Замер уровня в сосудах

Замер уровня в сосудах thumbnail

Понятие уровень, единицы измерения.

В производственных процессах химической промышленности большое значение имеет контроль за уровнем жидкостей и твердых сыпучих материалов в технологических аппаратах, различных емкостях и в резервуарах.

Измерение уровня в технологических аппаратах.

Измерение уровня в технологических аппаратах позволяет контролировать в них вещества, необходимого для протекания технологических процессов в требуемом направлении. Запас вещества в аппаратах должен быть вполне определенным и значительное уменьшение или увеличение его по сравнению с номинальным значением может привести к нарушению производственного процесса. Измерение уровня в аппаратах производится обычно в относительно небольшом диапазоне его измерения, причем высокая точность при измерении не требуется. Необходимо следить лишь за тем, чтобы уровень вещества не был больше или меньше допустимых значений.

Измерение уровня в емкостях и резервуарах.

Измерение уровня в емкостях и резервуарах производится с целью учета количества находящегося в них вещества. В резервуарах больших размеров приходится измерять уровень, изменяющийся в большом диапазоне. Кроме того, точность измерения уровня должна быть достаточно высокой.

– Уровень измеряется в единицах длины – метрах. На заводе его часто измеряют в %.

– Измерение уровня вещества дает возможность, как уже говорилось выше, производить расчет количества и массы вещества для его учета.

Определение количества жидкости или сыпучих материалов.

При постоянном по высоте сечении емкости (резервуара) объем продукта может быть получен умножением площади поперечного сечения на значение уровня вещества, поэтому измерение объема здесь сводится к измерению уровня.

При переменной площади поперечного сечения резервуара по высоте надо знать зависимость этой площади от высоты.

Определение массы вещества.

Измерение массы вещества производится путем определения его объема и измерения плотности вещества. Умножая объем на плотность, получают массу вещества. Это умножение производят или вручную или автоматически при помощи приборов.

Методы измерения уровня, приборы для его измерения.

В производстве для контроля уровня веществ применяют различные уровнемеры, работающие на различных методах измерения уровня.

1. Уровнемеры с визуальным отсчетом;

2. Буйковые и поплавковые уровнемеры;

3. Гидростанические уровнемеры;

4. Дифманометрические уровнемеры;

5. Радиоактивные уровнемеры;

6. Уровнемеры раздела фаз;

7. Акустические уровнемеры;

8. Емкостные;

9. Уровнемеры сыпучих веществ.

Уровнемеры с визуальным отсчетом.

Самый простой способ измерения уровня, основанный на методе сообщающихся сосудов. То есть к технологическому аппарату через запорные вентили подключается стеклянная трубка, по которой и наблюдается столб жидкости.

Недостатки: имеется возможность загрязнения трубки, вплоть до полного исчезновения видимости уровня, а также возможность образования воздушных пузырьков внутри стеклянной трубки, что устраняется с помощью дренажного вентиля.

Применяется для контроля уровня жидких и прозрачных веществ по месту.

Буйковые и поплавковые уровнемеры.

у2

Нашли широкое применение для измерения уровня жидкости, как в технологических аппаратах, так и в резервуарах у нас на предприятии.

у1Принцип действия основан на возникновении выталкивающей силы при погружении поплавка или буйка в жидкость (закон Архимеда), которая либо преобразуется в стандартный токовый сигнал 4-20 мА, либо пневматический 0.2-1.0 кгс/см2 для последующей передачи информации на вторичные приборы, по которым оператор наблюдает показания уровня. Гораздо реже можно встретить поплавковые уровнемеры типа УДУ с контролем показаний по месту.

Среди буйковых уровнемеров широко используются такие как Сапфир ДУ, Fischer, имеющие стандартный токовый выходной сигнал 4-20 мА, работающие в комплекте с электронными вторичными приборами, как Ш-711, Ремиконт, МОД-30, дающими возможность не только наблюдать уровень, но и получить сигнализацию и блокировку по различным уставкам с помощью дополнительных устройств, таких как УАС, УЗС.

