Зависимость толщины стенки сосуда от давления
Обновлено: 21.05.2018 11:30
Опубликовано: 28.03.2016 16:17
Калькулятор онлайн рассчитывает минимальную расчетную толщину стенки и исполнительную толщину стенки цилиндрической обечайки согласно ГОСТ-52857.2-2007 [1].
Исходные данные: | ||
Расчетное внутреннее давление p, МПа | ||
Расчетная температура стенки T, °С | ||
Внутренний диаметр обечайки D, мм | ||
Тип материала | углеродистая сталь хромистая сталь сталь аустенитного класса сталь аустенито-ферритного класса алюминий и его сплавы медь и ее сплавы титан и его сплавы | |
Марка материала | ||
Прибавка для компенсации коррозии и эрозии c1, мм | ||
Прибавка для компенсации минусового допуска c2, мм | ||
Прибавка для компенсации утонения стенки при технологических операциях c3, мм | ||
Коэффициент прочности продольного сварного шва φр | ||
Определение вспомогательных переменных: | ||
Допускаемое напряжение [σ], МПа | определение допускаемого напряжения – стандарное значение [σ] = – пользовательское значение | |
Сумма прибавок к расчетной толщине, мм | идет расчет суммы прибавок к расчетной толщине | |
Решение: | ||
Расчетная толщина стенки, мм | идет определение расчетной толщины стенки обечайки | |
Исполнительная толщина стенки, мм | идет расчет исполнительной толщины стенки обечайки | |
Проверка условия применения расчетных формул | идет расчет числа для проверки условий применимости идет проверка условия применения расчетных формул |
Помощь на развитие проекта premierdevelopment.ru
Send mail и мы будем знать, что движемся в правильном направлении.
Спасибо, что не прошели мимо!
I. Порядок действий при расчете минимальной толщины стенки обечайки:
- Для проведения расчета требуется ввести расчетное давление p, расчетную температуру T, внутренний диаметр D, соответствующие прибавки к толщине стенки c1, c2, c3 и коэффициент прочности продольного сварного шва, который как правило равен единице. Также необходимо выбрать марку материала, из которого будет изготовлена обечайка.
- По введенным данным программа автоматически вычисляет допускаемые напряжения для выбранного материала при расчетной температуре, согласно ГОСТ-52857.1-2007 или можно ввести свое значение. выбрав соответствующую опцию.
- В результате расчета программа в режиме онлайн выдает исполнительную и расчетную толщину стенки, а также проверяет условия применимости формул.
- На рисунке справа приведены необходимые размеры.
II. Примечание:
- Использование данного онлайн калькулятора позволяет рассчитать необходимую минимальную толщину стенки обечайки под действием внутреннего давления согласно ГОСТ-52857.2-2007 по известным величинам расчетного давления, расчетной температуры, внутреннего диаметра и марки материала.
- Допускаемые напряжения определены согласно ГОСТ-52857.1-2007.
Форум
Специалисты
О нас
Ссылка для цитирования в списке литературы: CAE-CUBE: [Электронный ресурс]. URL: https://premierdevelopment.ru/ (дата обращения ) | premierdevelopment.ru, все права защищены, 2015 - 2021 e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
Источник
Версия для печати
1.1. Расчетная температура
1.1.1. Расчетную температуру используют для определения физико-механических характеристик материала и допускаемых напряжений.
1.1.2. Расчетную температуру определяют на основании теплотехнических расчетов или результатов испытаний.
За расчетную температуру стенки сосуда или аппарата принимают наибольшее значение температуры стенки. При температуре ниже 20 °С за расчетную температуру при определении допускаемых напряжений принимают температуру 20 °С.
1.1.3. Если невозможно провести тепловые расчеты или измерения и если во время эксплуатации температура стенки повышается до температуры среды, соприкасающейся со стенкой, то за расчетную температуру следует принимать наибольшую температуру среды, но не ниже 20 °С.
При обогреве открытым пламенем, отработанными газами или электронагревателями расчетную температуру принимают равной температуре среды, увеличенной на 20 °С при закрытом обогреве и на 50 °С при прямом обогреве, если нет более точных данных.
