Зависит ли давление на дно и стенки сосудов от плотности жидкости

Æèäêîñòè (è ãàçû) ïåðåäàþò ïî âñåì íàïðàâëåíèÿì íå òîëüêî âíåøíåå äàâëåíèå, íî è òî äàâ­ëåíèå, êîòîðîå ñóùåñòâóåò âíóòðè íèõ áëàãîäàðÿ âåñó ñîáñòâåííûõ ÷àñòåé.

Äàâëåíèå, îêàçûâàåìîå ïîêîÿùåéñÿ æèäêîñòüþ, íàçûâàåòñÿ ãèäðîñòà­òè÷åñêèì.

Ïîëó÷èì ôîðìóëó äëÿ ðàñ÷åòà ãèäðîñòàòè÷åñêîãî äàâëåíèÿ æèäêîñòè íà ïðîèçâîëüíîé ãëóáèíå h (â îêðåñòíîñòè òî÷êè A íà ðèñóíêå).

Ñòàòèêà Äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè íà äíî è ñòåíêè ñîñóäà ãèäðîñòàòè÷åñêîå äàâëåíèå

Ñèëà äàâëåíèÿ, äåéñòâóþùàÿ ñî ñòîðîíû âûøåëåæàùåãî óçêîãî ñòîëáà æèäêîñòè, ìîæåò áûòü âûðàæåíà äâóìÿ ñïîñîáàìè:

1) êàê ïðîèçâåäåíèå äàâëåíèÿ p â îñíîâàíèè ýòîãî ñòîëáà íà ïëîùàäü åãî ñå÷åíèÿ S:

2) êàê âåñ òîãî æå ñòîëáà æèäêîñòè, ò. å. ïðîèçâåäåíèå ìàññû m æèäêîñòè íà óñêîðåíèå ñâî­áîäíîãî ïàäåíèÿ:

F=mg. (1.28)

Ìàññà æèäêîñòè ìîæåò áûòü âûðàæåíà ÷åðåç åå ïëîòíîñòü p è îáúåì V:

m = pV, (1.29)

à îáúåì – ÷åðåç âûñîòó ñòîëáà è ïëîùàäü åãî ïîïåðå÷íîãî ñå÷åíèÿ:

V=Sh. (1.30)

Ïîäñòàâëÿÿ â ôîðìóëó (1.28) çíà÷åíèå ìàññû èç (1.29) è îáúåìà èç (1.30), ïîëó÷èì:

F = pVg=pShg. (1.31)

Ïðèðàâíèâàÿ âûðàæåíèÿ (1.27) è (1.31) äëÿ ñèëû äàâëåíèÿ, ïîëó÷èì:

pS = pSkg.

Ðàçäåëèâ îáå ÷àñòè ïîñëåäíåãî ðàâåíñòâà íà ïëîùàäü S, íàéäåì äàâëåíèå æèäêîñòè íà ãëóáèíå h:

p = phg.

Ýòî è åñòü ôîðìóëà ãèäðîñòàòè÷åñêîãî äàâëåíèÿ.

Ãèäðîñòàòè÷åñêîå äàâëåíèå íà ëþáîé ãëóáèíå âíóòðè æèäêîñòè íå çàâèñèò îò ôîðìû ñîñóäà, â êîòîðîì íàõîäèòñÿ æèäêîñòü, è ðàâíî ïðîèçâåäåíèþ ïëîòíîñòè æèäêîñòè, óñêîðåíèÿ ñâîáîäíî­ãî ïàäåíèÿ è ãëóáèíû, íà êîòîðîé îïðåäåëÿåòñÿ äàâëåíèå.

Âàæíî åùå ðàç ïîä÷åðêíóòü, ÷òî ïî ôîðìóëå ãèäðîñòàòè÷åñêîãî äàâëåíèÿ ìîæíî ðàññ÷èòûâàòü äàâëåíèå æèäêîñòè, íàëèòîé â ñîñóä ëþáîé ôîðìû, â òîì ÷èñëå, äàâëåíèå íà ñòåíêè ñîñóäà, à òàê­æå äàâëåíèå â ëþáîé òî÷êå æèäêîñòè, íàïðàâëåííîå ñíèçó ââåðõ, ïîñêîëüêó äàâëåíèå íà îäíîé è òîé æå ãëóáèíå îäèíàêîâî ïî âñåì íàïðàâëåíèÿì.

