Жидкость принимает форму сосуда

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда “теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму. Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно [Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками (или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками)]. Рис. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато). Рис. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо. Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен. Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет от себя кольцо. Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара. Рис. Упрощение опыта Плато. Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду. Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 58). За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75 – 85 °С легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли [Из других жидкостей удобен ортотолуидин – темно-красная жидкость; при 24° она имеет такую же плотность, как и соленая вода, в которую и погружают ортотолуидин]. |
Источник
Основным отличием жидкостей от твердых (упругих) тел является способность легко изменять свою форму. Части жидкости могут свободно сдвигаться, скользя друг относительно друга. Поэтому жидкость принимает форму сосуда, в который она налита. В жидкость, как и в газообразную среду, можно погружать твердые тела. В отличие от газов жидкости практически несжимаемы.
На тело, погруженное в жидкость или газ, действуют силы, распределенные по поверхности тела. Для описания таких распределенных сил вводится новая физическая величина – давление.
Давление определяется как отношение модуля силы действующей перпендикулярно поверхности, к площади S этой поверхности:
В системе СИ давление измеряется в паскалях (Па):
Часто используются внесистемные единицы: нормальная атмосфера (атм) и миллиметр ртутного столба (мм Hg):
1 атм = 101325 Па = 760 мм Hg.
Французский ученый Блез Паскаль в середине XVII века эмпирически установил закон, названный законом Паскаля:
Давление в жидкости или газе передается во всех направлениях одинаково и не зависит от ориентации площадки, на которую оно действует.
Для иллюстрации закона Паскаля на рис. 1.15.1 изображена небольшая прямоугольная призма, погруженная в жидкость. Если предположить, что плотность материала призмы равна плотности жидкости, то призма должна находиться в жидкости в состоянии безразличного равновесия. Это означает, что силы давления, действующие на грани призмы, должны быть уравновешены. Это произойдет только в том случае, если давления, т. е. силы, действующие на единицу площади поверхности каждой грани, одинаковы: p1 = p2 = p3 = p.
![]() |
Рисунок 1.15.1. Закон Паскаля: p1 = p2 = p3 = p |
Давление жидкости на дно или боковые стенки сосуда зависит от высоты столба жидкости. Сила давления на дно цилиндрического сосуда высоты h и площади основания S равна весу столба жидкости mg, где m = ρghS – масса жидкости в сосуде, ρ – плотность жидкости. Следовательно
Такое же давление на глубине h в соответствии с законом Паскаля жидкость оказывает и на боковые стенки сосуда. Давление столба жидкости ρgh называют гидростатическим давлением.
Если жидкость находится в цилиндре под поршнем (рис. 1.15.2), то действуя на поршень некоторой внешней силой можно создавать в жидкости дополнительное давление p0 = F / S, где S – площадь поршня.
Таким образом, полное давление в жидкости на глубине h можно записать в виде:
Если на рис. 1.15.2 поршень убрать, то давление на поверхность жидкости будет равно атмосферному давлению: p0 = pатм.
![]() |
Рисунок 1.15.2. Зависимость давления от высоты столба жидкости |
Из-за разности давлений в жидкости на разных уровнях возникает выталкивающая или архимедова сила
Рис. 1.15.3 поясняет появление архимедовой силы. В жидкость погружено тело в виде прямоугольного параллелепипеда высотой h и площадью основания S. Разность давлений на нижнюю и верхнюю грани есть:
Поэтому выталкивающая сила будет направлена вверх, и ее модуль равен
где V – объем вытесненной телом жидкости, а ρV – ее масса.
Архимедова сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом. Это утверждение, называемое законом Архимеда, справедливо для тел любой формы. (Тело впернутое в воду выпирает на свободу силой выпертой воды телом впернутым туды! так легче запомнить)
![]() |
Рисунок 1.15.3. Архимедова сила. FА = F2 – F1 = S(p2 – p1) = ρgSh, F1 = p1S, F2 = p2S |
Из закона Архимеда вытекает, что если средняя плотность тела ρт больше плотности жидкости (или газа) ρ, тело будет опускаться на дно. Если же ρт < ρ, тело будет плавать на поверхности жидкости.
Тут можно и разобраться с вопросом «Почему корабль не тонет, он же железный?» Объем воды измещенной кораблем по весу больше веса корабля. Одна из основных характеристик судов так и называется – водоизмещение.
