Переливаем 2 литра молока из 5-литрового бидона в 3-литровый, а потом наливаем 5 литров из 8-литрового ведра в 5-литровый бидон. Теперь в 8-литровом 1 литр молока, в 5-литровом – 5, а в 3-литровом – 2 литра молока.
Доливаем дополна 3-литровый бидон из 5-литрового и переливаем эти 3 литра в 8-литровое ведро. В 8-литровом ведре стало 4 литра, так же, как и в 5-литровом бидоне. Задача решена.
сосуд 8 л | сосуд 5 л | сосуд 3 л | |
До переливания | 8 | ||
Первое переливание | 3 | 5 | |
Второе переливание | 3 | 2 | 3 |
Третье переливание | 6 | 2 | |
Четвертое переливание | 6 | 2 | |
Пятое переливание | 1 | 5 | 2 |
Шестое переливание | 1 | 4 | 3 |
Седьмое переливание | 4 | 4 |
После переливания, оказалось, по 4 л молока в 8-литровом и 5-литровом сосудах, а это и требовалось.
Задача № 7. Набрать 7 л воды из речки.
У подножья высокого холма, на берегу тихой речки был небольшой аул. Жили в нем два брата-охотника. Старшего брата звали Каалка, младшего Копчон. Отправляет старший брат младшего за водой и дает ему два бурдюка, вместимостью 8л и 5л и просит принести ровно 7л воды. Сможет ли Копчон выполнить просьбу старшего брата?
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
8л | – | 5 | 5 | 8 | – | 2 | 7 |
5л | 5 | – | 5 | 2 | 2 | 5 | – |
Задача № 8. Том Сойер.
Тому Сойеру нужно покрасить забор. Он имеет 12 л краски и хочет отлить из этого количества половину, но у него нет сосуда вместимостью в 6 л. У него 2 сосуда: один – вместимостью в 8 л, а другой – вместимостью в 5 л. Каким образом налить 6 л краски в сосуд на 8 л? Какое наименьшее число переливаний необходимо при этом сделать?
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
12 л | 12 | 4 | 4 | 9 | 9 | 1 | 1 | 6 |
8 л | – | 8 | 3 | 3 | – | 8 | 6 | 6 |
5 л | – | – | 5 | – | 3 | 3 | 5 | – |
Задача № 9. Губка Боб.
Губке Бобу срочно нужно налить из водопроводного крана 6 л воды. Но он имеет лишь два сосуда 5-литровый и 7-литровый. Как ему это сделать?
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
7 л | 7 | 2 | 2 | – | 7 | 4 | 4 | – | 7 | 6 |
5 л | – | 5 | – | 2 | 2 | 5 | – | 4 | 4 | 5 |
Существенным недостатком табличного способа решения является отсутствие четкого алгоритма действий, невозможность предвидеть ближайшие шаги. Составлять такие таблицы можно довольно долго, так и не придя к нужному результату.
Механизировать решение этих задач с помощью «умного» шарика предложил в книге «Занимательная геометрия». Для каждого случая предлагалось строить бильярдный стол особой конструкции, длины двух сторон которого численно равны объему двух меньших сосудов. Далее, из острого угла этого стола вдоль одной из сторон нужно «запустить» шарик, который по закону «угол падения равен углу отражения» будет сталкиваться с бортами стола, показывая тем самым последовательность переливаний. На бортах стола нанесена шкала, цена деления которой соответствует выбранной единице объема. В результате движения шарик либо ударяется о бортик в нужной точке (тогда задача имеет решение), либо не ударяется (тогда считается, что задача решения не имеет).
Предложим еще один способ решения задач на переливание — с помощью векторов. Построим прямоугольную систему координат хОу (для решения потребуется только первая четверть). На оси Ох отметим точки, координаты которых кратны объему а одного из двух меньших сосудов. Через отмеченные точки проведем пунктиром прямые х = а, х = 2а, …, х = kа.
Эти прямые покажут нам, что сосуд объемом а полон и его нужно опорожнить. На оси Оу отметим точку, координата которой численно равна объему второй из меньших емкостей, то есть b. Проведем через нее пунктирную прямую у = b, которая поможет нам определить точки очередного наполнения второго сосуда. Наполнение емкости, объем которой отметили на оси Оу, будем показывать векторами, направленными вертикально вниз. Переливание из этого сосуда в тот, объем которого указан на оси Ох, изобразим векторами, направленными по диагонали вниз. И, наконец, опорожнение последней емкости будет выглядеть в виде вектора, направленного вертикально вверх. Для контроля рядом с концами векторов будем записывать остаток или то, что перелили. Если искомое число получим на оси Ох, то это количество жидкости, накопленной в сосуде объема а, если оно окажется на одной из вертикальных линий, то необходимая величина находится в сосуде объема b. Начерченные векторы являются последовательными шагами решения задачи.