Ãèäðîñòàòè÷åñêèé ïàðàäîêñ .

Ãèäðîñòàòè÷åñêèé ïàðàäîêñ – ÿâëåíèå, çàêëþ÷àþùååñÿ â òîì, ÷òî âåñ æèäêîñòè, íàëèòîé â ñîñóä, ìîæåò îòëè÷àòüñÿ îò ñèëû äàâëåíèÿ æèäêîñòè íà äíî ñîñóäà.

 äàííîì ñëó÷àå ïîä ñëîâîì «ïàðàäîêñ» ïîíèìàþò íåîæèäàííîå ÿâëåíèå, íå ñîîòâåòñòâóþùåå îáû÷íûì ïðåäñòàâëåíèÿì.

Òàê, â ðàñøèðÿþùèõñÿ êâåðõó ñîñóäàõ ñèëà äàâëåíèÿ íà äíî ìåíüøå âåñà æèäêîñòè, à â ñóæà­þùèõñÿ – áîëüøå.  öèëèíäðè÷åñêîì ñîñóäå îáå ñèëû îäèíàêîâû. Åñëè îäíà è òà æå æèäêîñòü íàëèòà äî îäíîé è òîé æå âûñîòû â ñîñóäû ðàçíîé ôîðìû, íî ñ îäèíàêîâîé ïëîùàäüþ äíà, òî, íåñìîòðÿ íà ðàçíûé âåñ íàëèòîé æèäêîñòè, ñèëà äàâëåíèÿ íà äíî îäèíàêîâà äëÿ âñåõ ñîñóäîâ è ðàâíà âåñó æèäêîñòè â öèëèíäðè÷åñêîì ñîñóäå.

Ñòàòèêà Äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè íà äíî è ñòåíêè ñîñóäà ãèäðîñòàòè÷åñêîå äàâëåíèå

Ýòî ñëåäóåò èç òîãî, ÷òî äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè çàâèñèò òîëüêî îò ãëóáèíû ïîä ñâîáîäíîé ïîâåðõíîñòüþ è îò ïëîòíîñòè æèäêîñòè: p = pgh (ôîðìóëà ãèäðîñòàòè÷åñêîãî äàâëåíèÿ æèäêîñòè). À òàê êàê ïëîùàäü äíà ó âñåõ ñîñóäîâ îäèíàêîâà, òî è ñèëà, ñ êîòîðîé æèäêîñòü äàâèò íà äíî ýòèõ ñîñó­äîâ, îäíà è òà æå. Îíà ðàâíà âåñó âåðòèêàëüíîãî ñòîëáà ABCD æèäêîñòè: P = oghS, çäåñü S – ïëîùàäü äíà (õîòÿ ìàññà, à ñëåäîâàòåëüíî, è âåñ â ýòèõ ñîñóäàõ ðàçëè÷íû).

Ãèäðîñòàòè÷åñêèé ïàðàäîêñ îáúÿñíÿåòñÿ çàêîíîì Ïàñêàëÿ – ñïîñîá­íîñòüþ æèäêîñòè ïåðåäàâàòü äàâëåíèå îäèíàêîâî âî âñåõ íàïðàâëåíèÿõ.