у3

При работе в зимнее время эти уровнемеры нуждаются в обогреве по причине возможности образования наледи, как на внутренних элементах самого прибора, так и в направляющей трубе, в которой находится буек, возникающей при колебаниях температуры, как продукта, так и окружающей среды.

Среди поплавковых уровнемеров применение нашли УБП, УДУ, имеющие стандартный выходной сигнал 0.2-1.0 кгс/см2, работающие в комплекте с вторичными приборами типа ПВ10.1, ППВ1.1. Эти приборы не нуждаются в обогреве. В настоящее время на заводе ведется замена устаревших пневматических приборов КИП на более современные приборы, имеющие лучшие характеристики точности показаний и дающие больше возможностей по обработке информации от датчиков.

Читайте также:  Имеется сосуд разделенный перегородкой

Одним из таких приборов является уровнемер ENRAF голландской фирмы. Точность измерения уровня составляет 0.1 мм. Это очень чувствительный прибор-преобразователь силы. Он постоянно взвешивает вес поплавка и сравнивает с уставкой, которая представляет собой вес поплавка минус выталкивающая сила. Если вес поплавка равен уставке, то прибор считает, что поплавок на уровне.

Прибор показал надежную работу на предприятии. Основные эксплуатационные требования: обогрев в зимнее время на резервуарах, где продукт – газ, а также отсутствие ударов вибраций и т. п. из-за которых выходит из строя чувствительный элемент или прибор сбивается. При остановке резервуара на ремонт необходимо перед демонтажем прибора: поднять поплавок, отключить питание 220в, заблокировать прибор механически.

Уровень раздела фаз.

Принцип действия основан на разных электропроводностях жидкостей. В емкость устанавливается электрод, который кабелем соединяется с вторичным прибором Ф-70. В качестве 2-го электрода используется сам корпус емкости. Применяется для разделения 2-х фаз электропроводной воды, от неэлектропроводной, с последующим отводом воды из емкости. Важным условием нормальной работы прибора является обеспечение герметичности конструкции электродов.

Гидростатические уровнемеры.

у4

Гидростатический метод измерения уровня основан на том, что в жидкости существует гидростатическое давление, пропорциональное уровню, которое преобразуется в стандартный токовый сигнал 4-20 мА. Прибор нуждается в обогреве в зимнее время. Пример: Сапфир ДГ.

Дифманометрические уровнемеры.

у6

Применяются для измерения уровня жидкости, как под атмосферным, так и под избыточным давлением. Каждому значению уровня жидкости в емкости соответствует определенный перепад давления, который измеряется прибором. Прибор нуждается в обогреве в зимнее время. Давление в аппарате не влияет на результат измерения, т. к. оно одинаково воздействует на «+» и «-» камеры. При работе на агрессивных средах, трубки между аппаратом и разделительными сосудами продувают воздухом или инертным газом.

Акустические уровнемеры. ( Ультразвуковые)у8

Принцип действия основан на локализации уровня звуковыми импульсами, проходящими через газовую среду, отходящую над контролируемой жидкостью и явлении отражения этих импульсов от границы раздела. Разновидностью ультразвукового уровнемера являются радарные уровнемеры типа APEX, обладающие высокой точностью, надежностью и возможностью эксплуатации в различных средах.

Радиоактивные уровнемеры.

Действие таких уровнемеров основано на поглощении γ – лучей при прохождении через слой вещества. Уровнемеры УР-8 используются для измерения уровня жидкостей и твердых сыпучих материалов

.у9

Емкостные уровнемеры.

у10Принцип действия емкостных уровнемеров основан на зависимости электрической емкости системы «электрод-измерительная среда» от изменения уровня.