Для примера решим задачу:
Разделить содержимое наполненной бочки в 12 ведер пополам при помощи бочек в 9 и 7 ведер.
Построим прямоугольную систему координат так, как описано выше. Вертикальный вектор, направленный вниз к метке 9 — это первый шаг: наполнение 9-ведерной бочки. Вектор 9–2 по диагонали вниз — переливание воды из 9-ведерной в 7-ведерную бочку. Метка 2 означает, что в средней (9-ведерной) бочке осталось 2 ведра воды. Так как меньшая емкость полна (мы дошли до пунктирной линии), то ее следует опорожнить, то есть вылить содержимое в 12-ведерную бочку — вектор направлен вертикально вверх. Следующий ход — вылить оставшиеся в средней бочке 2 ведра воды в меньшую (вектор 2–2). Поскольку вектор показывает на ось Ох, то это означает, что 9-ведерная бочка пуста, ее нужно вновь наполнить (вектор направлен вертикально вниз до метки 9). Продолжаем при помощи средней бочки наполнять меньшую (вектор по диагонали), оценивая каждый раз при наполнении одной из них содержимое другой и указывая оставшееся число ведер рядом с концом вектора. Продолжая действовать таким образом, скоро обнаруживаем в средней бочке необходимые 6 ведер воды. Эту задачу можно решить иначе, поменяв местами обозначения для 7- и 9-ведерной бочек на координатных осях. Тогда решение достигается с помощью большего количества шагов.
Проанализировав решение задачи, приходим к выводу, что задачу можно решить, если выполняется равенство: с =│nа – mb│, где с — искомое количество жидкости, а и b — данные объемы двух меньших сосудов, n и m — количество наполнений сосудов с объемом соответственно а и b.
Источник
Занимательные задачи являются одним из самых мощных инструментов развития человеческого интеллекта. (Иоханнес Леман)
Задачи на переливание – один из видов старинных логических задач. Они возникли много веков назад, но до сих пор вызывают интерес у любителей математики и их часто можно встретить в олимпиадных заданиях для 5–6-х классов. Суть этих задач сводится к следующему: с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости за наименьшее число переливаний.
В задачах на переливания требуется указать последовательность действий, при которой осуществляется требуемое переливание и выполнены все условия задачи. Если не сказано ничего другого, считается, что все сосуды без делений и нельзя переливать жидкости «на глаз». Чаще всего используются словесный способ решения (т.е. описание последовательности действий) и способ решения с помощью таблиц, где в первом столбце (или строке) указываются объемы данных сосудов, а в каждом следующем – результат очередного переливания.
Задача 1. Имеются два сосуда вместимостью 3 л и 5 л. Как с помощью этих сосудов налить из водопроводного крана 4 л воды?
Решение:
Начнём с конца. Как в результате можно получить 4 л? – Из 5-литрового сосуда отлить 1 л. Как это сделать? – Надо в 3-литровом сосуде иметь ровно 2 л. Как их получить? – Из 5-литрового сосуда отлить 3 л. Теперь запишем решение задачи в виде таблице.
Ходы | 1 | 2 | 3 | 4 | 5 | 6 |
5л | 5 | 2 | 2 | 5 | 4 | |
3л | 3 | 2 | 2 | 3 |
Поиск решения можно было начать с действия 3 + 1, что привело бы к решению, записанному в следующей таблице.
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
5л | 3 | 3 | 5 | 1 | 1 | 4 | ||
3л | 3 | 3 | 1 | 1 | 3 |
Из чисел 3 и 5 можно составить выражения, имеющие значение 4: 5 – 3 + 5 – 3 = 4 и 3 + 3 – 5 + 3 = 4. Несложно убедиться, что полученные выражения соответствуют найденным выше решениям.
Задача 2. Имеются два сосуда вместимостью 8 л и 5 л. Как с помощью этих сосудов налить из водопроводного крана 7 л воды?
Решение:
Ход рассуждений таков: Как в результате получить 7 литров? – Нужно к 5 литрам долить 2 л. А где их взять? – Из 5-литрового сосуда отлить 3 л. А как их получить? В 8-литровый перелить из 5-литрового 5 литров, потом еще три. Решение задачи показано в таблице:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
8л | 5 | 5 | 8 | 2 | 7 | ||
5л | 5 | 5 | 2 | 2 | 5 |
Задача 3. Имеются два сосуда вместимостью 7 л и 3 л. Как с помощью этих сосудов налить из водопроводного крана 5 л воды?