Èç ôîðìóëû ãèäðîñòàòè÷åñêîãî äàâëåíèÿ ñëåäóåò, ÷òî îäíî è òî æå êîëè÷åñòâî âîäû, íàõîäÿñü â ðàçíûõ ñîñóäàõ, ìîæåò îêàçûâàòü ðàçíîå äàâ­ëåíèå íà äíî. Ïîñêîëüêó ýòî äàâëåíèå çàâèñèò îò âûñîòû ñòîëáà æèäêîñòè, òî â óçêèõ ñîñóäàõ îíî áóäåò áîëüøå, ÷åì â øèðîêèõ. Áëàãîäàðÿ ýòîìó äàæå íåáîëüøèì êîëè÷åñòâîì âîäû ìîæíî ñîçäàâàòü î÷åíü áîëüøîå äàâëå­íèå.  1648 ã. ýòî î÷åíü óáåäèòåëüíî ïðîäåìîíñòðèðîâàë Á. Ïàñêàëü. Îí âñòàâèë â çàêðûòóþ áî÷êó, íàïîëíåííóþ âîäîé, óçêóþ òðóáêó è, ïîäíÿâ­øèñü íà áàëêîí âòîðîãî ýòàæà, âûëèë â ýòó òðóáêó êðóæêó âîäû. Èç-çà ìàëîé òîëùèíû òðóáêè âîäà â íåé ïîäíÿëàñü äî áîëüøîé âûñîòû, è äàâëå­íèå â áî÷êå óâåëè÷èëîñü íàñòîëüêî, ÷òî êðåïëåíèÿ áî÷êè íå âûäåðæàëè, è îíà òðåñíóëà.

Ñòàòèêà Äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè íà äíî è ñòåíêè ñîñóäà ãèäðîñòàòè÷åñêîå äàâëåíèå

Источник



Главная Онлайн учебники База репетиторов России Тренажеры по физике Подготовка к ЕГЭ 2017 онлайн

Глава 1. Механика

Элементы статики

1.15. Элементы гидростатики

Основным отличием жидкостей от твердых (упругих) тел является способность легко изменять свою форму. Части жидкости могут свободно сдвигаться, скользя друг относительно друга. Поэтому жидкость принимает форму сосуда, в который она налита. В жидкость, как и в газообразную среду, можно погружать твердые тела. В отличие от газов жидкости практически несжимаемы.

На тело, погруженное в жидкость или газ, действуют силы, распределенные по поверхности тела. Для описания таких распределенных сил вводится новая физическая величина – давление.

Давление определяется как отношение модуля силы действующей перпендикулярно поверхности, к площади S этой поверхности:

В системе СИ давление измеряется в паскалях (Па):

Часто используются внесистемные единицы: нормальная атмосфера (атм) и миллиметр ртутного столба (мм Hg):

1 атм = 101325 Па = 760 мм Hg.

Французский ученый Б. Паскаль в середине XVII века эмпирически установил закон, названный законом Паскаля:

Читайте также:  Как чистить сосуды от холестерина медикаментами

Давление в жидкости или газе передается во всех направлениях одинаково и не зависит от ориентации площадки, на которую оно действует.

Для иллюстрации закона Паскаля на рис. 1.15.1 изображена небольшая прямоугольная призма, погруженная в жидкость. Если предположить, что плотность материала призмы равна плотности жидкости, то призма должна находиться в жидкости в состоянии безразличного равновесия. Это означает, что силы давления, действующие на грани призмы, должны быть уравновешены. Это произойдет только в том случае, если давления, т. е. силы, действующие на единицу площади поверхности каждой грани, одинаковы: p1 = p2 = p3 = p.

Рисунок 1.15.1.

Закон Паскаля:

p1 = p2 = p3 = p

Давление жидкости на дно или боковые стенки сосуда зависит от высоты столба жидкости. Сила давления на дно цилиндрического сосуда высоты h и площади основания S равна весу столба жидкости mg, где m = ρghS – масса жидкости в сосуде, ρ – плотность жидкости. Следовательно

Такое же давление на глубине h в соответствии с законом Паскаля жидкость оказывает и на боковые стенки сосуда. Давление столба жидкости ρgh называют гидростатическим давлением.

Если жидкость находится в цилиндре под поршнем (рис. 1.15.2), то действуя на поршень некоторой внешней силой можно создавать в жидкости дополнительное давление p0 = F / S, где S – площадь поршня.

Таким образом, полное давление в жидкости на глубине h можно записать в виде:

Если на рис. 1.15.2 поршень убрать, то давление на поверхность жидкости будет равно атмосферному давлению: p0 = pатм.

Рисунок 1.15.2.