Объем погруженной части тела будет таков, что вес вытесненной жидкости равен весу тела. Для подъема воздушного шара в воздухе его вес должен быть меньше веса вытесненного воздуха. Поэтому воздушные шары заполняют легкими газами (водородом, гелием) или нагретым воздухом.
Из выражения для полного давления в жидкости p = p0 + ρgh вытекает, что в сообщающихся сосудах любой формы, заполненных однородной жидкостью, давления в любой точке на одном и том же уровне одинаковы (рис. 1.15.4).
![]() |
Рисунок 1.15.4. Пример сообщающихся сосудов. В правом сосуде поверхность жидкости свободна. На уровне h давление в обоих сосудах одинаково и равно p0 = F / S = ρgh0 + pатм. Давление на дно сосудов p = p0 + ρgh |
Если оба вертикально расположенных цилиндра сообщающихся сосудов закрыть поршнями, то с помощью внешних сил, приложенных к поршням, в жидкости можно создать большое давление p, во много раз превышающее гидростатическое давление ρgh в любой точке системы. Тогда можно считать, что во всей системе устанавливается одинаковое давление p. Если поршни имеют разные площади S1 и S2, то на них со стороны жидкости действуют разные силы F1 = pS1 и F2 = pS2. Такие же по модулю, но противоположно направленные внешние силы должны быть приложены к поршням для удержания системы в равновесии. Таким образом,
Если S2 >> S1, то F2 >> F1. Устройства такого рода называют гидравлическими машинами (рис. 1.15.5). Они позволяют получить значительный выигрыш в силе. Если поршень в узком цилиндре переместить вниз под действием внешней силы на расстояние то поршень в широком цилиндре переместится на расстояние
поднимая тяжелый груз.
Таким образом, выигрыш в силе в n раз обязательно сопровождается таким же проигрышем в расстоянии. При этом произведение силы на расстояние остается неизменным:
Это правило выполняется для любых идеальных машин, в которых не действуют силы трения. Оно называется «золотым правилом механики».
![]() |
Рисунок 1.15.5. Гидравлическая машина. |
Гидравлические машины, используемые для подъема грузов, называются домкратами. Они широко применяются также в качестве гидравлических прессов. В качестве жидкости обычно используются минеральные масла.
![]() |
Модель. Гидравлическая машина. |
Еще статьи в этой категории:
- Условия равновесия тел
Источник
В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан – молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.
Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.
Вспомните, что происходит, если залить чайный пакетик холодной водой – он почти не заваривается. А вот если налить кипяточку – чай точно будет готов.
Агрегатных состояния точно три?
На самом деле, есть еще четвертое – плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ – газ, в котором помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.
Сообщающиеся сосуды
Поскольку жидкость принимает форму сосуда, в который ее поместили, имеет место быть такое явление, как сообщающиеся сосуды.
- Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости (в каждом сосуде). Так жидкость может перемещаться из одного сосуда в другой.
Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.
Если в колена сообщающихся сосудов налить жидкости, плотности которых будут различны, то меньший объём более плотной жидкости в одном колене уравновесит больший объём менее плотной жидкости в другом колене сосуда.
Другими словами, высота столба жидкости с меньшей плотностью больше, чем высота столба жидкости с большей плотностью. Давайте рассчитаем, во сколько высота столба жидкости с меньшей плотностью больше высоты столба жидкости с большей плотностью, если эти две несмешивающиеся жидкости находятся в сообщающихся сосудах.
p = ρgh, p1 = p2, ρ1 gh1= ρ2 gh2,
Отсюда:
h1/h2 = ρ1/ρ2
ρ2 = (h1/h2) * ρ1
Применение сообщающихся сосудов
На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор состоит из двух сообщающихся сосудов: двух вертикальных стеклянных трубок, соединенных между собой третьей изогнутой трубкой.
Одна из вертикальных трубок заполняется жидкостью, плотность которой нужно определить, а другая – жидкостью известной плотности (например, водой, плотность которой равна 1000 кг/м^3). Жидкости должны заполнить трубки настолько, чтобы их уровень в изогнутой трубке посередине был на отметке прибора 0. Высоты жидкостей в трубках над этой отметкой измеряют и находят плотность исследуемой жидкости, зная, что высоты обратно пропорциональны плотностям (об этом мы говорили выше).
Также на законе сообщающихся сосудах основаны устройства, которые определяют уровень жидкости в закрытых сосудах: резервуарах, паровых котлах.