Приборы типа ЭИУ предназначаются для измерения не только жидких, но и твердых сыпучих материалов. Для измерения уровня воды, аммиака, мазута, бензина, керосина и смазочных масел предназначены емкостные уровнемеры ЭИУ-1К, фирмы LABKO 2W

Измерение уровня сыпучих материалов.

Для измерения уровня сыпучих веществ могут применяться некоторые из рассмотренных выше уровнемеров. Кроме того, имеются специальные конструкции приборов.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 октября 2015; проверки требуют 15 правок.

Уровнемер – прибор, предназначенный для определения уровня содержимого в открытых и закрытых сосудах, резервуарах, хранилищах и других ёмкостях. Под содержимым подразумеваются разнообразные виды жидкостей, в том числе и газообразующие, а также сыпучие и другие материалы. Уровнемеры также называют датчиками/сигнализаторами уровня, преобразователями уровня. Главное отличие уровнемера от сигнализатора уровня – это возможность измерять градации уровня, а не только его граничные значения.

В промышленном производстве в настоящее время существует разнообразный ряд технических средств, решающих задачу измерения и контроля уровня. Средства измерения уровня реализуют разнообразные методы, основанные на различных физических принципах. К наиболее распространённым методам измерения уровня, которые позволяют преобразовать значение уровня в электрическую величину и передавать её значение в системы АСУ ТП, относятся:

Магниторезистивный уровнемер

  • контактные методы:
    • волноводный,
    • поплавковый,
    • емкостной,
    • гидростатический,
    • буйковый;
  • бесконтактные методы:
    • зондирование звуком,
    • зондирование электромагнитным излучением,
    • зондирование радиационным излучением.

Принцип измерения радарных уровнемеров

С развитием измерительной техники каждый метод приобретает характерный набор своих технических реализаций, которые в каждом конкретном случае имеют как преимущества, так и недостатки.

Читайте также:  Сосуды повышенное давление рвота

Бесконтактный (радарный) уровнемер[править | править код]

Непрерывное измерение уровня по радарному принципу основано на теории распространения электромагнитных волн британского физика Джеймса Максвелла, созданной им в 1865 году. Он предположил, что силовые линии меняющегося магнитного поля окружены кругообразными силовыми линиями электрического поля, даже при отсутствии электрических проводников. Вдохновлённый этой теорией, немецкий физик Кристиан Хюльсмайер в 1904 году в Дюссельдорфе разработал телемобилоскоп и запатентовал этот первый радарный прибор. Благодаря этому устройству он стал известен как изобретатель первого радара.

Принцип измерения[править | править код]

Измерение уровня молока на стерильных танках хранения

Излучаемый сигнал отражается от поверхности измеряемой среды и с небольшой временной задержкой t принимается антенной. Используемый радарный принцип называется FMCW (непрерывное частотно-модулированное излучение). При радарном FMCW измерении используется высокочастотный сигнал, частота излучения которого во время измерения линейно возрастает (так называемое качание частоты). Излучаемый сигнал отражается от поверхности измеряемой среды и принимается с небольшой временной задержкой t. Время задержки рассчитывается по формуле t=2d/c, где d – это дистанция до поверхности продукта, а c – это скорость света в газе над поверхностью среды. На основании частоты посланных и принятых сигналов рассчитывается разница Δf, используемая при дальнейшей обработке сигнала. Разница частот прямо пропорциональна дистанции. Большая разница между частотами соответствует большей дистанции, и наоборот. Разница частот Δf трансформируется в частотный спектр с помощью дискретного преобразования Фурье (ДПФ), на основании которого затем рассчитывается дистанция. Уровень рассчитывается как разница между высотой резервуара и полученной дистанцией.

Ультразвуковой уровнемер[править | править код]

Ультразвуковые уровнемеры используются для непрерывного измерения уровня жидкостей и сыпучих веществ практически во всех отраслях промышленности.