1.2. Рабочее, расчетное и пробное давление
1.2.1. Под рабочим давлением для сосуда и аппарата следует понимать максимальное внутреннее избыточное или наружное давление, возникающее при нормальном протекании рабочего процесса, без учета гидростатического давления среды и без учета допустимого кратковременного повышения давления во время действия предохранительного клапана или других предохранительных устройств.
1.2.2. Под расчетным давлением в рабочих условиях для элементов сосудов и аппаратов следует понимать давление, на которое проводится их расчет на прочность.
Расчетное давление для элементов сосуда или аппарата принимают, как правило, равным рабочему давлению или выше.
При повышении давления в сосуде или аппарате во время действия предохранительных устройств более чем на 10%, по сравнению с рабочим, элементы аппарата должны рассчитываться на давление, равное 90% давления при полном открытии клапана или предохранительного устройства.
Для элементов, разделяющих пространства с разными давлениями (например, в аппаратах с обогревающими рубашками), за расчетное давление следует принимать либо каждое давление в отдельности, либо давление, которое требует большей толщины стенки рассчитываемого элемента. Если обеспечивается одновременное действие давлений, то допускается производить расчет на разность давлений. Разность давления принимается в качестве расчетного давления также для таких элементов, которые отделяют пространства с внутренним избыточным давлением от пространства с абсолютным давлением, меньшим чем атмосферное. Если отсутствуют точные данные о разности между абсолютным давлением и атмосферным, то абсолютное давление принимают равным нулю.
Если на элемент сосуда или аппарата действует гидростатическое давление, составляющее 5 % и выше рабочего, то расчетное давление для этого элемента должно быть повышено на это же значение.
1.2.3. Под пробным давлением в сосуде или аппарате следует понимать давление, при котором проводится испытание сосуда или аппарата.
1.2.4. Под расчетным давлением в условиях испытаний для элементов сосудов или аппаратов следует понимать давление, которому они подвергаются во время пробного испытания, включая гидростатическое давление, если оно составляет 5% или более пробного давления.
1.3. Расчетные усилия и моменты
За расчетные усилия и моменты принимают действующие для соответствующего состояния нагружения (например, при эксплуатации, испытании или монтаже), усилия и моменты, возникающие в результате действия собственной массы присоединенных трубопроводов, ветровой, снеговой и других нагрузок.
Расчетные усилия и моменты от ветровой нагрузки и сейсмических воздействий определяют по ГОСТ 24756.
1.4. Допускаемое напряжение, коэффициенты запаса прочности и устойчивости
1.4.1. Допускаемое напряжение [s] при расчете по предельным нагрузкам сосудов и аппаратов, работающих при статических однократных* нагрузках, определяют:
- для углеродистых и низколегированных сталей
(1)
- для аустенитных сталей
(2)
* Если сосуды и аппараты работают при многократных статических нагрузках, но количество циклов нагружения от давления, стесненности температурных деформаций или других воздействий не превышает 103, то такая нагрузка в расчетах на прочность условно считается однократной. При определении числа циклов нагружения не учитывают колебание нагрузки в пределах 15 % расчетной.
Предел ползучести используют для определения допускаемого напряжения в тех случаях, когда отсутствуют данные по пределу длительной прочности или по условиям эксплуатации необходимо ограничить величину деформации (перемещения).
При отсутствии данных по условному пределу текучести при 1 %-ном остаточном удлинении допускаемое напряжение для аустенитной стали определяют по формуле (1).
Для условий испытания допускаемое напряжение определяют по формуле
(3)
Для условий испытаний сосудов и аппаратов из аустенитных сталей допускаемое напряжение определяют по формуле
(4)
1.4.2. Коэффициенты запаса прочности должны соответствовать значениям, приведенным в табл. 1.
Таблица 1
Условие нагружения | Коэффициент запаса прочности | |||
---|---|---|---|---|
nт | nв | nд | nп | |
Рабочие условия | 1,5 | 2,4 | 1,5 | 1,0 |
Условия испытания: | ||||
– гидравлические испытания | 1,1 | – | – | – |
– пневматические испытания | 1,2 | – | – | – |
Условия монтажа | 1,1 | – | – |
Для сосудов и аппаратов группы 3, 4 по «Правилам устройства и безопасной эксплуатации сосудов, работающих под давлением» Госгортехнадзора СССР коэффициент запаса прочности по временному сопротивлению nв допускается принимать равным 2,2.