Решение:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
7л | 3 | 3 | 6 | 6 | 7 | 2 | 2 | 5 | ||
3л | 3 | 3 | 3 | 2 | 2 | 3 |
Задача 4. Как, имея лишь два сосуда вместимостью 5 л и 7 л, налить из водопроводного крана 6 л воды?
Решение.
Решение задачи задается числовым выражением (7 – 5) + (7 – 5) + (7 – 5).
Задача 5. Имеются два типа песочных часов. Одни отмеряют 7 мин, а другие – 11 мин. Как с их помощью отмерить 15 мин, необходимых, чтобы сварить вкрутую яйцо?
Решение:
15 = (11 – 7) + 11. Нужно одновременно перевернуть часы, через 7 минут Гарри начинаем варить зелье. После 4 минут (песок в часах на 11 минут закончится) вновь перевернуть часы на 11 минут. Задача решена.
Задача 6. Имеются 6-литровая банка сока и две пустые банки: трёх- и четырёхлитровая. Как налить 1 литр сока в трёхлитровую банку?
Решение:
Ходы | 1 | 2 | 3 | 4 | |
6л | 6 | 2 | 2 | 5 | 5 |
4л | 4 | 1 | 1 | ||
3л | 3 | 1 |
Задача 7. Летом Винни-Пух сделал запас меда на зиму и решил разделить его пополам, чтобы съесть половину до Нового Года, а другую половину – после Нового года. Весь мед находится в ведре, которое вмещает 6 литров, у него есть 2 пустые банки – 5-литровая и 1-литровая. Может ли он разделить мед так, как задумал?
Решение:
Ходы | 1 | 2 | 3 | 4 | 5 | |
6л | 6 | 1 | 1 | 2 | 2 | 3 |
5л | 5 | 4 | 4 | 3 | 3 | |
1л | 1 | 1 |
Задача 8. Как из полного сосуда ёмкостью в 12 л отлить половину, пользуясь двумя пустыми сосудами ёмкостью в 8 л и 5 л?
Решение:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | |
12л | 12 | 4 | 4 | 9 | 9 | 1 | 1 |
8л | 8 | 3 | 3 | 8 | 6 | ||
5л | 5 | 3 | 3 | 5 |
Задача 9. В первый сосуд входит 8 л, и он наполнен водой. Имеются еще 2 пустых сосуда емкостью 5 л и 3 л. Как с помощью этих сосудов отмерить ровно 1 л?
Решение:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | |
8л | 8 | 3 | 3 | 6 | 1 | 1 | 4 |
5л | 5 | 2 | 2 | 5 | 4 | 4 | |
3л | 3 | 2 | 4 |
Задача 10. Как набрать из реки 6 л воды, если имеется 2 ведра, ёмкостью в 9 л и 4 л?
Решение:
Ходы | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
4л | 4 | 4 | 1 | 1 | 4 | |||
9л | 9 | 2 | 5 | 1 | 1 | 9 | 6 | |
река | 4 | 4 | 8 | 8 | 8 | 8 |
Задача 11. Имеются три бочонка кваса, вместимостью 6 вёдер, 3 ведра и 7 вёдер. В первом и третьем содержится соответственно 4 и 6 вёдер кваса. Требуется только тремя бочонками, разделить квас поровну.
Решение:
Ходы | 1 | 2 | 3 | 4 | 5 | |
6 ведер | 4 | 1 | 1 | 6 | 5 | 5 |
3 ведра | 3 | 2 | 2 | 3 | ||
7 ведер | 6 | 6 | 7 | 2 | 2 | 5 |
Задача 12. Имеется стакан кофе и стакан молока. Ложку молока перелили в кофе, полученную смесь тщательно перемешали. Ложку смеси перелили обратно в молоко. Чего больше: молока в кофе или кофе в молоке?
Замечание: Если у вас нет идеи решения, то попробуйте решить задачу. Считая для простоты, что в стаканах было по 100 г фоке и молока, а в ложке 10 г жидкости. Полученный ответ позволит сделать предположение для общего случая, только это предположение еще надо обосновать.
Литература
1. Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка. – М.: Просвещение, 1988.
2. Русанов В.Н. Математические олимпиады младших школьников. –М.: Просвещение, 1990.
3. Шарыгин И.Ф. Математический винегрет. – М., Агенство «ОРИОН», 1991.
4. Шарыгин И.Ф. задачи на смекалку: Учеб. Пособие для 5-6 кл. общеобразоват. учреждений. – М.: Просвещение, 2003.
Источник