Принцип измерения[править | править код]

Ультразвуковой уровнемер в эксплуатации на лотке Паршаля

Короткие ультразвуковые импульсы в диапазоне от 18 до 70 кГц излучаются сенсором в направлении измеряемой среды, отражаются от её поверхности и снова улавливаются сенсором. Импульсы распространяются со скоростью звука, при этом время между моментом излучения и приёма сигнала зависит от уровня заполнения резервуара. Новейшая микропроцессорная технология и зарекомендовавшее себя программное обеспечение гарантируют надёжное обнаружение эхо-сигнала уровня даже при наличии ложных эхо-сигналов, отражённых от внутренних конструкций, и высокоточное вычисление дистанции до поверхности измеряемой среды. Чтобы компенсировать влияние времени прохождения акустического сигнала, встроенный температурный датчик определяет температуру в резервуаре.

Благодаря простому вводу габаритных размеров ёмкости и измеренной дистанции рассчитывается сигнал, пропорциональный уровню. Таким образом, отсутствует необходимость в заполнении ёмкости для выполнения точной настройки.

Метод непрерывного ультразвукового измерения уровня доказал свою эффективность. Ультразвуковые уровнемеры подходят для измерения дождевой и сточной воды, для жидкостей с низким или высоким уровнем загрязнения, с содержанием твёрдых частиц или шлама. Само собой разумеется, что при работе с сыпучими веществами к измерительному прибору предъявляются другие требования, чем при работе с жидкостями. Ведь поверхность измеряемого продукта при этом неровная и часто представляет собой насыпной конус. Многие вещества вызывают интенсивное образование пыли. Кроме того, многие резервуары для сыпучих веществ намного выше, чем ёмкости для жидкостей.

Принцип рефлекс-радарного измерения уровня

Рефлекс-радарный уровнемер[править | править код]

Принцип измерения[править | править код]

Принцип измерения рефлекс-радарного TDR уровнемера основан на проверенной технологии рефлектометрии интервала времени (TDR). При данном способе измерений электромагнитные импульсы малой мощности посылаются по стержневому или кабельному волноводу каждую наносекунду. Эти импульсы движутся со скоростью света. Достигнув поверхности измеряемого продукта, импульсы отражаются, а интенсивность отражения зависит от диэлектрической постоянной продукта εr (например, от поверхности воды отражается до 80% от уровня первоначального импульса). Прибор измеряет время между моментами излучения сигнала и получения отражённого сигнала: Половина этого времени соответствует расстоянию между точкой отсчёта в приборе (уплотнительная поверхность фланца) и поверхностью измеряемой среды. Это временное значение преобразуется в выходной токовый сигнал 4…20 мА и/или дискретный сигнал. Пыль, пена, испарения, неспокойная поверхность, кипящие жидкости, изменения давления, температуры и плотности не влияют на работу прибора.

Поплавковый уровнемер[править | править код]

Принцип измерения[править | править код]

Принцип работы поплавкового уровнемера

Магнитный байпасный индикатор уровня функционирует по принципу сообщающихся сосудов. Измерительная камера устанавливается вплотную к ёмкости таким образом, чтобы условия в измерительной камере и в ёмкости были одинаковыми. Поплавок оснащён cистемой постоянных магнитов, предназначенных для передачи измеренных значений на локальный индикатор. Система магнитов поплавка либо активирует магнитные пластины (флажковый индикатор) в соответствии с уровнем жидкости, либо перемещает магнитный указатель в индикаторе в зависимости от выбранного способа индикации. Индикация уровня осуществляется посредством изменения положения группы вертикально расположенных магнитных флажков или исходя из положения магнитного указателя.