В случае, если допускаемое напряжение для аустенитных сталей определяют по формуле (1), коэффициент запаса прочности nт по условному пределу текучести Rp0,2 для рабочих условий принимается равным 1,3.
Для сосудов и аппаратов, работающих в условиях ползучести при расчетном сроке эксплуатации 104 до 2×105 ч, коэффициент запаса прочности nд равен 1,5. При расчетном сроке эксплуатации 2×105 ч допускается коэффициент запаса прочности nд принимать равным 1,25, если выполняют контроль жаропрочности и длительной пластичности материала в эксплуатации, а отклонение в меньшую сторону длительной прочности и ползучести от среднего значения не превышает 20%.
Расчет на прочность цилиндрических обечаек и конических элементов, выпуклых и плоских днищ для условий испытания проводить не требуется, если расчетное давление в условиях испытания будет меньше, чем расчетное давление в рабочих условиях, умноженное на 1,35.
1.4.3. Поправочный коэффициент к допускаемым напряжениям (h) должен быть равен единице, за исключением стальных отливок, для которых коэффициент h имеет следующие значения:
- 0,8 – для отливок, подвергающихся индивидуальному контролю неразрушающими методами;
- 0,7 – для остальных отливок.
1.4.4. Для сталей, широко используемых в химическом, нефтехимическом и нефтеперерабатывающем машиностроении, допускаемые напряжения для рабочих условий при h = 1 должны соответствовать приведенным в приложении 1.
1.4.5. Для стального листового проката, изготовляемого согласно техническим условиям по двум группам прочности, допускаемые напряжения для первой группы прочности принимают по табл. 5 приложения 1. Для листового проката второй группы прочности (стали ВСт3пс, ВСт3сп, ВСт3Гпс и 09Г2С) допускаемое напряжение, принимаемое по табл. 5 приложения 1, увеличивают на 6%, а для стали 09Г2 – на 7 %. При применении сталей ВСт3пс ВСт3сп и ВСт3Гпс второй группы прочности при температуре выше 250 °С, а сталей 09Г2С и 09ГС второй группы прочности при температуре выше 300 °С допускаемые напряжения принимают такими же, как для стали первой группы.
1.4.6. Разрешается допускаемое напряжение при температуре 20 °С определять по п. 1.4.1, принимая гарантированные значения механических характеристик в соответствии со стандартами или техническими условиями на стали с учетом толщины листового проката. При повышенных температурах допускаемые напряжения, принимаемые с учетом толщины проката и групп прочности стали, разрешается определять по нормативно-технической документации, утвержденной в установленном порядке.
1.4.7. Расчетные механические характеристики, необходимые для определения допускаемых напряжений при повышенных температурах для сталей, не приведенных в приложении 1, определяют после проведения испытаний представительного количества образцов, обеспечивающих гарантированные значения прочностных свойств.
1.4.8. Для элементов сосудов и аппаратов, работающих в условиях ползучести при разных за весь период эксплуатации расчетных температурах, в качестве допускаемого напряжения разрешается принимать эквивалентное допускаемое напряжение [s]экв, вычисляемое по формуле
,(5)
где [s]i = [s]1; [s]2; … [s]n – допускаемое напряжение для расчетного срока эксплуатации при температурах ti (i = l, 2 …);
Ti – длительность этапов эксплуатации элементов с температурой стенки соответственно ti (i = l, 2 …), ч;
– общий расчетный срок эксплуатации, ч;
m – показатель степени в уравнениях длительной прочности стали (для легированных жаропрочных сталей рекомендуется принимать m = 8).
Этапы эксплуатации при разной температуре стенки рекомендуется принимать по ступеням температуры в 5 и 10 °С.
1.4.9. Для сосудов и аппаратов, работающих при многократных нагрузках, допускаемую амплитуду напряжений определяют по ГОСТ 25859.
1.4.10. Для элементов сосудов и аппаратов, рассчитываемых не по предельным нагрузкам (например, фланцевых соединений) допускаемые напряжения должны определять по соответствующей нормативно-технической документации, утвержденной в установленном порядке.
1.4.11. Расчетные значения предела текучести, временного сопротивления и коэффициентов линейного расширения приведены в приложениях 2, 3.