Чтобы судно могло переплыть из одной водного бассейна в другой, если уровни воды в них разные, необходимо использовать шлюз. Устройство шлюза также основано на принципе сообщающихся сосудов. В первых воротах шлюза открывается клапан, камера соединяется с водоёмом, они становятся сообщающимися сосудами, уровни воды в них выравниваются. После этого ворота открываются, и судно проходит в первую камеру. Открывается следующий клапан, после выравнивания уровней воды открываются ворота, и так повторяется столько раз, сколько камер имеет шлюз.
Давление столба жидкости
Выведем формулу давления столба жидкости через основную формулу давления.
Давление
p = F/S
p – давление [Па]
F – сила [Н]
S – площадь [м^2]
В случае давления жидкости на дно сосуда мы можем заменить силу в формуле на силу тяжести.
p = mg/S
Также мы можем представить массу жидкости, как произведение плотности на объем:
p = ρ*V*g/S
Из геометрии мы знаем, что объем тела вращения (например, цилиндра) – это произведение площади основания на высоту: V = Sh.
Следовательно, высота будет равна h = V/S. Подставляем в формулу высоту вместо отношения объема к площади.
p = ρ*g*V/S
p = ρgh
В сообщающихся сосудах давление жидкости на одном уровне (на одной и той же высоте) будет одинаковым.
А можно сделать так, чтобы давление было разным?
С помощью перегородки можно сделать так, чтобы уровень жидкости, а следовательно, и давления в сообщающихся сосудах отличались.
Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем дополнительное давление. Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд, где её уровень ниже – до тех пор, пока высота жидкости в обоих сосудах не станет одинаковой.
Этот принцип используют в водонапорной башне. Чтобы создать высокое давление, башню наполняют водой. Затем открывают трубы на нижнем этаже, и вода устремляется в дома в наши краны и батареи.
Задачка
Какой площади необходимо сделать малый поршень в гидравлическом прессе, для того, чтобы выигрыш в силе получился равным 2? Площадь большого поршня равна 10 см^2.
Решение:
Гидравлический пресс – это два цилиндрических сообщающихся сосуда. Площадь большого поршня, с приложенной силой F1, равна 10 см^2.
Площадь малого поршня обозначим Sмал, к нему приложена сила F2.
Давления в сообщающихся сосудах на одинаковой высоте равны: p1 = p2
Подставим формулу давления:
F1/Sбол=F2/Sмал.
Выразим Sмал, получим:
Sмал = (F2/F1) * Sбол
Так как по условию выигрыш в силе F2/F1 равен 2, то:
Sмал=2*Sбол= 2*10 = 20 см^2
Ответ: малый поршень необходимо сделать с площадью равной 20 см^2
Понимать и любить этот мир гораздо проще, когда разбираешься в физике. В этом помогут небезразличные и компетентные преподаватели онлайн-школы Skysmart.
Чтобы формулы и задачки ожили и стали более дружелюбными, на уроках мы разбираем примеры из обычной жизни современных подростков. Приходите на бесплатный вводный урок по физике и начните учиться в удовольствие уже завтра!
Источник
Авторы: А. М. Емельяненко, Н. В. Чураев
КАПИЛЛЯ́РНЫЕ ЯВЛЕ́НИЯ, совокупность явлений, обусловленных поверхностным натяжением на границе раздела несмешивающихся сред (в системах жидкость – жидкость, жидкость – газ или пар) при наличии искривления поверхности. Частный случай поверхностных явлений.
Рис. 1.
При отсутствии силы тяжести жидкость ограниченной массы под воздействием поверхностного натяжения стремится занять объём с миним. поверхностью, т. е. принимает форму шара. В условиях действия силы тяжести не слишком вязкая жидкость достаточной массы принимает форму сосуда, в который налита, и её свободная поверхность при относительно большой площади (вдали от стенок сосуда) становится плоской, т. к. роль поверхностного натяжения менее существенна, чем силы тяжести. При взаимодействии с поверхностью др. жидкости или твёрдого тела (напр., со стенками сосуда) поверхность рассматриваемой жидкости искривляется в зависимости от наличия или отсутствия смачивания. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с молекулами поверхности 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость 1 поднимается по стенке сосуда – участок жидкости, примыкающий к стенке, искривляется. Давление, вызываемое подъёмом жидкости, уравновешивается капиллярным давлением $Delta p$ – разностью давлений над и под искривлённой поверхностью раздела. Величина капиллярного давления зависит от среднего радиуса $r$ кривизны поверхности и определяется формулой Лапласа: $Delta p=2 sigma/r$, где $sigma$ – поверхностное натяжение. Если граница раздела фаз плоская ($r= infty$), то в условиях механич. равновесия системы давления с обеих сторон границы раздела равны и $Delta p=0$. В случае вогнутой поверхности жидкости ($r lt 0$) давление в жидкости ниже, чем давление в граничащей с ней фазе и $Delta p lt 0$; для выпуклой поверхности ($r>0$) $Delta p>0$.