Читайте также:  Выпуклые сосуды на руках

Буйковый уровнемер[править | править код]

Принцип измерения[править | править код]

Индикатор уровня работает по принципу вытеснения. Согласно этому принципу длина тела, погружённого в жидкость, соответствует диапазону измерения уровня. Подвешенный на измерительной пружине стержень-вытеснитель погружён в жидкость, и на него в соответствии с законом Архимеда воздействует выталкивающая сила, пропорциональная массе вытесненной телом жидкости. Изменению выталкивающей силы точно соответствует изменение длины пружины, что позволяет измерить уровень. Изменение длины пружины преобразуется при помощи магнитной системы в изменение уровня и передаётся на индикатор.

Расчетная схема[править | править код]

Буек закреплен на упругой подвеске с жесткостью с, действующей на буек с определенным усилием. Увеличивая уровень на Н от нулевого положения 00, увеличиваем выталкивающую силу, что вызывает подъём буйка на х, причём при его подъёме увеличивается осадка, т.е. х < h. При этом изменяется усилие, с которым подвеска действует на буек, причём изменение равно изменению выталкивающей силы, вызванной увеличением осадки буйка на (h – х): хс = (h – х)ρ жgF – (h- х)ρ гgF, где с – жесткость подвески; ρ ж, ρ г – плотность жидкости и газа; F- площадь поперечного сечения буйка. Отсюда легко получить выражение для статической характеристики буйкового уровнемера: x = h/(1 + с(ρ ж – ρ г)gF). Таким образом, статическая характеристика буйкового уровнемера линейна, причём чувствительность его может быть изменена за счет увеличения F или уменьшения жесткости подвески с. При большой жесткости подвески буек перемещаться не будет, однако при изменении уровня изменится усилие, с которым он действует на подвеску. В этом случае при увеличении уровня на h изменение усилия равно hF(ρ ж – ρ г)g. Такой принцип используется, например, в буйковых уровнемерах типов Сапфир-22ДУ, УБ-Э, ПИУП (ранее УБ-П). Последние уровнемеры снабжены преобразователями с силовой компенсацией (УБ-Э) с унифицированным токовым выходным сигналом, УБ-П и ПИУП с унифицированным пневматическим выходным сигналом).

Гидростатический уровнемер[править | править код]

Основным принципом действия данных уровнемеров является измерение гидростатического давления, оказываемого жидкостью. Существует три основных типа гидростатических уровнемеров – погружные, врезные и фланцевые, выделяемые по типу присоединения к процессу. Так же, так как этот фактор обуславливает специальные требования к материалам, из которых изготовлен прибор, имеет смысл выделять гидростатические уровнемеры по типу измеряемых сред: неагрессивная к нержавеющей стали, агрессивная к нержавеющей стали, пульпообразная, густая и абразивная среды. При выборе метода измерения уровня, следует учитывать, что корректные измерения гидростатическими датчиками возможны только в средах с постоянной плотностью, так как гидростатическое давление зависит от плотности жидкости и величины уровня. При необходимости решения задачи измерения уровня в средах с меняющейся плотностью, возможна установка двух датчиков уровня. Один прибор устанавливается в емкость для отбора пробы. В емкости обеспечивается постоянный уровень и уровнемер измеряет плотность, а данные со второго (собственно уровнемера) пересчитываются в контроллере с учетом текущей плотности среды, с которого уже скорректированный сигнал поступает в верхний уровень.

Достоинства:

  • простота монтажа и обслуживания;
  • высокая надежность;
  • гидростатические уровнемеры отлично работают с вязкими жидкостями и при большом избыточном давлении.
  • точность;
  • реализация метода не предполагает использования подвижных механизмов;

Недостатки:

  • движение жидкости вызывает изменение давления и приводит к ошибкам измерения (давление относительно плоскости отсчёта зависит от скорости потока жидкости – следствие закона Беррнулли);
  • атмосферное давление должно быть скомпенсировано;
  • изменение плотности жидкости может быть причиной ошибки измерения.
  • чувствительный элемент находится в непосредственном контакте с измеряемой средой, что требует для датчиков специальных материалов, существенно сужая область их использования.

Источник