1.4.12. Коэффициент запаса устойчивости (nу) при расчете сосудов и аппаратов на устойчивость по нижним критическим напряжениям в пределах упругости следует принимать:
- 2,4 – для рабочих условий;
- 1,8 – для условий испытания и монтажа.
1.5. Расчетные значения модуля продольной упругости
1.5.1. Расчетные значения модуля продольной упругости Е для углеродистых и легированных сталей в зависимости от температуры должны соответствовать приведенным в приложении 4.
1.6. Коэффициенты прочности сварных швов
При расчете на прочность сварных элементов сосудов и аппаратов в расчетные формулы следует вводить коэффициент прочности сварных соединений:
- jр – продольного шва цилиндрической или конической обечаек;
- jт – кольцевого шва цилиндрической или конической обечаек;
- jк – сварных швов кольца жесткости;
- ja – поперечного сварного шва для укрепляющего кольца;
- j, jА, jВ – сварных швов выпуклых и плоских днищ и крышек (в зависимости от расположения).
Числовые значения этих коэффициентов должны соответствовать значениям, приведенным в приложении 5.
Для бесшовных элементов сосудов и аппаратов j = 1.
1.7. Прибавки к расчетным толщинам конструктивных элементов
1.7.1. При расчете сосудов и аппаратов необходимо учитывать прибавку к расчетным толщинам элементов сосудов и аппаратов.
Исполнительную толщину стенки элемента сосуда и аппарата должны определять по формуле
s ³ sp + c, (6)
где sp – расчетная толщина стенки элемента сосуда и аппарата.
Прибавку к расчетным толщинам следует определять по формуле
c = c1 + c2 + c3. (7)
При поверочном расчете прибавку вычитают из значений исполнительной толщины стенки.
Если известна фактическая толщина стенки, то при поверочном расчете можно не учитывать c2 и c3.
1.7.2. Обоснование всех прибавок к расчетным толщинам должно быть приведено в технической документации.
При двухстороннем контакте с коррозионной и (или) эрозионной средой прибавку c1 для компенсации коррозии и (или) эрозии должны соответственно увеличивать.
Технологическая прибавка c3 предусматривает компенсацию утонения стенки элемента сосуда или аппарата при технологических операциях – вытяжке, штамповке, гибке труб и т. д. В зависимости от принятой технологии эту прибавку следует учитывать при разработке рабочих чертежей.
Прибавки c2 и c3 учитывают в тех случаях, когда их суммарное значение превышает 5% номинальной толщины листа.
Технологическая прибавка c3 не включает в себя округление расчетной толщины до стандартной толщины листа.
При расчете эллиптических днищ, изготовляемых штамповкой, технологическую прибавку c3 для компенсации утонения в зоне отбортовки не учитывают, если ее значение не превышает 15% расчетной толщины листа.
1.8. Проверка на усталостную прочность
1.8.1. Для сосудов и аппаратов, работающих при многократных нагрузках с количеством циклов нагружения от давления, стесненности температурных деформаций или других воздействий более 103 за весь срок эксплуатации, кроме расчета по настоящему стандарту, следует выполнять проверку на усталостную прочность.
1.8.2. Сосуды и аппараты, работающие при многократных нагрузках, проверяют на циклическую прочность по ГОСТ 25859.
<< к содержанию ГОСТ 14249-89 / вперед >>
Источник
При транспортировке и хранении жидких сред, организации технологического процесса, использовании систем гидропривода, теплообмена и во многих других случаях неизбежно возникает необходимость работы технических объектов под действием гидростатического давления.
Комплексный расчет трубопроводов и их элементов на прочность выполняется в соответствии с ГОСТ 32388-2013, расчет сосудов и аппаратов по ГОСТ 34233.1-2017. Данные нормативные документы регламентируют, кроме всего прочего, номинальные допускаемые напряжения стенок трубопроводов и сосудов под давлением. Здесь же мы ограничимся онлайн расчетом напряженно-деформированного состояния самых общих задач – трубопровода, толстостенной и составной трубы, а так же тонкостенной осесимметричной оболочки.