Если стенки сосуда приблизить друг к другу, зоны искривления поверхности жидкости образуют мениск – полностью искривлённую поверхность. Образовавшаяся система называется капилляром; в нём в условиях смачивания давление под мениском понижено и жидкость в капилляре поднимается (над уровнем свободной поверхности жидкости в сосуде); вес столба жидкости высотой $h$ уравновешивает капиллярное давление $Delta p$. Несмачивающая жидкость в капилляре образует выпуклый мениск, давление над которым выше, и жидкость в нём опускается ниже уровня свободной поверхности вне капилляра. Высота поднятия (опускания) жидкости в капилляре относительно свободной поверхности (где $r= infty$ и $Delta p=0$) определяется соотношением: $h=2 sigma cos theta/ Delta rho gr$, где $theta$ – краевой угол (угол между касательной к поверхности мениска и стенкой капилляра), $Delta rho$ – разность плотностей жидкости 1 в капилляре и внешней среды 2, $g$ – ускорение свободного падения.
Искривление поверхности влияет на условия равновесия между жидкостью и её насыщенным паром: согласно Кельвина уравнению, давление паров над каплей жидкости повышается с уменьшением её радиуса, что объясняет, напр., рост больших капель в облаках за счёт малых.
Рис. 2.
К характерным К. я. относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Капиллярное впитывание характеризуется скоростью, зависящей от капиллярного давления и вязкости жидкости. Оно играет существенную роль в водоснабжении растений, движении воды в почвах и др. процессах, связанных с движением жидкостей в пористых средах. Капиллярная пропитка – один из распространённых процессов химич. технологии. В системах с непараллельными стенками (или капиллярах конич. сечения) кривизна менисков зависит от расположения в них граничных поверхностей жидкости, и капля смачивающей жидкости в них начинает двигаться к мениску с меньшим радиусом (рис. 2), т. е. в ту сторону, где давление ниже. Причиной капиллярного передвижения жидкости может служить и разница сил поверхностного натяжения в менисках, напр. при существовании градиента темп-ры или при адсорбции поверхностно-активных веществ, снижающих поверхностное натяжение.
Капиллярной конденсацией называют процесс конденсации пара в капиллярах и микротрещинах пористых тел, а также в промежутках между сближенными твёрдыми частицами или телами. Необходимое условие капиллярной конденсации – наличие смачивания поверхности тел (частиц) конденсирующейся жидкостью. Процессу капиллярной конденсации предшествует адсорбция молекул пара поверхностью тел и образование менисков жидкости. В условиях смачивания форма менисков вогнутая и давление $p$ насыщенного пара над ними ниже, чем давление насыщенного пара $p_0$ при тех же условиях над плоской поверхностью. Т. е. капиллярная конденсация происходит при более низких, чем $p_0$, давлениях.
Искривление поверхности жидкости может существенно влиять на процессы испарения, кипения, растворения, зародышеобразования при конденсации пара и кристаллизации. Так, свойства систем, содержащих большое количество капель или пузырьков газа (эмульсий, аэрозолей, пен), и их формирование во многом определяются К. я. Они лежат также в основе мн. технологич. процессов: флотации, спекания порошков, вытеснения нефти из пластов водными растворами поверхностно-активных веществ, адсорбционного разделения и очистки газовых и жидких смесей и т. п.
Впервые К. я. были исследованы Леонардо да Винчи. Систематич. наблюдения и описания К. я. в тонких трубках и между плоскими, близко расположенными стеклянными пластинами провёл в 1709 Ф. Хоксби, демонстратор Лондонского королевского об-ва. Основы теории К. я. заложены в трудах Т. Юнга, П. Лапласа, а их термодинамич. рассмотрение осуществил Дж. Гиббс (1876).
Источник