Зависимость давления от высоты столба жидкости

Из-за разности давлений в жидкости на разных уровнях возникает выталкивающая или архимедова сила

Рис. 1.15.3 поясняет появление архимедовой силы. В жидкость погружено тело в виде прямоугольного параллелепипеда высотой h и площадью основания S. Разность давлений на нижнюю и верхнюю грани есть:

Поэтому выталкивающая сила будет направлена вверх, и ее модуль равен

FА = F2 – F1 = SΔp = ρgSh = ρgV,

где V – объем вытесненной телом жидкости, а ρV – ее масса.

Архимедова сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом. Это утверждение, называемое законом Архимеда, справедливо для тел любой формы.

Рисунок 1.15.3.

Архимедова сила.

FА = F2 – F1 = S(p2 – p1) = ρgSh

,

F1 = p1S

,

F2 = p2S

Из закона Архимеда вытекает, что если средняя плотность тела ρт больше плотности жидкости (или газа) ρ, тело будет опускаться на дно. Если же ρт < ρ, тело будет плавать на поверхности жидкости. Объем погруженной части тела будет таков, что вес вытесненной жидкости равен весу тела. Для подъема воздушного шара в воздухе его вес должен быть меньше веса вытесненного воздуха. Поэтому воздушные шары заполняют легкими газами (водородом, гелием) или нагретым воздухом.

Из выражения для полного давления в жидкости p = p0 + ρgh вытекает, что в сообщающихся сосудах любой формы, заполненных однородной жидкостью, давления в любой точке на одном и том же уровне одинаковы (рис. 1.15.4).

Рисунок 1.15.4.

Пример сообщающихся сосудов. В правом сосуде поверхность жидкости свободна. На уровне

h

давление в обоих сосудах одинаково и равно

p0 = F / S = ρgh0 + pатм

. Давление на дно сосудов

p = p0 + ρgh

Если оба вертикально расположенных цилиндра сообщающихся сосудов закрыть поршнями, то с помощью внешних сил, приложенных к поршням, в жидкости можно создать большое давление p, во много раз превышающее гидростатическое давление ρgh в любой точке системы. Тогда можно считать, что во всей системе устанавливается одинаковое давление p. Если поршни имеют разные площади S1 и S2, то на них со стороны жидкости действуют разные силы F1 = pS1 и F2 = pS2. Такие же по модулю, но противоположно направленные внешние силы должны быть приложены к поршням для удержания системы в равновесии. Таким образом,

Если S2 >> S1, то F2 >> F1. Устройства такого рода называют гидравлическими машинами (рис. 1.15.5). Они позволяют получить значительный выигрыш в силе. Если поршень в узком цилиндре переместить вниз под действием внешней силы на расстояние то поршень в широком цилиндре переместится на расстояние поднимая тяжелый груз.

Таким образом, выигрыш в силе в раз обязательно сопровождается таким же проигрышем в расстоянии. При этом произведение силы на расстояние остается неизменным:

Это правило выполняется для любых идеальных машин, в которых не действуют силы трения. Оно называется «золотым правилом механики».

Рисунок 1.15.5.

Гидравлическая машина.

Гидравлические машины, используемые для подъема грузов, называются домкратами. Они широко применяются также в качестве гидравлических прессов. В качестве жидкости обычно используются минеральные масла.

Зависит ли давление на дно и стенки сосудов от плотности жидкости

Модель. Гидравлическая машина





Источник

Что это такое?

В сосуде, заполненном водой, на дно давит сила, равная весу столба жидкости. Это вызванное силой тяжести давление называется гидростатическим.

Оно определяется отношением силы к площади, то есть его физический смысл – это сила, действующая на единицу площади (см2).

foto18494-2Законы гидростатики описал Блез Паскаль. В 1648 г. он удивил горожан опытом, демонстрирующим свойства воды.

Вставив в бочку, заполненную водой, длинную узкую трубку, он налил в нее несколько кружек воды, и бочку разорвало.

Согласно закону Паскаля, приложенное к H2O усилие распространяется равномерно во всем объеме. Это объясняется тем, что вода почти не сжимается. В гидравлических прессах используют это свойство.

Плотность воды все же растет при высоком давлении. Это учитывается при расчетах конструкций глубоководных аппаратов.

Факторы, влияющие на показатель

При отсутствии внешнего воздействия, играют роль два фактора:

  • высота столба;
  • плотность.