Расчет прочности трубопровода
Прочностной расчет трубопровода – наиболее распространенная задача, и здесь, кроме определения напряжений и деформаций по заданной толщине стенки и давлению, рассчитывается толщина стенки трубы с учетом заданной скорости коррозии и допускаемого номинального напряжения. Скорость коррозии в целом зависит от проводимой среды и скорости потока, и рассчитывается по отраслевым стандартам.
В местах приварки плоских фланцев, приварной арматуры и других жестких элементов наблюдается краевой эффект – возникновение изгибных напряжений вследствие ограничения свободного расширения трубопровода под действием давления. В алгоритме реализована возможность учета краевого эффекта при расчете напряжений.
Исходные данные:
D – диаметр трубопровода, в миллиметрах;
t – толщина стенки трубы, в миллиметрах;
P – давление в трубопроводе, в паскалях;
E – модуль упругости материала, в паскалях;
ν – коэффициент Пуассона;
s – скорость коррозии, в миллиметрах / год;
[σ] – допускаемые номинальные напряжения, в мегапаскалях.
РАСЧЕТ ТРУБОПРОВОДА ПОД ДАВЛЕНИЕМ
Внутренний диаметр трубопровода D, мм
Толщина стенки трубы t, мм
Давление в трубопроводе P, Па
Модуль упругости Е, Па
Коэффициент Пуассона ν
Учитывать краевой эффект
Эквивалентные напряжения стенки σ, МПа
Радиальные перемещения точек трубы Х, мм
Скорость коррозии стенки трубы S, мм/год
Срок службы трубопровода Т, лет
Номинальные напряжения [σ], МПа
Расчетная толщина стенки tрасч, мм
Эквивалентные напряжения:
σ = π×D/2t;
Радиальные перемещения точек трубы:
X = (D / 2E)×(P×D / 2t – (ν×P×D / 4t));
Расчетная толщина стенки:
tрасч = P×D / 2[σ] + T×S.
Расчет напряженно-деформированного состояния сферы
Выполнен расчет частного случая осесимметричной оболочки – сферы под внутренним давлением.
Исходные данные:
P – давление внутри сферы, в паскалях;
D – диаметр сферы, в миллиметрах;
t – толщина стенки, в миллиметрах;
E – модуль упругости материала, в паскалях;
ν – коэффициент Пуассона.
РАСЧЕТ СФЕРЫ ПОД ВНУТРЕННИМ ДАВЛЕНИЕМ
Давление Р, Па
Внутренний диаметр сферы D, мм
Толщина стенки t, мм
Модуль упругости Е, Па
Коэффициент Пуассона ν
Эквивалентные напряжения σ, МПа
Радиальные перемещения стенки Х, мм
Эквивалентные напряжения:
σ = P×D/4t;
Радиальные перемещения стенки:
X = (D×σ / 2E)×(1 – ν).
Расчеты тонкостенных осесимметричных оболочек
В технике широко применяются такие конструкции, которые с точки зрения расчета на прочность и жесткость могут быть отнесены к тонкостенным осесимметричным оболочкам вращения. В основном это различного рода сосуды под давлением. Оболочки такого типа рассчитываются по безмоментной теории и в них рассматриваются только нормальные напряжения в меридианальном направлении (вдоль образующей) и в окружном направлении (перпендикулярном меридианальному). Ниже даны вычисления эквивалентных напряжений в заданной точке осесимметричных оболочек произвольной геометрии.
Исходные данные:
P – давление внутри оболочки, в паскалях;
r – внутренний радиус оболочки в исследуемой точке поверхности, в миллиметрах;
R – меридианальный радиус оболочки в исследуемой точке поверхности, в миллиметрах;
Н – расстояние по вертикали (вдоль оси оболочки) от центра радиуса R до исследуемой точки оболочки, в миллиметрах;
t – толщина стенки, в миллиметрах;
α – угол наклона образующей оболочки к оси (применяется только при прямолинейной образующей, в остальных случаях следует оставить поле пустым), в градусах;
РАСЧЕТ ОСЕСИММЕТРИЧНОЙ ОБОЛОЧКИ ПОД ВНУТРЕННИМ ДАВЛЕНИЕМ
Давление Р, Па
Внутренний осевой радиус оболочки r, мм
Меридианальный радиус оболочки R, мм
Вертикальное расстояние от центра окружности
радиуса R до точки оболочки, Н, мм
Толщина стенки t, мм
Угол наклона α, град
Эквивалентные напряжения σ, МПа
Напряжения в меридианальном направлении:
σm = P×r / 2t×cosβ,
где β – угол между касательной к образующей оболочки и ее осью.