Выше уровень воды, налитой в сосуд, – выше напор на дно. Если в одной емкости ртуть, а в другой вода и при этом уровни жидкостей одинаковы, то в первом случае давление на дно больше, так как ртуть имеет большую плотность.

Сверху на содержимое сосуда давит также атмосферный воздух. Поэтому в сообщающихся сосудах уровень одинаков, ведь в каждом из них над поверхностью атмосфера одна и та же.

Если же к поверхности приложить поршень и давить на него, то напор будет складываться из:

  • внешней силы;
  • веса воды.

При этом форма сосуда не определяет размер усилия, создаваемого столбом. Оно будет одним и тем же при равной высоте столба, хотя стенки емкости могут расширяться кверху или сужаться.

foto18494-3

На дно и стенку сосуда – в чем разница?

Вода, заполняющая емкость, оказывает давление по направлению всегда перпендикулярно поверхности твердого тела, по всей площади соприкосновения с дном и стенками.

Усилие на дно распределено равномерно, то есть оно одинаково в любой точке. Заполнив водой сито, можно увидеть, что струи, текущие через отверстия, равны по напору.

Наполнив сосуд, имеющий отверстия одного диаметра в стенках на разной высоте, можно наблюдать различный напор вытекающей струи. Чем выше отверстие – тем слабее струя. То есть, давление на стенки емкости тем больше, чем ближе ко дну.

Единицы измерения

foto18494-4Давление воды измеряют в:

  • паскалях – Па;
  • метрах водяного столба – м. в. ст.
  • атмосферах – атм.

Практически достаточно знать, что 1 атмосфера равна 10 метрам водяного столба или 100000 Па (100кПа).

Формулы расчета

Давление на дно сосуда рассчитывается делением силы на площадь, то есть оно равно произведению плотности воды, высоты столба и ускорения свободного падения g (величина постоянная, равна 9,8 м/с2).

Пример расчета: бак наполнен водой (плотность 1000 кг/м3) до высоты 1,2 м. Нужно найти, какое давление испытывает дно бака. Решение: P = 1000*1, 2*9, 8 = 11760 Па, или 11, 76 кПа.

Для расчета давления на стенки сосуда применяют все ту же формулу напора, приведенную выше. При расчете берется глубина от точки, в которой нужно рассчитать напор, до поверхности воды.

Пример расчета: на глубине 5 м на стенку резервуара с водой будет оказываться давление P=1000 *5 * 9, 8=49000 кПа, что составляет 0,5 атмосферы.

Расчет давления воды на дно и стенки сосуда в видео:

Применение на практике

Примеры использования знаний свойств воды:

  1. foto18494-5Подбирая насос для водоснабжения дома высотой 10 м, понимают, что напор должен быть минимум 1 атм.
  2. Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
  3. Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
  4. Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.

Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:

  • выжимка масла из семян растений;
  • спуск на воду со стапелей построенного судна;
  • ковка и штамповка деталей;
  • домкраты для подъема грузов.

Заключение

Такие свойства воды, как текучесть и несжимаемость, дают возможность использовать силу ее давления для самых различных целей.

Опасность этого явления учитывают при расчетах на прочность корпусов подводных лодок, стенок и днищ резервуаров, в которых хранят воду. Сила давления воды совершает полезную работу, она же способна и разрушать.

А какова Ваша оценка данной статье?

Источник

1. Значение давления столба жидкости

2. Эксперименты Паскаля

3. Гидростатический парадокс

Для понимания сути понятия «давление жидкости» нужно рассмотреть, что влияет на его формирование. Обычно рассматривают примеры по проще, а после переходят к изучению более сложных примеров. Гидростатическое давление в физике рассчитывается с учетом нескольких физических величин:

(p=ρgh) ,

где (p) – давление слоя жидкости, Па;

(ρ) – плотность жидкости, кг/м3;

(g) – ускорение свободного падения, м/с2;

(h) – высота столба жидкости, м.