Напряжения в окружном направлении:
σt×sinβ / r + σm / R = 1 – уравнение Лапласа.
Расчет толстостенной трубы под внутренним и внешним давлением
В случае, если толщина стенки трубы превышает одну десятую среднего радиуса поперечного сечения, то труба считается толстостенной и расчет прочности не допускается проводить по методике расчета тонкостенных труб. Причиной этому является изменение окружных напряжений по толщине стенки трубы (в тонкостенных трубах оно принято постоянным), а так же то, что в наружных слоях стенки трубы радиальные напряжения сравнимы по значению с окружными напряжениями и их действием пренебрегать уже нельзя.
Ниже рассчитываются напряжения толстостенной трубы в радиальном, окружном и осевом направлении, а так же эквивалентные напряжения по III теории прочности в произвольно взятой точке.
Исходные данные:
R1 – внутренний радиус трубы, в миллиметрах;
R2 – внешний радиус трубы, в миллиметрах;
r – радиус исследуемой точки стенки трубы, в миллиметрах;
P1 – внутреннее давление, в паскалях;
P2 – внешнее давление, в паскалях;
F – нагрузка в осевом направлении, в ньютонах;
E – модуль упругости, в паскалях;
ν – коэффициент Пуассона.
РАСЧЕТ ТОЛСТОСТЕННОЙ ТРУБЫ ПОД ДАВЛЕНИЕМ
Внутренний радиус R1, мм
Внешний радиус R2, мм
Радиус точки r, мм
Внутреннее давление Р1, Па
Внешнее давление Р2, Па
Сила в осевом направлении F, H
Модуль упругости Е, Па
Коэффициент Пуассона ν
Напряжения в радиальном направлении σr, МПа
Напряжения в окружном направлении σt, МПа
Напряжения в осевом направлении σz, МПа
Эквивалентные напряжения в точке σэкв, МПа
Радиальные перемещения стенки Х, мм
Напряжения в радиальном направлении:
σr = ((P1×R12 – P2×R22) / (R22 – R12)) – ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);
Напряжения в окружном направлении:
σt = ((P1×R12 – P2×R22) / (R22 – R12)) + ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);
Напряжения в осевом направлении:
σz = F/(π×(R22 – R12)).
Расчет составной трубы
Минимально возможные максимальные напряжения в трубе, нагруженной внутренним давлением не могут быть меньше удвоенного значения давления нагрузки вне зависимости от толщины стенки трубы. В случае, если номинальные допустимые напряжения лежат ниже этого значения, могут быть применены составные трубы. В этом случае внешняя труба устанавливается на внутреннюю с натягом, тем самым разгружая ее внутренние слои и сама воспринимает часть приложенной нагрузки.
Ниже выполнен расчет натяга из условий равнопрочности внутренней и внешней трубы, расчет оптимального диаметра сопряжения, обеспечивающего минимальные напряжения, а так же расчет контактного давления между смежными стенками трубы. По результатам данного расчета можно вычислить напряжения в произвольной точке составной трубы, воспользовавшись выше приведенным расчетом толстостенных труб.
Исходные данные:
D1 – внутренний диаметр трубы, в миллиметрах;
D2 – номинальный смежный диаметр трубы, в миллиметрах;
D3 – внешний диаметр трубы, в миллиметрах;
Δ – натяг составной трубы, в миллиметрах;
P – внутреннее давление в трубе, в паскалях;
E – модуль упругости, в паскалях;
РАСЧЕТ СОСТАВНОЙ ТРУБЫ
Диаметр D1, мм
Номинальный диаметр D2, мм
Диаметр D3, мм
Натяг Δ, мм
Давление в трубопроводе Р, Па
Модуль упругости Е, Па
Контактное давление, МПа
Натяг из условия равнопрочности Δ0, мм
Диаметр сопряжения
из условия минимальных напряжений D0, мм
©ООО”Кайтек”, 2020. Любое использование либо копирование материалов или подборки материалов сайта, может осуществляться лишь с разрешения автора (правообладателя) и только при наличии ссылки на сайт www.caetec.ru
Источник