Значение давления столба жидкости

Одной из величин, влияющих на давление жидкости, является высота столба жидкости, что находится в сосуде цилиндрической формы. Она обозначается буквой (h). Следует учесть, что для правильного определения давления жидкости сосуд должен иметь правильную форму – строго горизонтальное дно и вертикальные стенки. В такой ситуации давление жидкости в каждой точке сосуда будет одинаковым.

Для определения силы давления вводится понятие «площадь дна сосуда». При учете равного давления сила давления жидкости на дно сосуда рассчитается по формуле:

(F=ρghS).

Эта формула показывает, что сила давления соизмерима с весом жидкости, при условии использования сосуда правильной цилиндрической формы. Также доказано, что эти вычисления также применимы для расчета давления жидкости в сосудах самой разнообразной формы. Здесь действует правило, гласящее, что давление жидкости на дно сосуда равно во всех точках, при условии одинаковой высоты столба жидкости и площади дня сосуда. Но при этом реальный вес жидкости сосуда неровной формы может отличаться от ее силы давления. Он может быть больше либо меньше, но конечное значение, рассчитанное по вышеуказанной формуле, будет справедливым.

Эксперименты Паскаля

Паскаль был одним из первых ученых, кто изобрел базовые формулы для расчета гидростатического давления. Свои эксперименты он проводил при помощи установки, позже названной его именем. Основным отличием этого прибора было применение специальных подставок, на которых он фиксировал различные сосуды с жидкостями и производил расчеты. Сосуды были самой различной формы, благодаря чему эта установка стала прорывом в сфере исследования физических свойств жидкостей. Также на этом приборе представлялось возможным фиксирование сосуда без дна. При этом вместо него могла крепиться пластина. Она была расположена на одном из плечей коромысла весов.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Устанавливая и перемещая груз на противоположном конце коромысла ученый наполнял сосуд жидкостью. Во время возникновения силы давления жидкости, большей, чем вес груза, жидкость выливалась наружу через пластину. Измеряя высоту столба жидкости, Паскаль мог вычислить величину силы давления жидкости на дно сосуда. Он сравнивал эти значения с весом груза.

Он старался достичь большой силы давления при ограниченном количестве воды. Он просто увеличивал глубину столба жидкости. Еще Паскаль проводил испытания такого рода: к бочке, наполненной до краев и плотно закрытой крышкой, он присоединял длинную трубку, через которую добавлял воду. При повышении давления до определенного значения бочка не выдерживала и начинала протекать. И получалось так, что данный эффект достигался при малом объеме добавленной воды. Это значит, что именно высота трубки, иными словами, высота столба жидкости создавала разрушительное давление на дно бочки. Таким образом, к разрушению емкости привело критическое значение давления.

Также при изучении поведения жидкости Паскаль заметил, что наклон стенок сосуда играет важную роль при распределении давления. Имеют место излишки давления, направленного в разные стороны. Если сосуд сужается кверху, то давление будет действовать вверх. Подобный эксперимент можно провести самому, для этого нужна установка, подобная прибору Паскаля. Нужен поршень, переходящий в трубку, на котором статически крепится цилиндр. Трубка ставится вертикально, затем в нее заливается вода, при этом необходимо следить, чтобы объем над поршнем заполнялся равномерно, потом цилиндр нужно поднять вверх.

Можно сделать заключение, что давление является силой, что действует перпендикулярно на единицу площади. Давление измеряется в Паскалях (Па). Один Паскаль равняется силе воздействия в 1 Ньютон (Н), что действует на площадь, размером 1 м2.

Гидростатический парадокс

Гидростатический парадокс заключается в том, что давление жидкости не зависимо от ее объема и веса. Оно также не зависимо от формы сосуда, от размеров его дна, лишь только от высоты столба жидкости.

Не нашли что искали?

Просто напиши и мы поможем

Подобное явление называется парадоксом, так как оно противоречит привычным суждениям о физических свойствах жидкости. Опираясь на исследования Паскаля, можно утверждать, что давление жидкости зависит от ее плотности и глубины: (p=ρgh). Об этом гласит закон Паскаля: жидкость способна передавать давление во всех направлениях с одинаковой силой.

Гидростатическое давление возможно определить для любой точки объема жидкости, а также для стенок сосуда.

Источник

Читайте также:  Очищение сосудов в больнице